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Abstract

We present a framework for pose-invariant face recognition using parametric linear subspace

models as stored representations of known individuals. Each model can be �t to an input,

resulting in faces of known people whose head pose is aligned to the input face. The model's

continuous nature enables the pose alignment to be very accurate, improving recognition per-

formance, while its generalization to unknown poses enables the models to be compact. As a

demonstration, recognition systems with two types of parametric linear model are compared

using a database of 20 persons. The experimental results showed our system's robust recogni-

tion of faces with �50 degree range of full 3D head rotation, while compressing the data by a

factor of 20 and more.
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List of Symbols

� A, S: Analysis and synthesis mapping

� M: Analysis-synthesis chain mapping

� SS, T S: Shape and texture synthesis mapping

� 
: View-based statistical model

� LM : Linear PCMAP model

� PM : Parametric piecewise linear subspace (PPLS) model (:=fLMkg)

� ~v: Vectorized facial image

� ~x: Shape vector of a facial image

� ~ux: Average shape vector of f~xg

� ~jn: Texture vector (Gabor jet) sampled at node n

� ~unj : Average texture vector of f~j
ng

� ~�: 3D angle vector of a head in an image

� ~u�: Average angle vector of f~�g

� N : The number of facial landmarks

� Y;Bn: Shape and texture models

� F;G;Hn: Shape-to-pose, pose-to-shape, shape-to-texture transfer matrices

� P0; S0: The number of principal components included in shape and texture models

� R: Image reconstruction operator

� K: Trigonometric functional transformation

� K: The number of local models in the PPLS model

� ~w: Weight vector for the PPLS model

� �k: The k-th Gaussian width of the weight function

� ~xi: Shape vector estimate by the i-th iteration

� ~�i: Angle vector estimate by the i-th iteration

� �: Learning rate
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1. Introduction

Past studies in the �eld of automatic face recognition (for reviews, see [32, 5]) have revealed that

our utmost challenge is to reliably recognize people in the presence of image/object variations

that occur naturally in our daily life [29]. Among others, head pose variation is one of most

common variations because humans and their heads can move freely. Thus, handling of head

pose variation is an extremely important factor for many practical application scenarios. There

have been a number of studies which speci�cally addressed the issue of pose invariance in face

recognition [2, 28, 18, 16, 33, 3, 1, 10, 8, 27, 13, 9, 12, 35, 26]. Despite the accumulation of studies

and relative readiness of the problem, scientists to date have not yet achieved reliable pose

invariance especially when there is no control over subjects, one must deal with an unlimited

range of full 3D pose variations.

One of most successful approaches towards pose-invariant face recognition is the multi-view

approach [2, 3, 9, 35]. This approach is based on the multi-view gallery, which consists of

multiple views of various poses for each known person. Pose-invariance is achieved by assuming

that, for each input face, there exists a view with the same head pose as the input for each known

person in the gallery. Such a multi-view gallery can be constructed by manually recording views

for each person [2], by using a person-independent view-transformation to create novel views

from a single view [3], or by rendering views with a 3D structural model [9, 35]. These studies

have reported generally better recognition performance than other approaches, such as the

single-view approach [18, 16, 13], in which each input image is transformed to a �xed, canonical

head pose prior to nearest neighbor identi�cation. The large size of the gallery is, however, a

disadvantage of this approach. The recognition performance and the gallery size have a trade-

o� relationship; to improve the performance requires denser sampling of the continuous pose

variation, increasing the gallery size. This increase of the gallery size makes it di�cult to scale
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the recognition systems to the large number of known people and makes the recognition process

more time-consuming.

One solution to the trade-o� problem is to represent each known person by a compact model.

Given the multi-view gallery, each set of views of a known person can be used as training

samples to learn such a model, reducing the gallery size while maintaining high recognition

performance. The parametric eigenspace method of Murase and Nayar [20] and the virtual

eigensignature method of Graham and Allinson [10] are successful examples of this approach.

These methods represent each known person by compact manifolds in the embedded subspace

of the eigenspace. Despite their good recognition performance, generalization capability is their

shortcoming. Both systems utilized non-linear methods (cubic-spline for the former and radial

basis function network for the latter) for parameterizing/modeling the manifolds. Such methods

have a tendency to over�t peculiarities in training samples [4], compromising capability to

generalize over head poses not given in training samples. This disadvantage must be overcome

to avoid the curse of dimensionality problem [4], which hinders the collection of an appropriate

set of training samples and the extension of the model to variations other than head pose.

Our investigation explores the model-based solution of pose-invariant face recognition us-

ing parametric linear subspace models as the representation format of known persons. The

parametric linear subspace model is a type of view-based statistical model that learns the 3D

nature of faces from 2D pictorial examples without actually reconstructing their 3D structure.

Its parametric nature, which will be described in the next section, enables it to continuously

cover the wide range of full 3D pose variation, thereby improving accuracy of the previous

systems. On the other hand, its linear nature mitigates the problem for generalization of the

non-linear methods, enabling it to learn from a few samples and to be compact. Our previous

studies [27, 22] proposed a recognition system using the linear PCMAP (LPCMAP) model that
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is a simple implementation of the parametric linear subspace model. The model's shortcom-

ing was that its accuracy decreases as a wider range of head poses is considered. Our recent

extension of the LPCMAP, the parametric piecewise linear subspace (PPLS) model [24, 25],

mitigates the pose range limitation problem by piecing together a number of localized models

for collectively covering a wide range of head poses accurately. The discrete local models are

continuously interpolated, improving the structurally discrete methods such as the view-based

eigenface by Pentland et al. [28].

This paper describes face recognition systems using the two parametric linear models and

compares their recognition performance over the wide range of full 3D head rotation. In sec-

tion 2, we introduce the framework of our recognition systems. Sections 3 and 4 brie
y describe

the LPCMAP and PPLS models, and section 5 gives the performance evaluation of the recog-

nition systems.

2. Framework of Our Recognition Systems

The parametric linear subspace model consists of bidirectional, continuous, multivariate, map-

ping functions between a vectorized facial image ~v and 3D head angles ~�. We call a mapping

from the image to angles analysis mapping, and its inverse synthesis mapping. An application

of the analysis mapping can be considered as pose estimation and that of the synthesis mapping

as pose transformation or facial animation,

A
 : ~v


�! ~�;

S
 : ~�


�! ~v(
):

(1)
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 denotes the model's data entities that are learned from training samples and also symbolizes

a learned model. Each model is personalized by learning it with pose-varying samples of a

speci�c person. Both analysis and synthesis mappings become speci�c to a person because

they are constructed with the personalized model 
 that encodes speci�cities of the person's

facial appearance. The synthesis mapping output ~v(
) exhibits personal appearance that solely

depends on 
, while its head pose is given by an input. Details of these mappings will be

described in the next two sections.

Given an arbitrary person's face, a learned model can be �t against it by concatenating the

analysis and synthesis mappings. We call this model matching process the analysis-synthesis-

chain,

M
 : ~v


�! ~�



�! ~v(
): (2)

The output of the analysis-synthesis chain is called the model view. It provides a facial view of

the person learned in 
 whose head pose is aligned to the input. This process not only �ts a

learned model to the input but also gives simultaneously a 3D pose estimate that can be used

for other application purposes. Note that, because the analysis mapping is also personalized,

�tting a model to a di�erent person's face may introduce pose estimation errors, resulting in a

sub-optimal model view. To overcome this shortcoming, A
 needs to be replaced by a person-

independent analysis mapping [21]. For the purpose of face recognition, however, this does not

pose serious problems because the errors are small due to the geometrical proximity of di�erent

faces. Moreover, the sub-optimal model views of di�erent people only help to single out the

correct face.

Figure 1 illustrates our framework for pose-invariant face recognition. The framework em-

ploys the parametric linear model as the representation of a known person. We call a database

of P known people, as a set of learned personalized models f
pjp = 1; ::; Pg, the known-person
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Model 1 Model 2 Model 3 Model N

ANALYSIS

SYNTHESIS

Test Image

Known Person Gallery

Nearest Neighbor Classification

Figure 1. Recognition framework with parametric linear models.

gallery. Given a test image of an arbitrary person with an arbitrary head pose, each model

in the gallery is matched against the image by using its analysis-synthesis-chain process. The

process results in pose-aligned model views of all known persons. After this pose alignment,

the test image is subjected to a nearest neighbor classi�er for identi�cation.

Figure 2 compares our system with a multi-view system using a gallery of three known

persons. The top row displays model views of three learned models; the bottom row displays

the best views of each known person that are most similar to the test image. Decimal numbers

shown adjacent to the images denote their similarity to the test. Because the test image's head

pose was not present in the gallery, the best views do not have the same head pose as the test,

resulting in a wrong identi�cation for the multi-view system. On the other hand, our system,

in which each model is learned by the same samples stored in the multi-view gallery, identi�es

the test image correctly. This is realized by the model's continuous and generalizable nature,

which results in model views whose head pose is better aligned to the test than the multi-view

system.
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Test Image

Best View

Model View

0.906 0.784 0.883

0.912 0.876 0.915

1 2 3

Figure 2. An example of face recognition with pose variation.

a b c d e

Model
Views

Best
Views
by MVS

Best
View
by SVS

Input
Views

Figure 3. Comparison of three recognition frameworks in terms of pose-alignment ability. Model views

shown in the second raw are given by our method. MVS: multi-view system; SVS: single-view system.

See texts for their description.
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Model Type a b c d e std.dev.

Model Views 0.915 0.871 0.862 0.891 0.878 0.0184
Best Views by MVS 0.930 0.872 0.876 0.913 0.897 0.0220
Best View by SVS 0.926 0.852 0.816 0.878 0.862 0.0359

Table 1. Cosine similarity values between the input and di�erent types of model or best view in

Figure 3.

Main di�erence of our framework from others is the continuous pose-alignment of model views

to arbitrary inputs. Figure 3 and Table 1 illustrate this advantage in comparison with two other

recognition frameworks: the multi-view (MVS) and single-view (SVS) systems. Given facial

images with arbitrary head poses shown in the �rst raw, a parametric linear model, learned

for this face, can provide model views whose head pose is well aligned to the inputs. MVS

provides the most similar view (best view) to the input among the training samples used to

learn the model, while SVS provides always the same frontal view that represents the person

single-handedly. The �gure shows that our model is appeared to provide better pose-alignment

than the two other systems. Table 1 shows actual facial similarity values between the inputs

and the three di�erent types of model or best view. The standard deviation shown in the right

column indicates the degree of pose invariance in each framework. The parametric linear model

provided the smallest standard deviation among the three, demonstrating the model's favorable

characteristics towards pose-invariance.

3. The Linear PCMAP Model

The LPCMAP model [22] is a parametric linear subspace model, which covers the whole param-

eter space of head poses by a single model. It consists of a combination of two linear systems:
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1) linear subspaces spanned by principal components (PCs) of training samples and 2) linear

transfer matrices, which associate projection coe�cients of training samples onto the subspaces

and their corresponding 3D head angles.

A LPCMAP model LM consists of the following data entities learned from training samples,

LM := f~ux; f~u
n
j g; ~u�; Y; fB

ng; F;G; fHngg; (3)

where ~ux is an average shape representation as an array of 2D coordinates of N facial land-

marks; ~u1j ; ::; ~u
N
j are average texture representations as a set of Gabor jets sampled at the N

landmarks [34, 23]; ~u� is an average 3D head angle vector; Y is a shape model as a row ma-

trix of the �rst P0 � 2N shape PCs; B1; ::; BN are texture models as row matrices of the �rst

S0 � L texture PCs; and F;G;H1; ::;HN are shape-to-pose, pose-to-shape and shape-to-texture

transfer matrices, respectively.

The analysis mapping function A(~v) is given by relating the 3D head angles only to the shape

representations,

~̂� = ALM(~v) = ~u� +K�1(F � Y � (Dx(~v)� ~ux)); (4)

where K�1 extracts 3D angles from their trigonometric functions and Dx extracts a shape

representation from a facial image.

The synthesis mapping function S(~�) is given by relating the 3D head angles to the shape
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coe�cients and the shape coe�cients to the texture coe�cients,

~̂v = SLM (~�) = R(~̂x; f~̂jnjn = 1; ::; Ng);

~̂x = SSLM(~�) = ~ux + Y t �G � K(~� � ~u�);

f~̂jng = T SLM (~�)

= f~unj +Bn �Hn �G � K(~� � ~u�)jn = 1; ::; Ng;

(5)

where ~̂x and f~̂jnjn = 1; ::; Ng denote synthesized shape and texture representations, R recon-

structs an image from a pair of the shape and texture representations [30], and K transforms

3D angles to a vector of their trigonometric functions.

Finally, the analysis-synthesis-chain function M(~v) is given by concatenating Eq. (4) and

Eq. (5),

~̂v =MLM(~v)

= R(SSLM (ALM(~v));T SLM(ALM (~v))):
(6)

4. The Parametric Piecewise Linear Subspace Model

The parametric piecewise linear subspace (PPLS) model [24] extends the LPCMAP model by

using the piecewise linear approach [31]. It consists of a set of local linear models, each of

which provides continuous analysis and synthesis mappings whose accuracy may be limited to

a narrow parameter range due to its linearity. In order to cover a wide range of non-linear

pose variation, the model pieces together a number of the local models distributed over the

pose parameter space. The global mappings are constructed by weighted-averaging of outputs

of the local mappings, maintaining their continuous nature and enabling them to generalize to

unknown poses by interpolation.

A piecewise linear subspace model PM consists of a set of K local linear models in the format
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of the above-described LPCMAP,

PM := fLMkjk = 1; ::;Kg: (7)

We assume that the local models are learned by training data sampled from appropriately

distanced local regions of the 3D angle space: the 3D parameter space spanned by the head

angles. Each set of the local training samples is associated with a model center, the average 3D

head angles ~uLMk

� , which speci�es the learned model's location in the 3D angle space. Missing

components of shape representations due to large head rotations are handled by the mean-

imputation method [17], which �lls in each missing component by a mean computed from all

available data at the component dimension.

The analysis mapping function of the PPLS model is given by averaging K local pose esti-

mates with appropriate weights,

~̂� = APM(~v) =
KX

k=1

wkA
LMk(~v): (8)

Similarly, the synthesis mapping function is given by averaging K locally synthesized samples

with the same weights,

~̂v = SPM (~�) = R(~̂x; f~̂jng)

~̂x = SSPM (~�) =
PK

k=1 wkSS
LMk(~�);

f~̂jng = T SPM (~�) =
PK

k=1 wkT S
LMk(~�):

(9)

A vector of the weights ~w = (w1; ::; wK) in Eq. (8) and Eq. (9) must be responsible for

localizing the output space of the models, since the model's outputs themselves are continuous.

For this purpose, we use a normalized Gaussian function of distance between an input pose and
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each model center,

wk(~�) =
�k(~��~uLMk�

)P
K

k=1
�k(~��~uLMk�

)
;

�k(~�) =
1p
2��k

exp(�k~�k2
2�2
k

);

(10)

where �k denotes the k-th Gaussian width. The weight value reaches maximumwhen the input

pose coincides with one of the model centers; it decays as the distance increases. �k is set by the

standard deviation of the 3D head angle vectors for LMk and determines the extent to which

each local model in
uences the outputs ~̂� and ~̂v.

The analysis-synthesis-chain function M(~v) is given by connecting an analysis output to a

synthesis input,

~̂v =MPM(~v)

= R(SSPM(APM (~v));T SPM(APM (~v)))
(11)

Note that Eq. (8) cannot be solved by evaluating its r.h.s. because the weights are computed

as a function of an unknown ~�. To overcome this problem, we formulate a gradient descent-

based solution of the equation. Let a shape vector ~x be an input to the algorithm. Also let ~xi

and ~�i denote the shape and angle estimates by the i-th iteration. The algorithm iterates the

following formulae until the mean-square error k�~xik2 becomes su�ciently small.

�~xi = ~x� ~xi;

�~�i =
PK

k=1 wk(~�i)A0LMk(�~xi);

~�i+1 = ~�i + ��~�i;

~xi+1 =
PK

k=1wk(~�i+1)SS
LMk(~�i+1);

(12)

where � is a learning rate and A0 is a slight modi�cation of Eq. (4) that has a shape vector

interface. The initial conditions ~x0 and ~�0 are given by the local model whose center shape

~uLMk

x is most similar to ~x. In this article, we do not attempt to give a proof of this algorithm's
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convergence to the global minima. It is obvious that the convergence property depends on

the speci�c distribution of given local models in the 3D angle space. Within the experimental

setting described in the next section, however, our convergence tests with the above-described

initial conditions resulted in no trappings into local minima that were signi�cantly distanced

from the global minima.

5. Experiments

5.1. Data Set

For evaluating our system's performance over various head poses, we must collect a very large

number of samples with controlled head poses, which is not an easy task. For mitigating

this di�culty, we use 3D face models pre-recorded by a Cyberware scanner. Given such data,

relatively faithful image samples with an arbitrary, but precise, head pose can easily be created

by image rendering. We used 20 heads randomly picked from the ATR-Database [14], as shown

in �gure 4.

For each head, we created 2821 training samples. They consist of 7 local sample sets each of

which covers a pose range of �15 degrees at one-degree interval. These local sets are distributed

over the 3D angle space such that they collectively cover a pose range of �55 degrees along

each axis of 3D rotations; their model centers are distanced by �40 degrees from the frontal

pose (origin of the angle space). We also created 804 test samples for each head. In order to

test the model's generalization capability to unknown head poses, we prepared the test samples

whose head poses were not included in the training samples. Head angles of some test samples

were in-between multiple local models and beyond their �15 degree range. They cover a pose

range of �50 degrees. For more details of the data, see our previous reports [21, 24].
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Figure 4. 20 frontal views rendered from the 3D face models.

For each sample, the 2D locations of 20 landmarks of inner facial parts, such as eyes, nose

and mouth, are derived by rotating the 3D landmark coordinates, initialized manually, and by

projecting them onto an image plane. The explicit rotation angles of the heads also provide 3D

head angles of the samples. The rendering system provides the self-occlusion information. Up

to 10% of the total landmarks were self-occluded for each head.

5.2. Results

For comparison, we constructed four recognition systems with 20 known persons: 1) the single-

view system (SVS), which represents each known person by a single frontal view, 2) the

LPCMAP system with a gallery of LPCMAP models, 3) the PPLS system with a gallery

of PPLS models, and 4) the multi-view system (MVS), which represents each person by various

views of the person. The LPCMAP, PPLS and MVS are constructed by using the same 2821

training samples per person; the SVS serves as a base-line. For both models, P0 and S0 are set
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Test Samples Identi�cation Compression

SVS 59.9�10.6% 0.035%
LPCMAP 91.6�5.0% 0.74%
PPLS 98.7�1.0% 5%
MVS 99.9�0.2% |

Table 2. Average correct-identi�cation and relative compression rates for four di�erent systems.

PPLS LPCMAP

Unknown: M(~v) 98.7�1.0% 91.6�5.0%

Known: S(~�) 99.3�0.7% 92.4�4.0%

Table 3. Identi�cation rates when head pose of tests is unknown or given as ground-truth.

to 8 and 20, respectively. The PPLS models consist of 7 local models and perform 500 itera-

tions with � set to 0.01 for each test sample. Each pair of views are compared by an average of

normalized dot-product similarities between the corresponding Gabor jet's magnitudes.

Table 2 summarizes the results of our recognition experiments. Identi�cation rates in the

table are averaged over the 20 persons; the compression rates represent the size of the known-

person gallery relative to the MVS. The results show that recognition performance of the

PPLS system was more robust against the given pose variation (7% higher rate) than the

LPCMAP system. Performance of our model-based systems was much better than the base-

line and slightly lower than the MVS. The high identi�cation rate of the MVS was perhaps

due to the dense sampling in the 3D angle space and the virtue of our Gabor jet-based texture

representation and similarity metric. Nonetheless, identi�cation rates of the PPLS and MVS

were almost the same while the former compressed the data by a factor of 20.

For some applications, head pose information of test faces can be given as ground-truth prior

to identi�cation. In this case, the pose-aligned model views can be created by our model's

synthesis mapping function instead of the analysis-synthesis-chain. Table 3 compares average
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identi�cation rates of the two cases. The results show that the knowledge of head poses gave a

slight increase in recognition performance, however the increase was minimal. The fact that the

use of ground-truth pose information did not greatly improve recognition performance supports

our assumption about the usage of personalized pose estimation as described in section 2.

6. Conclusion

This article presents a framework for recognizing faces with large 3D pose variations. It utilizes

the parametric linear subspace model for representing each known person in the gallery. The

analysis-synthesis-chain function of the models is used to �t them to an arbitrary input, resulting

in pose-aligned model views of each known person. The continuous and generalizable nature

enables our models to provide accurate pose-alignment and to be compact at the same time.

The linear construction of the model was emphasized to facilitate its generalization to unknown

head poses, however the intrinsic non-linearity of the problem decreased the model's accuracy.

In order to accurately model the non-linearity while maintaining the system's linearity, we

introduced the PPLS model which is based on the piecewise linear approach. The experimental

results showed the robustness of our recognition system with the PPLS model against large and

full 3D head pose variations covering �50 degree rotation along each axis. While signi�cantly

compressing the data size, the PPLS system performed better than the LPCMAP system

and similar to an equivalent multi-view system, indicating the e�ectiveness of our recognition

framework.

The statistics of our recognition experiments must, however, be treated carefully in terms of

variations across di�erent people because the number of known people in our experiments was

relatively small and our samples included some arti�cialities which might accidentally increase

the performance. Although we do not expect that the arti�cialities have greatly in
uenced
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our system's performance, we must further evaluate our systems with a larger database of real

faces.

Our recognition systems utilize pixel-wise landmark locations for representing facial shape

and deriving head pose information. In reality, �nding landmark locations in static facial

images with arbitrary head pose is an ill-posed problem. Gabor jet-based landmark tracking

system [19] can be used to provide an accurate landmark positions [21], however it requires

the landmarks to be initialized by other methods. Pose-speci�c graph matching [15] provides

an another solution but with much lower precision. As future work, we plan to develop a

pose-invariant landmark �nding system using our parametric linear models.

Although the presented work concentrated only on head pose variations, our future goal must

address other types of variation such as illuminations and expressions for realizing more robust

systems. There have been a number of recent progresses on both illumination variations [6, 9]

and expression variations [7, 11]. However, an issue on combining the variation-speci�c solutions

into a uni�ed system that is robust against all types of variation has scarcely been investigated.

We believe that our simple and general approach will bene�t us for extending the presented

system towards this goal.
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