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ABSTRACT 

This study applied the Gaussian Mixture Model (GMM) to tumor apparent diffusion coefficient (ADC) histogram to 

evaluate glioblastoma multiforme (GBM) tumor treatment response using diffusion weighted (DW) MR images. ADC 

mapping, calculated from DW images, has been shown to reveal changes in the tumor’s microenvironment preceding 

morphologic tumor changes. In this study, we investigated effectiveness of features that represents changes from pre- 

and post-treatment tumor ADC histograms to detect treatment response. This work mainly contributes to model the 

ADC histogram as the composition of two components, fitted by GMM with expectation maximization (EM) 

algorithm. For both pre- and post-treatment scans taken 5-7 weeks apart, we obtained the tumor ADC histogram, 

calculated the two-component features, as well as the other standard histogram-based features, and applied supervised 

learning for classification. We evaluated our approach with data of 85 patients with GBM under chemotherapy, in 

which 33 responded and 52 did not respond based on tumor size reduction. We compared AdaBoost and random 

forests classification algorithms, using ten-fold cross validation, resulting in the best accuracy of 69.41%. 
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1. INTRODUCTION 

Traditional way to assess treatment response of Glioblastoma multiforme (GBM) brain tumor is tumor size change 

before and after chemotherapy or radiotherapy. Apparent diffusion coefficient (ADC) map, calculated from diffusion 

weighted (DW) MR images, has the potential to work as surrogate biomarker to reveal changes in the tumor 

microenvironment that precede morphologic tumor changes
1
.  

 DW MRI can provide information related to microscopic environment at cellular level. Because water 

diffusion is strongly affected by molecular viscosity and membrane permeability between intra- and extracellular 

compartments, DW MRI can be used to characterize highly cellular regions of tumors versus acellular regions. The 

problem of treatment response detection can be manifested as a change in cellularity within the tumor over time, which 

is much earlier and more sensitive before the tumor size change is visible
1
.  

 Apparent diffusion coefficient (ADC) is the parameter to measure water molecule motions at cellular level. A 

number of studies have been going on to explore quantitative results to correlate the ADC changes and the treatment 

response outcomes. Ross et al. reported ADC value increase significantly for the effective therapeutic intervention in 

pre-clinical studies and presented two patients to support this hypothesis in preliminary clinical study
1,2

. Moffat et al. 

calculated voxel-wise the tumor ADC value changes along with time and displayed it as a functional diffusion map for 



correlation with clinical response
3
. In our previous work, we applied quantitative ADC histogram analysis to baseline 

and follow-up contrast-enhanced tumors and exploited pattern classification techniques to evaluate treatment response
4
. 

The tumor ADC change after treatment is complicated and affected by two main factors. In general, water 

movement inside cells is more restricted than outside. Thus, increasing cell density tends to lower ADC values, 

whereas increased edema (more interstitial water) results in higher ADC values. Therefore, theoretically, ADC values 

in treated brain tumors could not only increase due to the cell kill (and thus reduced cell density), but also decrease due 

to inhibition of edema. None of the listed studies above have specified the separate effects. 

In this paper, we investigated explicit quantitative ways to deal with competing effects of cellularity and 

edema for early treatment response of GBM brain tumors. Pope et al.
5
 applied Gaussian Mixture Model (GMM) fitting 

to baseline tumor ADC histograms in his study, and used the lower peak mean value for tumor recurrence prediction. 

In this paper, we applied the same method to tumor ADC histograms on both baseline and follow-up ADC maps. We 

made the assumption that there are two heteroscedastic components within the tumor. Then we fitted the tumor ADC 

histogram with GMM
6
 and calculated the features of the two components with expectation-maximization (EM) 

algorithm
6
 as well as the original tumor ADC histogram features. In this way, we explored the effectiveness of the 

machine learning approaches in this clinical context.  

 

2. METHODOLOGY 

2.1 Image Protocols and Image Analysis 

All ADC maps were calculated from DW images with the same in-house software using a two-point method as shown 

in the following equation: 

bSbSADC /)]0(/)(ln[      (1) 

with b being the diffusion sensitivity factor ranging between 700 and 1000 s/mm
2
, )0(S  and )(bS  being the image 

intensity when b=0 and b=700 or 1000 s/mm
2
. For DWI trace images, we calculated ADC maps from DW images by 

equation (1). For DTI, we calculate ADC for each orientation and average them as the ultimate ADC map.  

Three steps were followed to get tumors contoured on ADC maps: First, radiologists contoured tumors on 

post-contrast T1-weighted (T1w) images using a semi-automated segmentation tool
7
.  The tool is initialized by a user-

defined line starting from the inside of the tumor and ending at the outside of the tumor. Intensity histogram on the line 

is used to find the optimal threshold value by use of Otsu’s thresholding method. Afterwards, seeded region growing is 

applied to segment the tumor. Next, tumor contours were mapped from T1w to ADC using a 3D rigid body 

transformation. For each voxel in the source tumor region of interest (ROI), a physical location is first calculated, and 

then the coordinates in the target images are calculated accordingly. The transformation matrix to calculate the 

physical locations is formed for source and target images respectively by the information stored in DICOM header, i.e. 

pixel size, slice thickness, image position and image orientation. The physical location is calculated as follows: 

                                                        2) 

With kji ,,
as the voxel size read from the tag “pixel spacing” and “slice thickness”; zyxzyx YX ,,,, ,

as image orientation read 

from the tag “image orientation” which specifies the orientation of the image frame rows and columns , zyxZ ,,  as the z-

direction orientation calculated from zyxzyx YX ,,,, ,
; zyxS ,, as read from the tag “patient position” which specifies the anterior-

left-upper corner; i, j, k as voxel index; and zyxP ,, as the calculated physical location of the voxel in millimeters. Finally, 

radiologists visually evaluated the contours on ADC images and manually corrected the tumor contours on ADC. 

Afterwards, the histogram of the ADC value within the tumor region was obtained. Figure 1(A) shows an example of 

the mapping from the T1w image to the ADC map. 



    

(A)       (B) 

Figure 1(A). An example of the tumor region mapping from post-contrast T1w to ADC map: on the left is the post contrast T1w 

image with the tumor contour; on the right is the ADC map with mapped tumor; (B) An example of the tumor ADC histogram fitted 

by two-component Gaussian mixtures. 

 

Afterwards, the histogram of the ADC value within the tumor region was obtained. Figure 2 shows examples of tumor 

ADC histograms for both pre-and post-treatment. Figure 2 shows two examples of tumor ADC histograms for both 

pre- and post-treatment. The upper histogram shows the ADC value distribution before the drug treatment, while the 

lower one shows the ADC value distribution after the drug treatment. On the left is an example of responding tumors, 

while on the right is an example of non-responding tumors. 

 

  

Figure 2. Examples of histograms from two tumors and two time points of pre-(top row) and post-treatment (bottom row). 

(A):example of responding tumors. (B): example of non-responding tumors. 

 



2.2 Feature Extraction and Classification 

The absolute change of the features extracted from pre- and post-treatment tumor ADC histograms were used as the 

input to a tumor response classifier. 

In general, water movement inside cells is more restricted than outside. Thus, increasing cell density tends to 

lower ADC values, whereas increased edema (more interstitial water) results in higher ADC values. Due to the 

competing effects of tumor cell density and edema, we made the assumption that the obtained tumor ADC histogram 

was composed of two components: cellularity and edema. We assumed that the component with lower peak accounts 

for the tumor cellularity effect, while the component with higher peak accounts for the edema effects. We used a two 

component GMM as shown in equation (3) to fit the ADC histogram for both baseline and follow-up scans and applied 

EM algorithm to estimate GMM parameters.  
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The EM algorithm can be used to compute the parameters of a parametric mixture model distribution: the 

weight of the components i , the Gaussian parameters i , and i . It is an iterative algorithm with two steps: an 

expectation step (E-step) and a maximization step (M-step). In the E-step, with the current parameter estimates of the 

mixture components, the algorithm calculates the expectation values for the membership variables of all data points. In 

the (m+1) iteration, the expectation is: 
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In M-step, the algorithm maximizes the likelihood function and updates the corresponding parameters. The following 

solutions can be developed: 
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The features we obtained from the GMM-EM are named as lower peak mean (LPM), lower peak variance 

(LPV), lower peak proportion (LPP), higher peak mean (HPM), higher peak variance (HPV) and higher peak 

proportion (HPP). Figure 1(B) shows an example of tumor ADC histogram fitted by GMM. The histograms shown in 

Figure 2 are fitted by the two-component GMM. 

In our previous study
4
, we explored the general statistical features from ADC histograms: mean, standard 

deviation, skewness, kurtosis, median, IQR (interquartile range), 25th percentile, and 75th percentile. We appended 

these features because they showed potential in early detection of treatment responders or non-responders. 

We obtain 14-dimensional feature vectors for both pre- and post-treatment tumor histograms. Afterwards, we 

calculate the difference between pre- and post-treatment tumor histogram by calculating the absolute change of the 

features. Therefore, we have 14-dimensional vector as the difference feature vector.  

Besides, we apply the earth mover's distance (EMD)
8,9

 as a metric to directly evaluate the distance between 

the pre- and post-treatment tumor ADC histograms. Intuitively, if the histograms are interpreted as two different ways 

of piling up a certain amount of dirt over the region D, the EMD is the minimum cost of turning one pile into the other; 

where the cost is assumed to be amount of dirt moved times the distance by which is moved. The calculated EMD 

value is appended as the 15th element in the difference feature vector. 

The 15-dimensional difference feature vector will be the input to the classifiers. For classification, we 

investigated two classification techniques with different characteristics: AdaBoost and random forests (RF) classifier. 



The reason we chose them was that they both have feature selection mechanism. By applying these two classification 

techniques, we are seeking for the best features that would separate responders from non-responders which is very 

meaningful in clinical practice. 

The AdaBoost algorithm, introduced by Freund and Schapire
10

, is an iterative algorithm that can boost weak 

classifiers into a strong classifier and improve the final classification accuracy. In each iteration, a feature is working 

as a weak classifier and the best feature is selected to minimize the average training error. Afterwards, the weights on 

training samples are redistributed in such a way that the weight of accurately classified samples will be reduced while 

the weight of ill classified samples is raised. Therefore, AdaBoost focuses on the most “difficult” ones
6
. The final 

classifier aggregates the selected weak classifier from each iteration, and the weight for each weak classifier depends 

on its error rate. However, AdaBoost can be sensitive to noise and may introduce the overfitting problem. 

Random forests (RF)
11

 is a classifier that combines many decision trees. Each tree depends on values of a 

random vector sampled independently and with equal distribution. Each tree casts a unit vote for the most popular case 

at input, and random forests outputs the class that is the mode of the classes output by individual trees. Breiman
12

 

suggests the generalization error for forests converges to a limit as the number of trees in the forest becomes large. The 

error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation 

between them. Using a random selection of features to split each node yields error rates that compare favorably to 

Adaboost but are more robust with respect to noise. 

 

3. RESULTS 

3.1 Experimental Design 

A total of 85 patients with GBM were included in our preliminary study. Tumors were diagnosed by board-certified 

radiologists as responding or non-responding to drugs based on the size change according to later scans. All the ones 

that present over 50% decrease in volume is defined as responders, whereas the rest are defined as non-responders. 

The baseline scans and follow-up scans were 5-7 weeks apart. The T1 images have slice thickness from 1mm to 5mm, 

while the DWI images have a slice thickness of 5 or 6 mm. The axial plane resolution for T1w has 0.9375mm by 

0.9375mm pixel size, while DW images have the same or 1.797mm by 1.797mm pixel size. 

The six parameters from fitted GMM model and eight statistical features from ADC histograms were 

obtained within the tumor region for both pre- and post-treatment scans. The absolute difference between pre- and 

post-treatment features as well as EMD between pre- and post-treatment ADC histograms were calculated as the input 

to the classifiers. AdaBoost and RF tree classifiers were applied to the difference feature vectors, and results from the 

two classifiers were compared. AdaBoost and RF classifier were implemented in the open source data mining software 

Weka
13

. The performance was validated by 10-fold cross validation method. 

3.2 Classification Performance 

The experiment with AdaBoost resulted in 68.24% correct classification rate with 10 learning iterations in average. 

The selected features are LPM, HPV, 25th percentile, kurtosis, LPP, IQR.  

 The experiment with RF classifier showed that the final random forest is composed of 10 trees, each of which 

is constructed considering five random features. The 10-fold cross validation accuracy of the resulting system was 

69.41%, moderately better than the AdaBoost classifier. In table 1, the sensitivity, specificity, and accuracy drawn 

from Weka report for AdaBoost and RF classifier are compared. In figure 3, ROC curves for AdaBoost and RF 

classifier are compared. With the current dataset, RF classifier works slightly better than AdaBoost classifier. 

Compared to our previous exploratory study
4
, the overall accuracy is increased from 67.44% to 69.41%, 

which showed improvement of the classification system using ADC histogram as biomarker to evaluate treatment 

response. For RF classifier, the performance has been improved from 65.12% to 69.41% with mixture model features 

included. As for AdaBoost classifier, the selected features included three mixture model features out of the total 15 

features. These provided strong proof to support the assumption that the ADC histogram is a mixture of two 

components: cellularity and edema.  

 



Classifier Sensitivity Specificity Accuracy 

AdaBoost 61.54% 71.19% 68.24% 

Random forest 62.96% 72.41% 69.41%, 

Table 1 Comparison between AdaBoost and random forests classifier 

 

 

Figure 3 The ROC curve drawn from Weka on ten-fold cross validation. 

 

4. DISCUSSIONS 

In our preliminary study, we applied GMM to model the ADC histogram to interpret the competing effects of cellular 

density and edema in tumor ADC change. Our system with the proposed new features resulted improved performance 

to the previous systems found in literature
4
 in using ADC maps to early detect the treatment response.  

With our dataset, we see potentials of using ADC map as a biomarker, both in determining which tumors are 

more likely to respond to treatment, and to determine which tumors are actually responding. This will have major 

implications for clinical trials. For future work, a larger set of subjects will definitely be needed to have strong 

conclusions. 
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