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ABSTRACT

We propose a nhew method of classifying the local structysegysuch as nodules, vessels, and junctions, in thoracic CT
scans. This classi cation is important in the context of guter aided detection (CAD) of lung nodules. The proposed
method can be used as a post-process component of any lungs@#A&m. In such a scenario, the classi cation results
provide an effective means of removing false positives ediry vessels and junctions thus improving overall perforcea

As main advantage, the proposed solution transforms th@lexrproblem of classifying various 3D topological struetsi

into much simpler 2D data clustering problem, to which magaegic and exible solutions are available in literaturada
which is better suited for visualization. Given a noduledidate, rst, our solution robustly ts an anisotropic Gagian

to the data. The resulting Gaussian center and spread paranage used to af ne-normalize the data domain so as
to warp the tted anisotropic ellipsoid into a xed-size igsopic sphere. We propose an automatic method to extract a
3D spherical manifold, containing the appropriate bougdinrface of the target structure. Scale selection is paddr

by a data driven entropy minimization approach. The madifslanalyzed for high intensity clusters, corresponding to
protruding structures. Techniques involve EM clusteririinautomatic mode number estimation, directional stagsand
hierarchical clustering with a modi ed Bhattacharyya diste. The estimated number of high intensity clusters eixigli
determines the type of pulmonary structures: nodule (gched nodule (1), vessel (2), junction (>3). We show adeura
classi cation results for selected examples in thoracics€@ns. This local procedure is more exible and ef cientriha
current state of the art and will help to improve the accuayeneral lung CAD systems.
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1. INTRODUCTION

Lung cancer is responsible for over 160,000 deaths in thieyeas in the United States alone. While not smoking is the
best prevention against lung cancer, early detection ikakieo improving patient prognosis. When the cancer is detect
early and surgery is performed, the 5-year survival rat@&tients with stage | non-small-cell lung cancer is 60% %80
However, patients who do not have surgery face a 5-yeansiméte of only 1094.

Imaging techniques such as computer tomography (CT) scasrmninvasive and sensitive approaches to early
detection. Computer-aided detection and diagnosis (CAM)rm nodules in thoracic CT scans decreases the posgibilit
of human error for a more ef cient and standardized diagngsbcess. In CT scans, lung nodules appear as dense masses
of various shapes and sizes. They may be isolated from @haitato other structures such as blood vessels or the pleura.

Recently a number of techniques have been proposed for atedrdetection and classi cation of nodules in thin-slice
CT including: region growing and automatic threshold deieation? template matching with Gaussian nodule models,
using 3D nodule selective and noise suppressing ltenspdule matching, and deformable geometrical and intensity
templates.

One of the main shortcomings of these state of the art CADerysts the dif culty associated with differentiating
between nodules and other dense structures such as blamls/d3ue to the circular-shape assumptions used in most of
the systems, curved vessels and their junctions are oftemrigctly detected as nodules, resulting in false pos{fr)
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(a) VOI and segmented nodule candidate (b) Af ne-normalized VOI (c) Unwrapped, spherical parameteriza-
tion of the bounding manifold

Figure 1. Proposed method for pulmonary structure classi cation. Sub guysifaws the original voxel of interest (VOI), with ellipsoid
tted nodule structure, here a vessel. The ellipsoid tting is obtained fromsegmentation module. Sub gure (b) represents an af ne-
normalization of the original VOI, in that the ellipsoid is warped to an isotroplese. Sub gure (c) represents a bounding manifold
of the segmented structure at distamggne Unwrapped to a 2D image and parameterized by the spherical polalitates and .
Image grayscale values have been obtained via tri-linear interpolation.

cases. To reduce the number of such FPs, two types of sa@uimre been proposed previously: correlation-based lters
to enhance the area of interest with fuzzy shape analysige&sel tree reconstructiband a method utilizing tracking of

the vessels medial axis given by Hessian-based andly3ise drawbacks of the former approach include its in exigili
Simple structural templates used in the study will not hamdany complex vascular shapes and topologies. On the other
hand, the latter approach is computationally very expensivile being able to handle more irregular structures.

In this paper, we propose a novel method of classifying lstrakture types, such as nodules, attached nodules, sessel
and junctions, in thoracic CT scans. This solution is envisd to serve as a post-process Iter within an overall luAdpC
system so as to reduce FPs caused by the vessels and junctioissstudy thus assumes that positive candidates are
provided by such a CAD system or from radiologist's repartusing on the problem of FP reduction.

The proposed method rst ts an anisotropic Gaussian modeldta by using a previously published one-click seg-
mentation method. Using the tted anisotropic Gaussian spread, the data doisaaf ne-normalized so as to warp the
anisotropic ellipsoid into a xed-size isotropic sphereextia 3D spherical manifold, containing the bounding swefatc
the target structure, is automatically extracted. We psepan entropy-based data-driven solution for this man#atdac-
tion. The extracted 3D manifold in Cartesian coordinatdkfaim a 2D image in spherical coordinates. This 2D bounding
manifold image contains some high intensity clusters wimugeber depends on the structure types. For a nodule, attache
nodule, vessel, or junction, there must be 0, 1, 2 or >3 nurabelusters, respectively. Thus we can apply a clustering
analysis to the manifold image and classify the structupe tgccording to the estimated cluster numbers. Importantly
this association of the cluster numbers and the structyrestyrolds true regardless of vast geometrical and topalbgic
variability of target structures. This endows the presgmethod with favorable exibility against the variabikis.

Moreover, the proposed approach in effect transforms theuttitopological classi cation problem into a generic
2D clustering problem which can be solved much easily bygusiany well-studied solutions. We propose an EM-based
clustering solution by tting a Gaussian mixture model torgdes drawn from the bounding manifold image. It extends
a recently proposed Gaussian tting method, including m#tic mode number selectidf, with the use of directional
statistics, in particular a multivariate wrapped Gaussiadeling®*

Beyond the scope of lung CAD, the presented classi catiothod can be used to provide meaningful information of
vascular structures in various domains such as angiography

The rest of paper is organized as follows. In the followingti®s, we give a complete overview of the proposed
pulmonary structure recognition approach. Section 3tilass and veri es the feasibility by experiments with thcic
CT scan data. Section 4 concludes this contribution.



2. PROPOSED METHOD FOR PULMONARY STRUCTURE CLASSIFICATION

The proposed classi cation solution is envisioned to s@awva post-process Iter within a lung CAD system so as to reduc
FPs caused by the vessels and junctions. In this settirggagsumed that approximate locations of pulmonary strestur
are present, for instance, from an above mentioned a CARmsyst radiologists manual reading, or reports.

2.1. Local pulmonary structure segmentation

A previously developed one-click nodule segmentationraigm® is used to locate and segment target structures including
nodules, attached nodules, vessels, and vessel junchioadlle candidate locations, providadgriori, serve as initializa-
tion to this semi-automatic segmentation solution.

This algorithm is based on robustly tting an anisotropicussian-based intensity model to the data using Gaussian
scale-space mean shift analysis and Jensen-Shannonatigergased automatic bandwidth selection. This segnimmtat
solution provides a precise estimate of target center fraprécise CAD or manual initialization. The robustness of th
solution also allow it to segment non-nodule areas suchssel@and vessel junctions/branches of our interest. Amgbea
of this segmentation result is shown in Figure 1 (a).

2.2. Structure classi cation

In the setting of a nodule detection application, incotyedetected and segmented vessel and vessel branch stsictur
represent a FP case. Main contribution of this paper is aictasion method, which is targeted to reject all such non-
nodule structures, and, as a byproduct, to infer the cayerfdhe type of pulmonary structure under consideratioat i
nodule, attached nodule, vessel, or vessel junction.

As will be explained, it is based on cluster analysis of arrappate manifold, computed from the bounding area of
the target structure. The number of high intensity clustethis analysis will directly determine the pulmonary sture
class.

2.2.1. Bounding manifold construction

Structure classi cation in the original 3D image space isally a theoretically involved and computationally comple
problem. To overcome these dif culties, we propose to panfthe classi cation in a less complex domain. Apart from the
computational bene ts, such an approach has the advanfagmore generic and exible inventory of analysis technisjue
and more illustrative visualization potentiality, whichespecially important in the context of a possible intéoactvith
the radiologist.

In particular, we consider an ellipsoidal manifold in 3D t® éxtracted from the target structure boundary. Ellipsoid
tting is usually not a trivial problem, however, this tas& alleviated by our choice of the local structure segmentati
which gives accurate estimates of center and ellipsoidgisiof the nodule in terms of the Gaussian parameters mean and
covariance.

In the following, we will explain the construction of the bading manifold. lllustrative aids with an exemplary case
are provided in Figure 1.

Af ne-normalization  In order to simplify the mathematical representation, thigioal volume of interest (VOI), illus-
trated in Figure 1 (a), is af ne-normalized. In other word& warp the VOI such that the segmented anisotropic ellipsoi
is transformed to a xed-sized isotropic sphere, placedhataenter of the VOI. Figure 1 (b) shows the af ne-normalized
VOI.

The parameters of the af ne-normalization, that is, sa@alitirections and factors, can be straightforwardly obt@ine
from an eigenvalue analysis of the structure covarianémettd by the segmentation module.



11751

11.65

@r=2 (b)r=6

11551

11.45
0 5 10 15 20 25 30 35

radius r

(dyr =13 (e)r =18 fyr=28 (9) Entropy

Figure 2. Unwrapped ellipsoids of different radiiand the respective image intensity histogram entropy. These charadciealow a
data driven radius selection for the bounding manifold.

Spherical manifold construction A manifold is constructed from the af ne-normalized 3D ineagseometrically, it is
aimed to represent a spherical layer slightly beyond thgetastructure bounding surface, such that it contains inédion
about protruding objects passing through the surface.htipesis assumed ellipsoidal in the original VOI, in partzyl
proportional to the ellipsoid obtained from the anisotoopiaussian-based segmentation. Hence, in the af ne-narechl
representation it corresponds to an isotropic sphericapeatas well, de ned by center poil#yound bound and radius
rmoune Whereas the center point is identical with the one of the seded ellipsoid, the spherical raditigung will be
determined in a data driven way, as will be explained shortly

Assuming a xedrpoung the bounding manifold representation can be transformema fCartesiarn(x;y; z) to the
spherical coordinate§; ). Here, refers to the azimuth, and to the polar angle. The result is an “unwrapped”
representation of the af ne-normalized ellipsoid as a 2aga matrixl (; ). Figure 1 (c) illustrates the result for
our well-known example. Note that there, contrary to commonvention, the polar angle ranges over an interval of
Interval =2 (instead of ), thatis, 2 [ ; ], resultingin a double occurrence of the Cartesian voxéie.r€ason for
introducing this redundancy is that the clustering, whidlhlve introduced in Section 2.2.2, requires a periodic lviraof
I (; )inboth parameters over their respective intervals Interamad Interval, thatis,| ( + Interval ; + Interval ) =
I (; ). Forthe case of spherical coordinates, this is obvioustyfuidled, if Interval =

We now explain the determination of the appropriate radjds.¢ We advice a data driven approach, based on the
entropy of the intensity distributions. To motivate thigpepach, consider Figures 2 (a)—(f), each of which illugsat
the unwrapped ellipsoid representation in e )-domain with different radir. Figure 2 (g) shows the entrof®y,,

function after normalizing the CT intensity value distrilaun appropriately. Then intensity entropy is computecdcliy
with the normalized intensity values interpreted as prditatvalues. The goal of radius selection is to automatical
choose aradius such that high intensity clusters, due toygliag structures, appear most distinctively in the cgpanding
manifold. Such manifold image, consisting of a few clusgssshown in Figure 2 (d), should have lower entropy than
images with smaller and larger radii due to the followinguitive arguments. The smaller radii makes the correspandin
bounding ellipsoids go through inside target structuresiiting in high entropy values with more at likelihoodsst®own

in Figures 2 (a)—(b). On the other hand, the larger radii atagses high entropy due to appearance of other “non-target
structures located nearby as shown in Figures 2 (e)—(f)reftve the appropriate radiugoundorms a local minimum of
the entropy distributiof, .

In this respect, we choo$g.ungto be located at the rst appearance of a positive differenegtient Er' , that is,

I'bound = mli,n friEr+1 >E(Q:



Figure 3. A problem of clustering with directional data. An appropriate clusteringrétya in the directional ; )-domain should
recover a single cluster. However, with a linear instead of directionaktimgy each of the three observable structures would form an
independent cluster.

2.2.2. Cluster analysis of the bounding manifold

Having transformed parts of the 3D pulmonary structure t@ar@age, we can apply well-studied, ef cient, and easily
visualizable 2D image analysis techniques. As can be seem figure 1 (c), the bounding manifold contains valuable
information for pulmonary structure classi cation. In fathe number of high intensity clusteexposes the type of the
pulmonary structure, being equivalent to the number ofrpdihg objects passing through the de ned boundary. Our
classi cation builds upon this observation, having thddaling domain assumptions in mind:

0 clusters in the bounding manifold indicate a lack of come@@djacent structure, hence, the segmented structure
corresponding to a solitary nodule,

1 cluster in the bounding manifold indicates a single cotioedo an attached structure, which in many cases
originates from a nodule attached to larger structures,thie lung wall, etc.

2 clusters indicates two connections, which is most ofteseoled for blood vessels, and

>3 clusters indicate a vessel junction.

We propose to identify theumber of high intensity clustetsrough a clustering algorithm. The clustering strategysem
is based on the widely used principle of EM-based tting ofuSsians. In addition to those of the standard EM Gaussian
clustering, our variant requires to obey the following impat properties:

1. Our bounding manifold representation is parameterigatidspherical angular variablesnd , which correspond
to so-calleddirectional data'®> Hence, our clustering needs to re ect in particular the tanties in the(; )-
domain that appear at the edge of the 2D bounding manifolgémBor an illustration of this problem, consider the
simpli ed illustration of Figure 3 and the caption thereof.

2. The number of modes has to be determined automatically.

Directional data modeling For statistical modeling of directional data, there are miper of models that have been
proposed previously. One is then Mises-Fisher distributia? In fact, EM-based clustering of von Mises-Fisher
distributions has been proposed very recehtly.However, parameter estimation for the von Mises-Fisheribigion
involves solving an implicit equation of a ratio of Besseahétions, for which no analytic solution exists, in general.

For this study, we utilize an alternative modeling, whictowabk a less restrictive parameter estimation than the von
Mises-Fisher modeling. It is thenultivariate wrapped Gaussian distributidh which is an extension of the wrapped
Gaussian distributiof?



We brie y introduce the concept. For further details it ieeed to literaturé! 12 A Gaussian distributiohl (x) of a
variablex on the line can be “wrapped” around the circumference ofdeif unit radius. That is, the wrapped Gaussian
distributionN,, (#) of the wrapped variable

#=Xy=xmod2 2( ; ]

is
R
Ny (#) = N #+2k):
k=1
A multivariate wrapped Gaussian distribution of a vectaialale# = (#1;:::; #¢ )T can be de ned similarly as
p 3 X
Nw (#) = N#+2ker+ +2keper); 1)
k1= 1 kF =1
whereex = (0;:::;0;1,0;:: :;O)T is the k-th Euclidean basis vector (with an entry dfat thek-th element and

elsewhere). Figure 3 shows an example of a two dimensiontivariate wrapped Gaussian.
It has been showh that, given an appropriately small variance in the diregdloariables, aggurate mean and covari-

ance estimate8, and " 4 for Equation 1 can be obtained from a sampleXset #@;::::#M™)  using
!
1 X (m)
(o) =arg o & (2)
m=1
and o
A (M) (m)d 3)
M 1
m=1
with
#MO= M () mod 2;
J2 = 1the imaginary unit, anddrg” the phase of a complex number. For simplicity, a periogliot 2 and range of
#: 2 ( ; ]hasimplicitly been assumed for all dimensidni #.

In the context of the EM clustering algorithm, we can sim@place the regular, linear Gaussian model with the above
sketched multivariate wrapped Gaussian model. In paaictquation (1) on the one hand and Equations (2) and (3) on
the other hand replace the original linear equivalents énEtand the M step, respectively. Readers can verify a rekult o
the multivariate wrapped Gaussian EM clustering in Figdresw 3 and 4 as well as Figure 5, row 3 and 4.

EM clustering with integrated model selection In the context of EM-based clustering, several extensi@ve fbeen
proposed for automatic mode number selection in the pasbaaf our solution on a recent publicati@nwhich integrates
nite mixture of Gaussian estimation and model selecti@ing minimum description length (MDL) criterion, into a gle

algorithm.

Note that, in general, input to EM clustering algorithms sample seX = f( 1; 1);:::;( m; wm )gofobservations,
whereas the present data is the 2D (image) mat(ix ). To overcome this incompatibility, we draw observatiofis
directly froml (; ), where the number of occurrences of eachsamplgd )2 ( ; ] ( ; ]issetproportional

to the corresponding image matrix valué ; m).
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(@) VOI and segmented nodule (b) Af ne-normalized VOI  (c) Thresholded unwrappe@) Result of clustering and clus-
candidate bounding manifold ter postprocessing

Figure 4. This gure shows illustrative examples of the proposed pulmonary straclassi cation method for thoracic CT scans. Each
row corresponds to the segmentation and veri cation of one examplersthievo rows with respect to a nodule object, the last two
rows with respect to nodules attached to the lung wall. (Cf. Figure 5 for siittilatrations with vessel and vessel junction examples.)
Column (a) illustrates the CT VOI in three orthogonal cross sections. dhdtrof our segmentation is illustrated by the ellipses. Column
(b) represents the af ne-normalization of the original VOI, such that3b ellipsoid becomes warps to a sphere. Column (c) shows the
constructed bounding manifold, including an additional intensity threshpldinwrapped in thé; )-domain. The gures in column

(d) show the results of the Gaussian mixture model tting by the EM-balggtithm. Dashed ellipses correspond to EM-based clustered
Gaussian components, the solid ellipses describe the clusters afterpoessging.
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Figure 5. This gure is an extension of Figure 4. For explanation, please referaa#ption thereof. Row 1 and 2 show vascular

structures, row 3 and 4 vessel junctions.



Cluster post-processing One problem with the Gaussian EM clustering can arise if dribeotrue protruding structure
shapes in the bounding manifold do not correspond to thgtiekil Gaussian shape. In such cases, it is expected that the
EM algorithm ts this structure with a set of Gaussian comgots. Such an effect would clearly affect our classi cation
adversely, where thaumberof components plays an integral role. To deal with this peobl we propose to apply a
post-processing, which aims to merge appropriate comgenen

In particular, this post-processing can be seen as a sedostgrcanalysis, which analyzes the set of all EM- tted
Gaussian components and merges subsets to a single clusiprte-a certain scale. A very exible and widely used
technique for such problems is agglomerative hierarctaratering!* In hierarchical clustering, the cluster space is
expressed in terms of distances of its elements. In the prease elements are multivariate wrapped Gaussian funsctio
In conformity with previous proceeding in this paper, we maise of statistical descriptors for the geometric shapes. A
suitable (and analytically computable) statistical dismmeasure for Gaussian distributions is the Bhattachatigfance

1 T 1t g 7 1 j 1+ 2
Dehat( 1; 15 25 2)= g( 2 1) — (2 Dt s Inp——=:
8 2 2 ) i
However,D ghatt does not take into account the directional characterisfitee wrapped Gaussians. Hence we propose a
slightly modi ed variant ofD ghay, the “wrapped Bhattacharyya distance”
1

1 N L e
Dihat( 15 15 25 2) = é(( 2 1) mod 2 )T % (o ;)mod2 )+ EIn Ajl]iijzjj
1) 2

Finally, the number of wrapped Gaussian component clystetise experiments referred to lag, determines the class
of the pulmonary structureé for a solitary nodule2 1 = 2 for an attached nodul@, 2 = 4 for avessel,ang 2 3=6
for vessel junction. The factor of 2 is due to the double ivdein the polar coordinate, as discussed in Section 2.2.1.

3. EXPERIMENTS

In this contribution, we present qualitative experimenttiie proposed pulmonary structure classi cation. Figutand 5
show illustrations of the classi cation for thoracic CT iges, two examples for each of the classes “nodule”, “atthche

nodule”, “vessel”, “vessel junction”.

As presented in column (a), the 3D segmentation method @ststd in Section 2.1) can segment all solitary and
attached nodules (Figure 4) as well as the false positiveblessels and vessel junctions (Figure 5). Column (b)itiss
the respective VOIs after af ne-normalization. Column étlows the bounding manifold, which is constructed from the
procedure described in Section 2.2.1. Note, however, thadditional intensity thresholding has been introducedis T
step is applied as a fast and simple means for eliminatingitd@nsity structures, which may confuse the Gaussian EM
clustering. In column (d) the bounding manifold image is\gfarmed to a sampled data 3&tas it has been described
in Section 2.2.1. Further, column (d) shows the result ofEMebased wrapped Gaussian clustering, that is, mean and
covariance of th& components are illustrated by the dashed ellipses. Incodati note the continuities at the edges of the
(; )-domain in Figures 4, row 3 and 4, and Figure 5, row 3 and 4. Raralization purposes, we have also included an
illustration of the hierarchical clustering post-prodegs Clusters from this post-processing are representeilddy solid
ellipses, the center point and spread of which correspomdetan and covariance computed from means of all wrapped
Gaussians within one post-processed cluster. Note thaillilstration may lead to degenerated ellipses, for irstan
Figure 5, row 2, if the cluster cardinality is low. Inferrinige structure class from the component numibgrit can be
veri ed that the presented classi cation gives correctwesfor all eight examples. Similar results were obtainethwi
other cases.

It is worthwhile to point out limitations of the algorithm,hich may lead to misclassi cations in some situations.
Structures at the poles of the manifold 3D sphere (corregipgnto =0 and = ) become disproportionately large
in the -dimension of the 2D image after the unwrapping. This situtatan be compared with a phenomenon from
cartography where arctic and antarctic regions occupy eoatydy larger regions on a 2D world map than on the 3D
spherical world globe. In the examples illustrated abokies behavior can be observed in Figure 5, row 4, where the
high intensity structure at extends over the entire ran@e ; ]in . As a consequence, caution is advised, when
drawing conclusions from scale relations in the unwrappadifald, in particular, for those pole regions. This is, atf,

a drawback of the wrapped Gaussian modeling, in partictlarinwrapping. At this point, it shall be noted that the abov
mentioned von Mises-Fisher modeling circumvents this ph@&non, because no unwrapping is assumed.



4. CONCLUSION

We have proposed a novel method of classifying pulmonarnyctires, such as nodules, attached nodules, vessels and
vessel junctions. Such a classi cation can be advantaggapglied in a CAD system for nodule detection, in particula

for false positive removal. Further, VOI representatiohesen in the parts of the modeling have bene cial visuailirat
capabilities, in particular the unwrapped 2D bounding fwdiof Figure 1 (c). This is an important advantage in the
context of a user (radiologist) interaction.

Main elements of the presented classi cation include (i) @die for anisotropic Gaussian tting, (ii) a construction
of a 2D manifold at the boundary of the pulmonary structunel, @ii) a robust cluster analysis of this manifold. Partigi)
based on our previous work. For part (i), we have proposeata driven scale selection based on entropy minimization.
For the solution of part (i), we have brought together pdwestatistical analysis methods, such as EM-based ciugte
with automatic mode number selection, directional dataeting, and hierarchical clustering based on a variant of the
Bhattacharyya distance. Unlike other global methods saefessel tree reconstruction, this method allows for thaliped
exible examination of pulmonary structures.

We have shown a qualitative study with thoracic CT imagesderdonstrated and illustrated favorable classi cation
results in this domain. The presented algorithm could ripetassify examples of nodules, attached nodules, vessel
vessel junctions.

Building on these promising results, we plan to perform ditative performance validation in order to show the
effectiveness of the proposed solution in more clinicallievant settings. A main limitation of the proposed method
is the fact that scales are position dependent within(the)-domain. In this respect, future research should focus on
improving this de ciency. For instance, modeling with vonidds-Fisher distribution could circumvent this problem.
Complementary to the statistical clustering approach, waatwo pursue the idea of mode number detection based on
connected component approaches. Similar to the proposaaped Gaussian modeling, such an approach needs to address
the directional characteristics in spheres. Another jpsginprovement concerns the use of more topological kndgde
So far, classi cation is solely based on themberof identi ed protruding structures. Certainly, additidnaformation
lies in their size and relative position. For further stiggli@e plan to incorporate this extra information.
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