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Abstract

We present a parametric method to represent and de-

tect geons. The parameters are extracted from joint

statistical constraints defined on complex wavelet

transform. We first review how steerable pyramid

may be used in multi-scale multi-orientation image

decomposition. Then, four stages of object recogni-

tion theory is adopted to support the choice of joint

statistical constraints, which characterize geons in a

high dimensional parameter space. This parametric

representation is examined in detail under circum-

stances when geons change in orientation, location,

and size. Constraint-wise similarity is introduced to

describe the corresponding statistics variations. Fi-

nally, we present details of a geon detection system,

and demonstrate successful experimental results as

well as system limitations.

1 Introduction

The term “geon” refers to geometric shape primitive
that serves as basic building element for more com-
plex structures. Biederman [1] differentiates geons
by shape of cross-section, curvature of axis, and size
of cross-section, etc.; the full family of geons thus has
24 members. For simplicity and easy illustration, in
this paper we focus on three typical geons: cylinder,
cone and bended cuboid. But the method and results
is also applicable to other geons.

Implied by three-geon sufficiency theory [1], ob-
jects can be quickly and accurately recognized if an
arrangement of three geons (or less) composing the
object is recovered from the image. The essential is-
sue is then how to detect these geons in the objects.
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A successful detection must address both identifica-
tion and localization problems, namely “what is it”
and “where is it”. A good geon representation is
the key to answer the questions. Suppose we have
pre-computed such representation instances for each
single geon as model data, then we can evaluate each
geon component of the object by scanning the image
at local positions. Local image region that is the
most similar to a model provides the answer to the
“what is it” question, while its location answers the
“where is it” question.

There has been extensive efforts focusing on re-
covery of geon-like structures for object recognition.
Hummel and Biederman [2] proposed a neural net-
work model of viewpoint invariant visual recognition.
The model’s structural representation specifies both
an object’s visual attributes (e.g., edges, vertices)
and the relations among them, however it only con-
centrates on line drawing objects. In [3], Dickinson
and Metaxas decouple the processes of object recog-
nition and localization by selectively integrating the
qualitative and quantitative shape recovery compo-
nents. Although flexible, the system only uses per-
fect geon-like objects and avoids fine structural de-
tails. Wu and Levine [4] introduced a superquadric
model called parametric geons representation, which
can also deal with imperfect geon-like object inputs,
while having comparable performance as in [3]. In
this paper, we present a general parametric model
to characterize and detect geons based on statistical
constraints that are originated from popular object
recognition theories.

Portilla and Simoncelli proposed a parametric
model based on joint statistics of complex wavelet
coefficients [5], and successfully demonstrated their
algorithms’ capability of analyzing and synthesizing
visual textures. A brief review of this method would
be given in section 2. Then, in section 3, we apply
this parametric model as a representation for geons,



and reason the appropriateness. Following these ar-
guments, we perform geon detection task in section
4. Experimental results and system limitations will
be discussed in section 5.

2 Joint Statistics Approach

Statistical models have been used widely to charac-
terize images. Particularly, visual textures are of
primary concern because they are spatially homo-
geneous and contain repeated elements, which sub-
ject to statistical description. Based on the use of
linear kernels at multiple scales and orientations, re-
cent year’s development of wavelet representations
enabled design of more practical and powerful statis-
tical models.

2.1 Steerable Pyramid

In [5], Portilla and Simoncelli designed a universal
statistical model that enforces four statistical con-
straints on a multi-scale multi-orientation wavelet
decomposition of images. The set of wavelet filters
they adopted is known as “steerable pyramid” [6, 7],
named after their properties of steerability (multi-
orientation) and scalability (multi-scale). Steerable
pyramids recursively split an image into a set of ori-
ented subbands and a lowpass residual, thus result-
ing in independent representation of scale and orien-
tation. In the frequency domain, the filters imple-
mented for this transformation are polar-separable.
Analytically they can be written as:
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Figure 1: Complex steerable pyramid representation
of a cylinder-like geon. The upper half is the real
parts of the filtered images, the lower half is the
corresponding magnitude representation. Both are
pyramids of 3 levels and 4 orientations.

Here, αK is a constant for a fixed K, it’s defined
as

αK = 2K−1 (K − 1)!
√

K[2(K − 1)]!
.

Before we recursively build the steerable pyramid,
the process is initialized by splitting the input image
into lowpass and highpass bands without downsam-
pling, using the filters:

L0(r, θ) = L(
r

2
, θ)/2

H0(r, θ) = H(
r

2
, θ).

Figure 1 gives an example of steerable pyramid de-
composition of an image containing a cylinder. Since
the wavelet coefficients are complex, we show the
pyramids of both the real part and the corresponding
magnitude. Each pyramid has 3 levels and 4 orien-
tations.

2.2 Statistical Constraints

In order to extract the key features from images’
steerable pyramid representations, Portilla and Si-
moncelli [5] defined four statistical constraints on
the complex coefficients of this decomposition. Be-
sides traditional marginal statistics and correlation
measures, these statistical constraints also include



joint statistics [8] motivated by nonparametric mod-
els as in [9]. Such inclusion gives visually impressive
synthesis results. The statistical constraints are de-
scribed as follows

• Marginal Statistics: Mean, variance, skewness, kur-
tosis, minimum and maximum values of the gray
level image pixels, skewness and kurtosis of the low-
pass images at each scale, and variance of the high-
pass band. These capture pixel intensity distribu-
tion. There are totally 6 + 2(N + 1) + 1 parameters,
where N is the number of pyramid levels.

• Raw Coefficient Correlation: Autocorrelation of
the partially reconstructed lowpass images at each
scale. Since the steerable pyramid decomposition is
highly overcomplete, such autocorrelation measure is
quite redundant, a more efficient method only con-
siders central samples of a M × M area. These cap-
ture periodic or globally oriented structures. There

are totally (N + 1)M
2+1
2 parameters.

• Coefficient Magnitude statistics: Central sample
of magnitude autocorrelation in each subband, cross-
correlation of magnitudes in each subband with those
in the same pyramid level of different orientations,
and cross-correlation of subband magnitudes with
those of all oriented subbands in a coarser scale. This
statistical constraint captures important structural
information such as edges, corners, etc. It includes

totally N · K · M
2+1
2 + N · K(K+1)

2 + K2(N − 1) pa-
rameters.

• Cross-Scale Phase Statistics: Cross-correlation of
coefficients’ real part with both the real and imag-
inary parts of phase doubled coefficients of all ori-
ented subbands in the next coarser scale. The
constraint captures effects of illumination gradients
due to objects’ 3D appearance. It contains totally
2K2(N − 1) parameters.

The parameter sets derived from the above four
constraints form a universal image representation.
It generates 710 parameters when we choose N = 4,
K = 4, M = 7. For a 64 × 64 image, this is already
an economic model.

3 Representing Geons

The joint statistics model reviewed in the last section
is originally proposed to characterize texture images.
However, the entire parameter set not only captures
periodicity or repeated structures, but also pays at-
tention to global orientations, edges, corners, and 3D
lighting gradients. These properties make the pa-
rameter representation also effective to distinguish
images containing geon-like structures.

Figure 2: Synthesis results. (a) the original geon
image containing a cylinder; (b) synthesis by using
all of the four statistical constraints; (c) synthesis
by removing the marginal statistics constraint; (d)
synthesis without the raw coefficient correlation con-
straint; (e) synthesis without the coefficient magni-
tude statistics constraint; (f) synthesis without the
cross-scale phase statistics constraint.

In comparison with other object recognition the-
ories, the model can be viewed as an original de-
velopment and implementation of David Marr’s four
stages of object representation [10] described as fol-
lows

• Pixel based: light intensity;

• Primal sketch: local geometrical structures, detec-
tion of illumination effects;

• 2 1
2D sketch: orientation and depth information of

surfaces;

• 3D model: shape representation, spatial relation-
ship.

The marginal statistics constraint characterizes
exactly pixel based intensity distribution, which
serves the first stage of Marr’s object recognition pro-
cess. At the stage of primal sketch, recognition in-
volves detecting and analyzing local geometric struc-
tures as well as illumination effects. These are what
the constraints of coefficient magnitude statistics

and cross − scale phase statistics try to extract from
an image’s steerable pyramid decomposition. The
correlation measure enforced by the raw coefficient

correlation constraint captures oriented structures,
that is similar to the 2 1

2D sketch. But since it is
not specific for surface orientation, the analogy is
not strict. At the final stage, the 3D shape repre-
sentation is formed by utilizing the information ob-



tained in previous processing stages. In other words,
the parameters resulted from the analysis of the four
statistical constraints define a multidimensional rep-
resentation of our 3D geons. This can be realized in
the image synthesis process.

Although the recognition task particularly de-
pends on the analysis process to capture the key
features from the input images, successful synthesis
results help to confirm that the choice of the pa-
rameter set is appropriate. The synthesis algorithm
introduced in [5] recursively imposes the statistical
constraints parameter set on the lowpass and ori-
ented bandpass subbands, which are initially con-
structed by decomposing an image containing Gaus-
sian white noise. Different from Marr’s four stages
of object recognition theory, this synthesis process is
performed in parallel fashion, such that in each it-
eration one can choose to simultaneously impose a
few constraints while neglecting the others. Figure 2
illustrates synthesis results of a 64 × 64 geon image
containing a single cylinder. Part (a) is the origi-
nal image, (b) is synthesized by using all of the four
statistical constraints. Visually, the result is very
close to (a), it captures both the top and the front
surfaces, and preserves the lighting effects due to the
geon’s 3D appearance. The dislocated position of the
synthesized cylinder is caused by the shift-invariant
property of the pyramid decomposition. Actually,
the same geon located in different positions should
share the same parameter values, and this can ben-
efit geon detection task, which will be discussed in
the next section. Part (c) is synthesized with all but
the marginal statistics constraints. Clearly, the pixel
intensity distribution doesn’t agree with (a). The re-
sult of synthesis without raw coefficient correlation

is shown in (d), it fails to recover the global con-
tinuous structure of the geon. The synthesis result
in (e) has no continuous edge or distinguishable cor-
ner, this is caused by omitting coefficient magnitude

statistics. Although (f) roughly improves reconstruc-
tion quality, it can’t tell 3D details or correct light-
ing effects without cross − scale phase statistics con-
straint. The successful synthesis in (b) and failures
in (c), (d), (e) and (f) manifest the necessity of in-
cluding all of the four statistical constraints and the
appropriateness of using the computed parameter set
as a geon representation.

An immediate question would then be how good
this representation is. In other words, when the
geons rotate in direction, translate in location, or
scale in size, can the model tolerate the changes?
And to what degree? In order to investigate this is-
sue, we compute a series of parameter sets extracted
from geon images, in which geons gradually change in

Figure 3: Constraint-wise similarity plots when a
cone rotates from vertical to horizontal. Totally 7
inputs are used, each is compared with the first one.
(a) is the similarity plot for the marginal statistics
subset, (b) is for raw coefficient correlation, (c) is for
coefficient magnitude statistics, and (d) is for cross-
scale phase statistics.

orientation, location, or size, and then compare the
parameter sets by calculating their similarity values.
The comparison is constraint-wise. Namely, we’ll
have four similarity values between two images, and
each of them is the comparison result of the param-
eter subset for one of the four statistical constraints.
Thus, we can study and dynamically assign each con-
straint’s contribution to the overall similarity. Sup-
pose we have Ams and Bms as the parameter subsets
defined by marginal statistics constraint of image A
and image B, then the similarity between them can
be given by:

Sms =
‖ ~Ams‖ + ‖ ~Bms‖

‖ ~Ams‖ + ‖ ~Bms‖ + ‖ ~Ams − ~Bms‖
,

here the parameter subsets are treated as high di-
mensional vectors. This formula takes into account
magnitude of the vectors as well as their angle rela-
tion. The value goes 1 only when ~Ams is identical
to ~Bms. The similarity values corresponding to other
three constraints will also be similarly computed.



Figure 4: Constraint-wise similarity plots when a
cone translates in location. The arrangement of the
plots is the same as in Figure 3.

Figure 3 – 5 are constraint-wise similarity plots
when the input geon varies in orientation, location,
and size. In each case, 7 input images are used, each
is compared with the first one. The four similar-
ity values all stay high in Figure 3, and the aver-
age always exceeds 0.85 (the similarity threshold we
choose). The rotation-invariant property of steer-
able pyramid decomposition plays a pivotal role here.
The valleys in (b) and (c) are affected by the choice
of K, the number of subband orientation, which is
4 in our case. In Figure 4, all of the four similarity
values are almost always 1.0. This suggests geons of
only different locations actually share the same para-
metric representation. As mentioned before, this is
because the pyramid decomposition we use is also
shift-invariant. However, for the scaling case, the
parametric representation doesn’t tolerate large vari-
ations. As shown in Figure 5, if a cylinder linearly
scale down 25%, the average similarity drops to 0.5,
which is below the similarity threshold. Only in the
linear range of ±10%, the similarity is above 0.85,
and the geon is close to the original input in the
parametric space. So, in order to detect geons with
various sizes, we need to have model geons of every
10% difference in size. An alternative method will
be discussed in section 5.

Figure 5: Constraint-wise similarity plots when a
cylinder scales down in size. The arrangement of
the plots is as the same as in Figure 3.

4 Detecting Geons

Having the parametric geon representation, we can
then detect geons in a scene that contains several
geon-like structures. The idea is that 1) pre-analyze
the parameter sets of single model geons, and put
them in memory; 2) slide a window, which is of the
same size of the model geons, over the input image;
3) compute the parameter set at each position every
a few pixels away; 4) constitute similarity saliency
maps by comparing the parameter set with the ones
in memory; 5) if the maximum similarity value(s)
exceeds some threshold, then a corresponding geon
is detected at the position given by the saliency map.
Figure 6 shows the systematic view of how it works.

The pre-analyzed memory sets we use in this ex-
periment are constraint-wise parameters extracted
from three typical geons: cylinder, cone, and bended
cuboid, which are shown in Figure 7. The image
size of these model geons is 64 × 64. The inputs to
be searched on are synthetic 256 × 256 images that
contain several such geons with various orientations
and locations as well as a little size changes. The
scanning step is set to 8 or 16 pixels, such that the
detection task can be completed in 1–5 minutes on a
Pentium III PC with a 800MHz processor.



Figure 6: Detect geons with the parametric repre-
sentation.

Figure 7: Three model geons used.

Figure 8 illustrates a detection result. The first
row is the input image we searched. It has three sep-
arate geons comparable to the model geons such that
the cylinder is rotated near 90◦ degrees, and the cone
is scaled down 5%. The second row is the similarity
saliency maps built by comparing the constraint-wise
parameter set, which is extracted from the scanning
window at every position, with the sets in memory.
Each comparison gives four values due to the four
statistical constraints. In this study, we use the av-
erage value of these four similarities to construct the
saliency maps. In a saliency map, the brighter the re-
gion is, the closer the average similarity is to 1. The
maximum value in a highlighted region corresponds
to the location in the input image that may contain
a known geon as in memory. If this value exceeds
a threshold (0.85 here), then a successful detection
occurs. Each saliency map is dedicated to one of
the model geons, for instance, the second saliency
map helps to detect the cone, but inhibits detection
of other geons by darkening their corresponding re-
gions. The third row shows the detected geons cap-
tured from the original input with the references of
the similarity saliency maps.

Since we don’t search the input image pixel by
pixel, the captured geons may translate in location
when the window slide over them. But the centers

Figure 8: A geon detection result. The first row is
the input image; the second row shows the similar-
ity saliency maps dedicated to each model geon; the
third row captures the detected geons from the input
image.

of the images in the third row still serve as good
approximations of their actual locations. Thus, a
successful detection can tell both what and where the
geon is. More precise localization can be expected by
using finer resolution maps with trade-off for longer
running time.

More examples are given in Figure 9 - 10. In Figure
9, geons are closely placed to each other, look more
like parts of an object. The cone and the bended
cuboid are partially occluded by the rotated cylinder,
also the bended cuboid is slightly rotated in depth.
However, the system still can capture each geon quite
well. The input of Figure 10 has a texture back-
ground and 50% random noise as surface marking.
By lowering the threshold to 0.8, successful detec-
tion can still be maintained. Since the bended cuboid
is not included in Figure 10, no value in the corre-
sponding similarity saliency map exceeds the thresh-
old, thus no geon is captured in the last subgraph of
Figure 10.

5 Discussion

We tested 40 trials, 34 of them (85%) give satisfac-
tory detection results. The system performance can
be affected by several aspects:

• The resolution of the similarity saliency map de-
cides how precisely the geons are located. A coarse
resolution may fail to contain a full single geon, thus



Figure 9: A geon detection result. The subgraph
arrangement references Figure 8.

also lead to false recognition. Our choices of the scan-
ning step generate 25×25 or 13×13 maps, as shown
in Figure 8-10.

• A cylinder’s corners (in 2D images) or edges from
different viewpoint may give people false impression
that it is a cone or cuboid. Such “corner effect” could
generate brighter lines around a dark area in the
saliency maps. Most times they do not exceed the
threshold to affect detection results. But, in order to
reduce the extreme cases, we can smooth the maps
by convolving them with a small Gaussian window.

• Since the steerable pyramid decomposition is
both shift-invariant and rotation-invariant, geons ar-
ranged at different orientations and locations can
be detected easily. However, we have to limit size
changes in ±10% as mentioned in section 3. To deal
with larger scaling cases, we experimented multiple
window search. Namely, a set of scanning windows of
various sizes are used, before analyzing the statistical
parameters, each window is adjusted to model geons’
size by truncating or expanding its Fourier represen-
tation to 64 × 64. Although valid, this method is
quite time consuming.

• In our experiment, we set the average of the four
constraint-wise similarity values as the overall simi-
larity, illustrated in the saliency maps. However, for
a specific detection task, we can change the contri-
bution of each constraint-wise similarity to the over-
all value. For instance, cross − scale phase statistics

varies sharply in a noisy background, we can then
weigh down the corresponding similarity in order to
make the system more noise tolerable.

Figure 10: A geon detection result. The subgraph
arrangement references Figure 8.

In our future work, we plan to incorporate more
model geons, study their statistical behavior when
one morphs to another, and find their distances in
the parametric space. On the other hand, although
the system can survive slight rotation in depth, it’s
still desirable to find more effective statistical con-
straints to address such viewpoint invariant proper-
ties for geon detection.
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