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Abstract

Face recognition is one of the most interesting and challenging problems in computer

vision. In the past, many facets of this problem have been rigorously investigated

because of its importance for understanding our cognitive process and its usefulness

in various applications. A great di�culty in face recognition is the separation of

intrinsic facial characteristics from extrinsic image variations. Among the latter in

2D images is pose, illumination, and expression. Unfortunately, most past studies

have provided variation-speci�c solutions that are not applicable to other types of

variation. Performance has remained inferior to human ability and sub-optimal for

practical use.

This dissertation proposes a novel solution to one of these problems. We focus on

processing head pose information in 2D images: analyzing, synthesizing, and identi-

fying facial images with arbitrary pose. Successful handling of head pose variation is

one of the key factors for realizing facial information processing systems in virtually

any realistic and practical scenario. Our goal is twofold. One is to provide a simple

and general framework which may be useful beyond the speci�c problem of head

pose. The other is to improve the pose processing accuracy of previous studies by

using this framework.
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We propose a localized two-stage linear system which is learned strictly from

sample statistics and models shape and texture information separately. Instead of

using variation-speci�c analytical knowledge of 3D rotation in Euclidean space, our

solution utilizes a simple statistical learning framework whose applicability is not

limited to the problem at hand. A wider range of head poses is covered by a number

of local linear models distributed over various poses, each of which realizes a con-

tinuous mapping function which directly associates a face's representation with the

corresponding 3D head angle. In distinction to many previous systems, a continu-

ous range of poses is covered, which helps to improve pose processing accuracy. The

availability of a mapping function avoids the necessity of an exhaustive search in a

parameter space. Linearity is emphasized in the system design, which simpli�es the

learning process and facilitates generalization.

Our experiments prove the system to be very accurate in terms of pose estimation

and sample synthesis and identi�cation as a function of pose while covering a greater

pose range and a higher number of rotation dimensions than previous systems. The

system's generalization capability over unknown poses and persons is also shown.

This facilitates continuous and smooth coverage of pose variation and learning from

few samples.

The main contribution of this study is a solution that is simultaneously simple,

general, and accurate. Its data-driven nature simpli�es an otherwise labor-intensive

xvi



data collection procedure and allows for extending our solution to other types of vari-

ation and object. Possible applications include on-line sequential learning systems

and man-machine communication.
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Chapter 1

Introduction

1.1 Background

Visual information plays an extensive and crucial role in all aspects of human behav-

ior. A large part of the sensory information our brain processes is visual. Moreover,

visual analysis of our surroundings enables us to interact with �ne details of the

outside environment. Perhaps one of the most important factors in this realm is the

recognition of objects. Without this capability, the exibility of interaction would be

drastically reduced. The �eld of object recognition stems from this observation and

has been, for decades, an active �eld including the disciplines of computer vision,

psychology, and neuroscience.

Two key questions in this �eld are the nature of the internal representation

of objects, how objects are represented in our mind and how they should be en-

coded in computer systems, and the information process of the representations,

how these internal representations are processed to solve complex cognitive tasks,
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as questioned by Marr [123]. We are concerned with two issues with regard to these

questions. One is the mechanism of generalization. Images of objects vary in ap-

pearance due to changes in image projection settings (e.g., shift of view direction),

outside environment (e.g., change of illumination), and the object itself (e.g., ro-

tation of objects, deformation of shape, change of surface properties). One simple

way to represent an object is to store an enormous number of views which cover all

possible appearances of the object in the environment. This simple-minded strategy

can be easily rejected for both arti�cial and biological systems due to the lack of

resources for storage. Also its ability for generalization is intrinsically limited be-

cause of its view-based nature. Therefore, in order to cover all image variations, we

need a process which can generalize over all possible appearances of an object from

a limited number of views.

The second issue is whether the representation should be 3D (structure) based

or 2D (image) based. It is most likely that representation is not based solely on

3D structures or 2D images. Biederman [20] indeed proposed that two types of

representation are used for di�erent classes of objects in human visual systems.

The theory of stereo vision has shown that the 3D structure of an object can be

reconstructed from two or three images of the object (e.g., Horn [94], and Havaldar

and Medioni [88]). This suggests that a set of 2D images of an object implicitly

contains structural information of the object. It should thus be possible to represent

structural aspects of an object by a combination of 2D images.
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Our long-term goal is to �nd a computational theory which answers these ques-

tions for all classes of objects considering all possible variation sources. In this

dissertation, we describe our investigation which seeks a solution of the generaliza-

tion process based on a combination of 2D images. More details of our approach

and the speci�c problem of our focus are described in the following sections.

1.2 Our Approach: A Compact, Generalizable,

Data-Driven, Flexible and Parametric

Representation Model

As described earlier, images of objects change in appearance due to many variation

sources. The fact that these variations are entangled with each other and encoded

implicitly in the imagemakes the task of object recognition di�cult since it becomes

very hard to distinguish each source of variation and to estimate the magnitude of

each variation. Only after we extract these variations from the image, can we analyze

the innate characteristics of the object. Therefore, our goal must be to make these

encoded variations explicit.

The representation of objects has to be 1) compact, but at the same time 2) able

to generalize all possible appearances of the object (generalizable). Observations

from two extreme cases will help to illustrate these two requirements. In one case,

each object is represented by a single image, and in the other case, by a set of images
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of all possible appearances of the object. The former severely limits the amount of

information; thus it inevitably has a poor ability for generalization. The latter will

be faced by combinatory explosions of the number of required images, which causes

problems due to resource limitation. Furthermore, in many cases, di�erent images

of an object share local information. The latter case is not economical since these

redundancies in local information are not compressed.

Let us call a computational unit which includes a speci�c format of object rep-

resentation, as well as algorithms of the processes for the representations, a rep-

resentation model. Inherently, the representation model needs to meet the two

requirements above.

How can we then use the representation model to make the entangled varia-

tions explicit? This problem could be solved by parameterizing the representa-

tion model by the actual physical variations. A parameterized representation model

is one that can be controlled by a set of parameters, model parameters. These

model parameters are used to analyze the input image by �tting a model to the

input, and to synthesize the appearance of the object controlled by di�erent values

of the model parameters within their parameter space. An explicit parameteriza-

tion would make the model parameters coincide with the physical variations. This

coincidence then allows for both the analysis of the physical variations of an object

image and the synthesis of the object image with a speci�c physical variation. In
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other words, image variations could be explicitly interpreted only if model param-

eters were directly associated with physical variations. The construction of such

a model, however, poses the di�cult problem of learning transformation between

the spaces of object representations and physical variations. In many cases, this

transformation is complex and hard to learn.

We set two further requirements for the representation model: we want it to be

data-driven and exible (as opposed to hand-crafted and rigid). A data-driven

model is strictly based on the statistics of training samples, whereas a hand-crafted

model relies on a priori knowledge of the task provided by the designer of the model.

In order to address all the possible image variations within a single framework,

a representation model must be data-driven; it needs to be learned rather than

constructed. A model utilizing an analytical description of a speci�c image variation

may satisfactorily process the variation but it may not be applicable to other types

of variation. This is similar to the situation that traditional arti�cial intelligence

fell into; a zoology of highly specialized expert systems were developed to solve

speci�c problems very well, but none of them could account for the whole intelligence.

In order to achieve our goal of realizing a general framework, we must avoid this

pitfall. Moreover, data-driven models help to automate the procedure of training

sample collection, eliminating the need for operator assistance and collaboration

from subjects.
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The di�erence between a exible and a rigid model comes from the nature of

the generalization in the parameter space. A exible model implies that the model

smoothly and continuously covers the parameter space by virtue of its generaliza-

tion, whereas the rigid model covers the space only discretely, at speci�c sampling

points. As we consider more image variations in a single framework, the parameter

space naturally becomes high-dimensional. Learning transformation between the

spaces of representations and variation parameters becomes increasingly di�cult in

a higher-dimensional space because of a problem called the curse of dimension-

ality, namely the number of training samples required to learn the transformation

increases exponentially as the dimensionality of a parameter space is increased. Our

representation model must be exible because it is practically impossible for a rigid

model to cover the whole parameter space due to this problem.

The objective of our investigation is then to propose a compact, generalizable,

data-driven, and exible representation model with model parameters that can be

interpreted explicitly in terms of physical variations. In order to reach this objective,

we need to provide answers to the following questions:

1. What is the optimal functional form of the representation model for realizing

a compact, generalizable and exible transformation between object represen-

tations and physical variations?

2. How to learn the transformation from a set of training samples?
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1.3 Our Focus:

Pose Variations in 2D Facial Images

In this study, we choose faces as the target of our investigation. In the �eld of com-

puter vision, face recognition has been one of the most challenging tasks. Innate

characteristics of the face, which distinguish one face from another, do not vary

greatly from individual to individual. Moreover, magnitudes of the variations of the

innate characteristics are often much smaller than magnitudes of common variations

(i.e., head rotation, change of illumination, facial expression, etc.). Therefore, ex-

traction of the innate characteristics from a facial image becomes a very di�cult

task. Faces are also one of the most studied class of objects (see surveys: Samal

and Iyengar [173], Valentin et al. [199], and Chellappa et al. [38]). This is due to its

extensive use in human communication, availability of data, and keen interest for a

wide range of applications.

Our investigation also focuses on head pose variation among the many other

types of variation. In general, head pose variation is very common since humans can

move freely in the environment. Therefore, successful handling of pose variation is

one of the most important factors for realizing systems for facial processing in vir-

tually any realistic and practical scenario. Favorably, the pose variation is relatively

tractable. The number of degrees of freedom for this variation is limited to three,

which is much smaller than for other types of variation. Moreover, the pose variation
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can be understood by simple 3D Euclidean geometry, while such analytical knowl-

edge is not available for other variations. There are a number of previous studies

which have attempted to solve the problems of analysis, synthesis, and recognition

of human faces with pose variations. However, despite its tractability, a number of

important theoretical and practical issues in these tasks remained unresolved. Fur-

thermore, these problems are often addressed independently and studied in di�erent

contexts. There have been very few e�orts to address these problems in an uni�ed

framework. Note, however, that our motivation is not limited only to the pose vari-

ation. As mentioned earlier, our long-term goal is to realize a representation model

which covers all possible variation sources. Towards this goal, this study aims to

solve the pose problem, for which there is the aforementioned analytical solution,

with methodology that can also be used for other types of variation, for which there

are no such solutions.

For the analysis of head pose in 2D views (pose estimation), approaches in

previous studies can be roughly categorized into two groups: shape-based geomet-

rical analysis (e.g., Brunelli [30], Maurer and von der Malsburg [127], Heinzmann

and Zelinsky [89], Chen et al. [39], and Xu and Akatsuka [220]) and texture-based

template matching (e.g., Bichsel and Pentland [18], Tsukamoto et al. [194], Kruger

et al. [108], McKenna and Gong [128], and Elagin et al. [64]). The former approach

for pose estimation deduces the head poses analytically from geometric information

of faces such as con�guration of facial landmarks. The latter, on the other hand,
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is based on a nearest-neighbor classi�cation with a set of texture-based (gray-level)

templates, each of which is associated with a speci�c head pose. Most of these previ-

ous approaches, however, did not achieve high estimation accuracy. Moreover, they

often restricted their systems to only one or two dimensions of 3D head rotations

(see section 2.2.1 for details).

For the synthesis of facial appearances of speci�c poses (pose transformation),

several studies have successfully demonstrated synthesizing a new pose from a sin-

gle input view by applying a transformation function learned from training samples.

Beymer and Poggio [16] proposed an algorithm based on an optical ow technique to

�nd pixel-wise correspondences between facial images in two di�erent poses. Mau-

rer and von der Malsburg [126] also demonstrated an approach combining a�ne

transformation of feature descriptors (jets), sampled at two di�erent poses, with

knowledge of 3D surface normals. Note that both approaches are rigid: their trans-

formations are de�ned as an explicit mapping from one pose to another and learned

from training samples with �xed poses. Therefore, a prohibitively large number of

transformations have to be learned in order to continuously cover the complete view-

ing sphere. Furthermore, operator assistance and subject collaboration are required

to collect the training samples of the �xed poses (see section 2.2.2 for details).

For the task of recognizing faces for identi�cations, a number of approaches

have been proposed for improving recognition performance against pose variations.

9



(pose-invariant face recognition). 1 They include studies by Beymer [15], Maurer

and von der Malsburg [126], Pentland et al. [149], Graham and Allinson [80], Lando

and Edelman [112], and Duvedevani-Bar et al. [57]. Again, most systems developed

in these studies are rigid: continuous pose variation is very crudely discretized only

along one to two rotation axes. Due to this, the scalability of their systems su�ers

immensely. When applying these systems to more realistic scenarios which require

full continuous coverage of the pose variation, they are confronted by the curse of

dimensionality problem described in the previous section (see also section 2.2.3 for

details).

To summarize, rough discrete treatment of continuous pose variations was one

of the shortcomings of the previous studies about processing human faces with pose

variations. Our approach attempts to resolve this issue by using a exible represen-

tation model.

1.4 Non-linear Sample Distribution and

Low-Dimensional Subspaces

Before we proceed further, let us introduce some basic terminologies and concepts

used throughout this dissertation. Figure 1.1(a) illustrates a number of training

samples in a N -dimensional space RN . Suppose that a sample consisting of N

1The term, pose-invariant, is used loosely here. This term is used even for non-invariant systems
for the sake of maintaining a consistency with the face recognition literature.
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Figure 1.1: 2D Sketches of a Non-linear Sample Distribution in a N -dimensional

Vector Space

variables (e.g., an image with N pixels) is numerically represented by a 1D N -

component vector ~x (sample vector). Such a sample vector forms a point in a

N -dimensional vector space spanned by N orthogonal vectors. We call this vector

space a representation space. An expectation (mean) of the sample vectors E(~x)

is denoted by a shaded point in the �gure. Suppose also that the set of samples are

drawn from views of a single object undergoing a certain data variation described

in section 1.1 as image variation. Due to the innate similarity across di�erent

views of an object, a distribution of points (sample distribution) forms a cluster

which we call a data-cloud. The shape and density of a data-cloud vary depending

on the characteristics of the data variation. Figure 1.1(a) schematizes a curved data-

cloud by a banana-shaped oval. A dotted line in the �gure represents a main axis

of the data-cloud which corresponds to a main direction of the data variation. The

curve of the axis indicates that the data variation is non-linear.
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Assume next that a data-cloud in �gure 1.1(a) is distributed under a data vari-

ation which restricts samples to be only on a surface of a 2D �gure plane in RN . In

fact, the degrees of freedom (DOF) of data variation (e.g., 3 for 3D rotation varia-

tion) are often much lower than a dimensionality of the representation space (e.g.,

N in this case). In such a case, a high-dimensional sample distribution becomes em-

bedded in a low-dimensional subspace of the representation space. In this �gure,

the data-cloud is embedded in a 2D subspace.

Figure 1.1(b) illustrates a coordinate frame of a 2D linear subspace R2. The

subspace is spanned by two component vectors ~e1 and ~e2 which collectively form

a basis of the subspace. An arbitrary N -dimensional sample is then parameterized

by two coordinate values in this 2D reference frame. These component vectors can

be manually constructed (see section 2.1.2.1 for details) or learned from training

samples (see section 2.1.2.2 for details). Note that the component vectors shown

in the �gure are linear, while the sample distribution is non-linear. Although the

two coordinate values in the linear frame unambiguously determine a point in R2

describing an arbitrary sample, such coordinate values do not accurately describe

the non-linear variation (non-linearity problem).

A linear subspace illustrated in �gure 1.1(b) can be utilized as a representation

model. We call such a model the linear subspace model or subspace method

following a convention in the pattern recognition literature. A technique of learning

12



+ =

*

w1

w2

wp

*

*(

(

( )

)

)
e1

ep

e2

+

+

+
E x( ) x

Figure 1.2: Subspace Model

component vectors using an unsupervised statistical learning method called prin-

cipal component analysis (PCA) is commonly called an eigenspace method

or eigenface speci�cally for faces (e.g., Shirovich and Kirby [182], and Turk and

Pentland [195]). This technique will be described further in section 2.1.2.2.

Figure 1.2 illustrates the concept of the subspace model with facial images as an

example. A subspace model describes an arbitrary face ~x by a linear combination

of weighted component vectors w1~e1; ::; wp~ep and a mean face E(~x). The component

vectors ~e1; ::; ~ep displaying facial patterns correspond to those displaying 2D arrows

in �gure 1.1(b). Note that a vector of the weights (w1; ::; wp) is equivalent to the

model parameters and coordinate values described earlier. Compactness of a subspace
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model is achieved by reducing the dimensionality p of the subspace, resulting in

only a few parameters for describing a sample. A subspace model learned by PCA

is an example of a compact, generalizable, data-driven, exible, and parametric

representation model. However, its model parameters cannot always be interpreted

explicitly due to the non-linearity problem described above.

1.5 Our Solution:

The LPCMAP Model

Now let us go back to the two questions raised at the end of the section 1.2. They

concern how to implement the representation model that meets the criterion; com-

pactness, generalizability, data-drivenness, and exibility. The data-drivenness and

exibility are assured by learning transformation or mapping between object repre-

sentations and physical variations from a set of training samples. So the remaining

problem is the choice of functional form and learning algorithms to achieve com-

pactness and generalizability in the transformation.

This dissertation presents the LPCMAP model (Okada et al. [140]) as our

solution to this problem. The LPCMAP (Linear Principal Components MAPping

functions) model consists of a combination of two linear systems: 1) PC-based lin-

ear subspace models and 2) linear mapping functions between di�erent parameter
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spaces. Representations derived from training samples are �rst subjected to princi-

pal component analysis (PCA) in order to generate a compact exible parameterized

linear model. Then we explicitly relate the model parameters and head pose varia-

tions by a linear mapping function which is also learned from the training samples.

This model's data-drivenness facilitates its applicability to other types of image vari-

ation, while its exibility mitigates the curse of dimensionality problem. These two

linear systems will be described further in chapter 2.

Note that we choose to linearly approximate the representation-to-parameter

mapping, although it is obvious that the mapping is non-linear Our main argument

for this choice is to emphasize the model's generalizability and simplicity. The small

number of degrees of freedom (DOF) of our linear mapping function (in comparison

with non-linear functions with higher-order terms) decreases functional complexity

thus avoids over�tting which would directly inhibit the model's generalizability. It

also helps to mitigate the di�culty of learning. Learning a linear system can be

reduced to solving a set of multivariate linear equations for which stable analytical

solutions exist, while learning a non-linear system often requires time-consuming

iterative optimization algorithm, which can be numerically unstable. The above

arguments favoring a linear system are an example of Occam's Razor. It implies

that the simplicity of our model is preferred to the inherent complexity of a non-linear

functional approximation. Non-linear systems also often su�er from ad-hoc and
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exhaustive searches (model selection) for �nding the optimal non-linear functional

form of unknown mappings.

The LPCMAP model also employs separate representations for shape and tex-

ture information within a single facial image. Geometrical information of facial

shape is represented by 2D locations of a set of facial landmarks (shape represen-

tation) and pictorial information of facial texture is represented by a set of 2D Gabor

jets (texture representation) which describe contrast gradients of local gray-level

distribution (Lades et al. [111]). Both types of representation are parameterized

by linear subspace models learned from training samples (shape parameters and

texture parameters). Head pose variation is quantized by continuous 3D rotation

angles of a face from its frontal pose (pose parameters). 2

The LPCMAP model uni�es the processes of analysis, synthesis, and recognition

within a single simple and general framework. The analysis process is realized by

relating the pose and shape parameters so that it is based solely on shape informa-

tion. This is a natural design since pose estimation can be formally reduced to a

geometric problem. The synthesis process consists of synthesizing both shape and

texture. Shape is �rst synthesized by a pose-to-shape mapping (a mapping inverse to

the one for the analysis process). Texture is then synthesized by a shape-to-texture

mapping which linearly relates shape and texture parameters, modeling a correlation

between them. Furthermore, by using an output of the analysis as an input of the

2Pose parameters can be constructed by �ltering the 3D rotation angles with non-linear trigono-
metric functions in order to improve the mapping's accuracy. Such possibility is explored in chap-
ter 3.
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synthesis (analysis-synthesis chain), a sequential application of the analysis and

synthesis processes provides a model view whose pose is aligned to an input (model

matching). This head pose alignment of model views to arbitrary inputs gives a

basis for our pose-invariant face recognition system (Okada et al. [143]).

The LPCMAP model provides continuous coverage of the pose variations which

improves performance of previous rigid systems. Its generalization capability for

di�erent poses enables the model to learn from a small number of training samples.

The explicit interface of our model with 3D head angles provides practical advan-

tages for a number of application scenarios such as low-bandwidth communication

(transmitting only pose information instead of images), tele-conferencing (adjusting

head poses in a virtual space for creating eye contact), facial identi�cation (aligning

head poses of inputs and models). More details of the LPCMAP model are described

in chapter 3.

Our model is related to a number of previously proposed models. These models

address the issue of the continuous coverage of the pose variations which is one of

our main goals. A parametric eigenspace system proposed by Murase and Na-

yar [133] realized pose-invariant object recognition based on a representation which

utilizes a compact and continuous manifold of model parameters interpolated by

cubic-splines in linear subspaces. A facial representation scheme proposed by Lani-

tis et al. [115] combined separate shape and texture exible models of facial images

using PC-based linear subspace models. An RBF network-based system proposed
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by Beymer et al. [17] realized continuous pose estimation and transformation by

learning a mapping which directly and continuously associates image-based repre-

sentations to the pose variations using a non-linear neural network. These studies,

however, do not fully address the issue of generalization to unknown poses by consid-

ering only a subset of the 3D rotation. These model's ability for this generalization

is questionable because of their use of the non-linear systems. Our study, instead,

emphasizes this generalization capability by constructing our model with linear sys-

tems and by evaluating its performance with a full 3D rotations. See section 2.3.4

for more detailed comparisons of these systems.

1.6 Extending the LPCMAP Model

by Piecewise Linear Model Approach

In the previous section, we have argued the advantages of linear approximation as a

functional form of our representation model. There is, however, a common pitfall of

linear approximation which sacri�ces �tting accuracy. The bias-variance dilemma

by Geman et al. [72] discusses this disadvantage. It describes a trade-o� between

oversmoothing (bias) and over�tting (variance) in the function approximation prob-

lem. The trade-o� depends on a balance between the model's internal degrees of

freedom (DOF) and the intrinsic dimensionality of data to be �tted. When the num-

ber of the model's DOF is smaller than the intrinsic dimensionality, the model tends
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to oversmooth the data, decreasing the accuracy of the model's �t. Experimental

results in chapter 4 show that our linear model is accurate only within a limited

range (ca. �15 degrees) of pose variation, although the model was highly accurate

and capable of generalizing to unknown poses within this range. This is a natural

property of linearity, but it raises a serious problem that disables our model from

covering the full range of the pose parameter space.

This dissertation proposes a solution to this problem by using a piecewise lin-

ear model approach. As we will illustrate in �gures 6.1 and 6.2, the idea is to

cover a wide range of the pose parameter space by a number of localized linear

models. In this framework, the LPCMAP model described in the previous section

serves as a linear model localized in the parameter space. In order to piece together

a number of localized models, we utilize weighted averaging of outputs of localized

models. A similar idea has been exploited for approximating a non-linear function

by localized linear functions in a broad range of �elds (e.g., Brailovsky and Kemp-

ner [25], Fritzke [69], Mael [121], Venkataraman and Poston [201], and Schaal and

Atkeson [176]). Our experimental results will successfully show that this extension

of the LPCMAP model greatly expands the range of pose variations in which high

accuracy is maintained.

This dissertation also addresses the missing data problem due to self-occlusion

of facial landmarks. By considering a wide range of head pose variations, some

facial landmarks naturally become invisible because they are hidden behind other
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parts of the face. This problem is called self-occlusion of landmarks. Since our

shape representation consists of 2D coordinates of the landmarks, the self-occlusion

creates uncertainty for some variables in shape samples. In the �eld of statistics,

this problem is known as themissing data problem (e.g., Little and Rubin [120]).

Common statistical analyses of data, such as national surveys, can be biased due

to this problem. In our case, the learning process of a shape linear model becomes

problematic since PCA used for the process is vulnerable to this problem. We test

a number of approaches to solve this problem. Our experimental results will show

that they e�ectively solve this problem.

Another interesting issue for processing human faces is interpersonal gener-

alization. This dissertation proposes two novel methods for estimating head pose

of arbitrary persons, which further extend the piecewise linear model approach. In

the previous sections, we have discussed our model's generalization capability for

di�erent poses. In this case, a model is constructed for a single person but general-

izable to di�erent views of the person. This is simply done by learning a LPCMAP

model with samples derived from a single person. This approach is appropriate for a

synthesis process where each model should be able to capture a peculiar appearance

of a single individual's face. However, for the analysis process or pose estimation,

learning a model for the generic object class of human faces can be natural and

bene�cial. Pose estimation generalized over di�erent individuals is supported by our

common sense: humans can easily tell which direction a person is looking without
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knowing who she or he is. It should also be computationally tractable because of

the relative proximity of facial shapes over di�erent individuals. Our experimental

results will successfully show e�ectiveness of the two proposed methods.

1.7 Organization of Manuscript

This dissertation consists of nine chapters. This chapter introduces the framework

of our investigation. In chapter 2, the most relevant literature including the state-

of-the-art systems of our focus is reviewed in order to clarify open problems of our

interests. We also discuss how our approach could help to solve some of the problems.

In chapter 3, we describe the LPCMAP model in both formal and informal manners.

In chapter 4, we empirically assess feasibility of the LPCMAP model by a series of

numerical experiments. Analyses with arti�cial and real data are conducted in order

to show the model's feasibility for the tasks of pose estimation and transformation.

We show that our model can perform successfully within a limited range of pose

variations. In chapter 5, we propose and empirically evaluate a novel framework of

a face recognition system using the LPCMAP model as a representation unit. In

chapter 6, we introduce strategies to remove the pose range limitation encountered

in our previous experiments. We propose a PWLM system, an extension of the

LPCMAP model by using the piecewise linear model approach, as a solution to this

limitation problem. This chapter also addresses a strategy to overcome a problem

of the self-occlusion which is inevitable for covering a wide range of pose variations.
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In chapter 7, we empirically show that the PWLM system is e�ective for a much

wider range of pose variations than those a single LPCMAP model can cover. In

chapter 8, our investigation towards interpersonal generalization of pose estimation

in this framework is presented. Finally, in chapter 9, we conclude by summarizing

contributions of our investigation, discussing relationship of our systems to their

biological counterparts, and presenting our ideas for future work.
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Chapter 2

Literature Review

As discussed in the introduction, our investigation is concerned about two questions:

1) how to represent faces with pose variations and 2) how to process

(analyze, synthesize, and recognize) faces with pose variations. In this

chapter, we attempt to assess strategies that give solutions to these questions based

on past literature. The �rst section of this chapter addresses the �rst question. Its

purpose is to provide an overview of the most relevant fundamental representation

methods for faces and objects. However, literature in generic object recognition is

numerous. Thus it is out of our scope to provide a complete review. This section

should, instead, provide a su�cient background for further discussion of speci�c

techniques in the following sections. The second section reviews studies speci�cally

about processing faces with pose variations. The process of pose information involves

two sub-processes: analysis and synthesis. They correspond to the task of pose

estimation and transformation, respectively. Another important aspect of processing
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faces with pose variations is to recognize faces with arbitrary poses: the task of pose-

invariant face recognition. We provide a thorough review of studies which address

these three tasks. At the end of both sections, the �ndings are summarized and

discussed. Finally, in the third section, we discuss how our approach can help to

solve some open problems found in this review.

2.1 Representing Faces with Pose Variations

The problem of how to represent objects from physical measurements such as digital

images has been a key question in computer vision. Such an object representation

needs to account for a variety of views of a single object caused by pose variation,

illumination variation, and shape deformation etc. On the other hand, the number

of possible views of a single object is prohibitively large so that they cannot be

simply stored for each single object. One solution to this problem is to represent the

variety of views by an economical representation model based on a few sample views

of the object. In this section, we �rst provide an overview of the broad range of

representation methods. Next, literature concerning the model-based representation

is reviewed and discussed in depth. Furthermore, we review a number of studies

which concern relationships between shape and texture information within facial

images. Finally, this section concludes with a summary of these methods.
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2.1.1 Overview of Relevant Representation Methods

Many object representation methods which have been proposed in past years can be

roughly categorized into single-view representation and multiple-view repre-

sentation by di�erences in their purposes. The following provides an overview of

some examples from these two categories.

2.1.1.1 Single-View Representation

Single-view representation describes objects by information based only on a single-

view of an object captured in 2D intensity data such as digital images. This type of

representation scheme has long been studied because of availability of the raw data.

Many methods have been proposed for extracting meaningful features from 2D

images in the past. Such features are designed to represent the innate characteristics

of the faces under many types of variation. These features can be categorized into

two types: geometric and pictorial.

2.1.1.1(a) Geometric Features Geometric features are based on geometrical

or topological characteristics of distinctive facial features such as eyes, nose, mouth,

and chin. In his pioneering work towards the �rst automated face recognition sys-

tem, Kanade [171, 172] utilized a set of 16 geometrical features based on the size

and position of eyes, nose, mouth and chin as representation of faces. Similar ap-

proach was also taken by Brunelli and Poggio [31, 32, 33], by Gordon [76] with
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additional depth and curvature features derived from a 3D depth map of a face, and

by Fellous [67] towards gender analysis.

Recently, two new approaches have been proposed and widely used by a num-

ber of studies. The �rst approach represents faces by a number of points or facial

landmarks distributed over faces (e.g., Craw and Cameron 1992 [47], Cootes et al.

1994 [43, 113]). They typically use more feature points than the previous methods

and these landmarks are not necessarily located at the distinctive facial parts. Sta-

tistical analysis of this point-distribution (e.g., Lanitis et al. 1997 [115], Craw et

al. 1997 [48]) provided information of facial shape structure reliably. The second ap-

proach uses a dense vector �eld of pixel-wise correspondences between a target and

a reference face (e.g., Beymer and Poggio 1995 [16], Vetter and Poggio 1997 [204]).

We further discuss the details of these two approaches in sections 2.1.3 and 2.2.2.

2.1.1.1(b) Pictorial Features Pictorial features are based on a local distribu-

tion of image intensities which is a function of the surface reectance properties. The

most simple way to represent texture is to use the image intensity itself. Brunelli

and Poggio [34] and Gordon [77] used a set of local image regions (local templates),

each of which includes a distinctive facial part, in order to represent faces. Since

the intensity of raw images is very sensitive to illumination variations, a number of

preprocessing steps, such as histogram equalization, gradient operator, or Laplacian

operator, are often applied to the raw images in order to mitigate the illumination

inuence [34].
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An interesting class of representation schemes that has been inspired from the

visual system of higher vertebrates (Jones and Palmer [103]) has become popular in

recent years. These approaches are based on integral transformation with a family of

localized �lters. 2D Gabor wavelets is a family of sinusoidal plane waves enveloped

by Gaussian windows, which is parameterized by wave lengths and orientations. Fil-

tering with a bank of these Gabor wavelets at an image position provides a complex-

valued feature vector or jet, which represents a local edge structure around the po-

sition. It was Daugman [50, 51] who �rst pushed the idea that receptive �elds in the

primary visual cortical areas are most appropriately described as two-dimensional

Gabor �lters. It is tempting to liken simple cells (Huebel and Wiesel [97]) to the sine

and cosine components of wavelets and complex cells [97] to the magnitudes of the

complex components. Von der Malsburg and his associates (Lades [110], Wurtz [218],

Wiskott [211]) further extended this idea using Dynamic Link Matching (DLM), a

dynamical solution to the correspondence-�nding-problem. They proposed object

representation schemes with jet-labeled rectangular grids (Lades et al. [111]) and jet-

labeled exible graphs whose nodes are located at �ducial points of faces (Wiskott

et al. [213, 214, 215]). This Gabor wavelet-based representation method together

with elastic graph matching [214], an algorithmic version of the DLM, has been

successfully applied to face recognition (Okada et al. [141]) and related applications

(Ste�ens et al. [184], Hong et al. [93], Okada and von der Malsburg [142]).
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Another example by Edelman and his associates [61] modeled receptive �elds

(RFs) by convolution of a set of Gaussian �lters with various sizes and locations

in an input space. Activities of these �lters can be used as inputs to a radial basis

function (RBF) network (Poggio and Girosi [161]) for interpolating multivariate non-

linear functions. This RBF network based on RF representations of 2D images was

applied to recognizing generic objects (Edelman and Poggio [60]) and faces (Edelman

et al. [61]). This example in the context of functional approximation will be revisited

in section 2.1.2.4.

2.1.1.1(c) Comparison of the Features One of the advantages of using geo-

metric features as single-view representation is its illumination invariance; geomet-

rical information of faces is not inuenced by the illumination variations. However

automatic detection of these features often relies on texture information which is

sensitive to illumination variations. Therefore it is di�cult to automatically locate

these geometrical features precisely. Moreover, the geometric features are suitable for

tasks which could be reduced to geometrical problems such as head pose estimation

(see section 2.2.1) and facial expression recognition (e.g., Matsuno and Tsuji [124],

Yacoob et al [221], Black and Yacoob [23], Essa and Pentland [65]).

On the other hand, the pictorial features seem to capture information which is

crucial to a process of facial identi�cation. Poggio [33] and Craw [49] both showed

that facial identi�cation performance was better by a system with pictorial features
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than by a system with geometric features. The disadvantages of pictorial features in-

clude that they tend to have much higher-dimensionality than the geometric features

and that they are inherently sensitive to physical variations such as illumination and

pose.

2.1.1.2 Multiple-View Representation

A multiple-view representation describes the complete appearance of an object as a

whole. Unlike the single-view representation which contains only limited information

of the target object, the multiple-view representation attempts to capture a spectrum

of all possible views. Related to this type of representation, there is a class of

representation methods which is based on explicit knowledge of 3D shape information

of objects. We call this type of representation the 3D model-based approach.

Our study, however, focuses on a type of representation which represents 3D objects

by a number of 2D views without explicit 3D shape knowledge. We categorize

these 2D methods into two approaches: the 2D template-based approach and

the 2D model-based approach. The di�erence of the two approaches lies on

whether it learns a strategy of information process from samples or not. The former

consists of a set of single-view representations or templates which are simply stored.

Its information process is �xed to the nearest-neighbor algorithm or its variations

which do not involve learning. On the other hand, the latter statistically learns the

information process or part of it from a set of training views. A set of single-views
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are utilized for the learning, instead of stored, in this case. The following provides

an overview of these approaches.

2.1.1.2(a) 3D Model-Based Approach In this approach, a face of a person

is represented by a model of 3D shape structure. A 3D shape model consists of a

3D structure of facial surface represented as a depth map, a set of 3D triangular

patches, or a set of 3D curvatures. The 3D shape model could be also associated

with its corresponding texture in order to synthesize 2D views. In computer graph-

ics, the majority of algorithms utilize this type of 3D shape model for realistic facial

animations (e.g., Parke [147], G�unter et al. [83], Pighin et al. [158]). A number of

algorithms have also successfully demonstrated matching such a 3D shape model to

2D input images in order to estimate geometrical structures of the 2D inputs (e.g.,

Aizawa et al. [3], Huttenlocher and Ullman [98], Choi et al. [41], Heinzmann and

Zelinsky [89], Shimizu et al. [181]). This technique will be revisited in the context

of pose estimation in section 2.2.1.1. Advantages of this approach are that 1) it

is invariant against pose (or view-point) variations, 2) it helps to analyze illumina-

tion variations because the geometrical structure (e.g., surface normal) of the face

is known, and 3) the size of the representation can be compact in comparison to

the simple 2D template-based approach described in the next section. The �rst

and second advantages are very attractive; the analysis of pose variations can be

reduced to a simple geometrical problem in theory and once the pose is known, a

new view of the face can be easily synthesized by geometrical projection followed
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by a texture mapping. The third advantage does not always hold, depending on

the data structure chosen; a 2D model-based approach which will be described later

could be a better solution for reducing the size of representations. The most signi�-

cant disadvantage of this approach is the potential di�culty for constructing the 3D

model. It requires either speci�c hardware such as a range �nder (e.g., Sato and Ot-

suki [175], Okada [139], Proesmans and Gool [165]) and a Cyberware scanner (e.g.,

Vetter and Blanz [202, 24], G�unter et al. [83], Isono et al. [102]) or computationally

unstable algorithmic solutions for reconstructing depth information from a number

of 2D views such as stereo methods (e.g., Havaldar and Medioni [88], Lengagne et

al. [118], Neumann et al. [134]) and structure from motion (e.g., Horn [94], Tomasi

and Kanade [190], Fua [70]).

2.1.1.2(b) 2D Template-Based Approach Without constructing an explicit

model of 3D objects, the most naive way to represent the 3D nature of an object

is to describe the object by a collection of all possible views. We call this type of

representation method 2D template-based approach. Each object can be represented

by a set of single-view representations described in section 2.1.1.1. An unseen input

view can be approximated by a nearest-neighbor algorithm with the stored views.

What characterize di�erent methods in this approach are the types of single-view

representation used for each template and the types of similarity metric used for the

nearest-neighbor algorithm.
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The notion of object class has been commonly used in both the psychology

and computer vision literature. Distinguishing two hierarchical levels in this object

class, basic-level and subordinate-level, has helped to describe nature of object

recognition (e.g., Rosch et al. [168], Bruce and Humphreys [28], Biederman [19],

Basri [11]).

In the case of faces, the subordinate-level corresponds to a single person's face,

whereas the basic-level corresponds to the generic class of faces including di�erent

persons (Bruce and Young [29], Biederman and Kalocsai [20, 21]). The knowledge

of basic-level classes is often used to detect faces among other types of object such

as desk, cup and banana, whereas the knowledge of subordinate-level classes is re-

quired for identifying individuals. The 2D template-based approach has been used

for describing the knowledge of both levels of classes. For the basic-level, many algo-

rithms for detecting faces from 2D images exploit a general knowledge of faces in the

form of this approach, including views of multiple individuals under various condi-

tions. For example, a technique of template matching uses this approach with 2D

gray-level images as single-view representation and with a correlation coe�cient as a

similarity metric (e.g., Brunelli and Poggio [33, 34], Kwon and Lobo [109]). Wiskott

et al. [214, 215] exploited a 2D template-based approach (general face knowledge or

GFK) with a single-view representation based on Gabor jets and with, as a simi-

larity metric, the normalized dot-product of corresponding jets averaged over graph

nodes. This GFK was used for automatically locating facial features in input images,
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as well as analyzing facial attributes such as the presence of a beard or eye-glasses

(Wiskott [212]). For the subordinate-level, each person in a database of known peo-

ple can be represented by a set of single-view representations. Gordon [77] reported

a face recognition system, in which each person was represented by both frontal and

pro�le views. With these two views per person, it attempts to capture depth infor-

mation of a face explicitly. In Beymer's earlier work [15], 15 views of di�erent head

poses covering a range of the viewing sphere were used to represent each individual

in a database. A recognition system based on template correlation as a similarity

metric demonstrated reliable performance against head pose variations.

The 2D template-based approach provides a simple framework to represent a

spectrum of possible views of objects. An inherent problem, however, is that it covers

continuously varying object appearances only by discrete samples. For continuous

coverage of all possible views, it often requires an prohibitively large number of

templates. Furthermore, these types of method lack the ability to determine 1)

what and 2) how many templates should be used. Thus the choice of the templates

has often been manual and subjective.

2.1.1.2(c) 2D Model-Based Approach The 2D model-based approach aims

to solve the disadvantage of the 2D template-based approach by providing a con-

tinuous and compact representation model learned from a set of training 2D views.

As described in section 1.4, subspace method is one of the most common frame-

works in this approach. In this method, each 2D view representation is considered

33



to be a point in a high-dimensional vector space spanned by variables of the chosen

single-view representation (representation space). A set of training samples then

forms a cloud of data points in this space. The subspace method models the charac-

teristics of the data-cloud by �nding a basis (a set of component vectors) which

forms a relatively low-dimensional subspace of the representation space. Unlike the

2D template-based approach which only uses discrete samples of continuous varia-

tion, this approach provides a mean for smoothly modeling di�erent appearances of

objects. Later in this chapter, we will show that this is our choice of data repre-

sentation. We review literature related to this approach in more detail in the next

section.

2.1.2 Methods for the 2D Model-Based Approach

The 2D model-based approach is a multiple-view representation model based on

a continuous and compact representation model learned from a set of training 2D

views. The subspace method described in sections 1.4 and 2.1.1.2(c) provides a

simple framework for this approach by describing the innate characteristics of an

object in a low-dimensional subspace of a representation space. The subspace is

spanned by a set of component vectors derived from training samples. We call

a representation model created by a subspace method a subspace model. An

arbitrary input can be approximated by a linear combination of the component

vectors. This can be seen as parameterization of the input by a subspace model.
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We call the weights of this linear combination model parameters. A number of

di�erent models exist which di�er in the way of �nding the component vectors and

of constructing a subspace. The following provides reviews of four types of model,

template-based linear subspace models,PC-based linear subspace models,

non-linear subspace models, and transformation models.

2.1.2.1 Template-Based Linear Subspace Models

This type of method constructs a linear subspace model using prototypical templates

as component vectors. This is the simplest implementation of the 2D model-based

approach since no computation is required to generate the basis of a subspace.

Ullman and Basri [197] pioneered an approach using this 2D template-based lin-

ear subspace model for representing geometric line drawings of generic objects. They

showed that line drawings of an object can be expressed as linear combinations of just

three views of the same object under the assumptions that 1) the object is rigid and

2) the views correspond to rigid 3D transformations followed by weak-perspective

(orthographic) projection. They proved that only 6 di�erent views of an object are

usually su�cient to express all the possible views of smooth objects. A novel view

of an object can be parameterized by �nding optimal model parameters that give

the linear combination most similar to the input view. These parameters can be

determined by aligning the linear combination to the input view. This alignment is

realized by either 1) solving a set of linear equations derived from more than 3 cor-

responding control points between an input view and model (alignment method by
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Huttenlocher and Ullman [98]) or 2) performing an exhaustive search in the param-

eter space. This method provides a framework for a 2D linear subspace model for a

single object at the subordinate level. Recently, Peters and von der Malsburg [151]

experimentally showed that a similar interpolation of novel views from only 2 to 3

stored views in gray-level images is possible using the Gabor jet-based single-view

representation described in section 2.1.1.1(b).

Poggio and Vetter [162] extended the above idea to represent a class of objects

in their linear class theory. In this approach, a new view of an object is cre-

ated by linear combination of prototypical views of di�erent objects of the same

class. Therefore their 2D linear subspace model works for basic-level objects. They

demonstrated this basic-level model for line drawings of generic objects [162] and

2D gray-level images of faces (Vetter and Poggio [204]).

This basic-level model can be applied to create new views from a single prototyp-

ical view of an object using a class-speci�c transformation which may be known

a priori or pre-learned from a set of models. For example, a single-view of an object

with pose-A can be rotated to pose-B by 1) estimating model parameters of the lin-

ear class model for pose-A, 2) transforming the parameters of the linear class model

for pose-A to ones for pose-B, and 3) generating a new view by a linear combination

of the linear class model for pose-B with the transformed parameters. Given the
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prototypical views at both pose-A and -B a priori, the transformation can be pre-

computed. This technique will be revisited in the context of pose transformation in

section 2.2.2.

The general di�culty of these methods lies in �nding corresponding control points

across di�erent views, especially in gray-level images. Vetter and Poggio [204] used

a coarse-to-�ne gradient-based optical ow algorithm to �nd pixel-level correspon-

dences between two images in the same pose. It is, however, still di�cult to automat-

ically locate these points precisely and reliably because of the e�ects of illumination

on the pictorial features used for their algorithm. Furthermore, an inherent problem

of this type of method is their inability to determine 1) what and 2) how many tem-

plates should be used as the basis. The 2D template-based approach described in

section 2.1.1.2(b) shares the same problems, however it could only cover the continu-

ous variations discretely, whereas this approach provides a model which continuously

covers the variations. These studies [197, 98, 162, 204, 151] described in this section

did not address these two problems and the component vectors (template views) of

the linear model were chosen manually.

2.1.2.2 PC-Based Linear Subspace Models

The template-based linear subspace method described in the previous section o�ers

a framework for modeling 3D objects by the linear combination of a small number

of 2D template views. However these methods require construction of the subspace
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model manually. As mentioned in section 1.4, one solution to this problem is to

learn the component vectors from the statistics of training data.

Principal component analysis (PCA) is a statistical method (also known as

Karhunen-Loeve expansion in the pattern recognition literature) to derive, from

a set of samples, a compact set of linearly independent component vectors which de-

scribe modes of the sample distribution (e.g., Press et al. [164], Duda and Hart [55]).

The analysis is based on an eigen decomposition of a centered covariance matrix de-

rived from the samples, resulting in eigenvectors with associated eigenvalues. These

eigenvectors are called principal components (PCs) and form an orthonormal basis.

Each eigenvalue represents the variance in the training samples along a direction of

the corresponding eigenvector in the representation space. An image can be repre-

sented by a vector of orthographic projection coe�cients of the image to a space

spanned by the PCs. This representation scheme is optimal in that it minimizes

the reconstruction error in the least-square sense. Furthermore, when the data is

normally distributed, forming a dense convex data-cloud (in the best case an ellip-

soid), a subspace spanned by only a few PCs which represent the most signi�cant

variations of the data can be used as a compact linear model; dimensionality of the

representation can be greatly reduced which results in data-compression. See also

�gures 1.1 and 1.2 for visual examples of these concepts.
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Sirovich and Kirby [182] �rst applied this PCA-based representation to an en-

semble of facial images, demonstrating a low-dimensional linear model and its recon-

struction performance. Pentland and his associates [195, 131] and others (Shackle-

ton and Welsh [179], Craw and Cameron [47]) extended this technique to automatic

face recognition systems. This technique has been widely used and is known as

eigenface systems. Statistical techniques such as Linear and Fisher Discriminant

Analysis (e.g., Zhao et al. [224], Moghaddam et al. [132], Kalocsai et al. [106]) for

learning an optimal classi�cation boundary have been recently used to improve this

type of recognition system. Related to these analytical formulations of the problem,

PCA can be also expressed as a learning task of an auto-associative neural network.

Kohonen [107] was the �rst to use an auto-associative network as a representation

scheme for storing and retrieving an ensemble of facial images. In this approach, the

network learns associations from training facial samples to themselves by the delta

rule, resulting in a weight matrix which approximates a set of PCs (O'Toole and

associates. [145, 198, 1], Cottrell and Munro [45]). Oja [136] pioneered another type

of approach using 2-layer feedforward networks with constrained Hebbian learning

for �nding a subspace spanned by PCs. See a survey paper by Baldi and Hornik [7]

which gives a good overview of this type of method. These connectionist solutions

have an advantage when the dimensionality of the representation space is so large

that the analytical solution can not be computed in a reasonable time and when

incremental learning is asked for (e.g., Oja and Karhunen [138]).
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The studies described above were based on a global representation which cap-

tures a whole facial region as a data unit. This type of representation scheme requires

precise alignment of images across di�erent views. Because of the shape variations

across di�erent people and the non-rigidness of faces, this alignment becomes a non-

trivial task. The above studies have dealt with this alignment problem by normal-

izing the shape of each face using a few anchor points, however the precision of the

alignment was often poor. A more complete solution to this alignment problem was

given by techniques based on image warping (e.g., Vetter and Troje [205], Lanitis et

al. [116], Craw et al. [49]), which registers a facial image to a �xed reference shape by

�nding pixel-wise correspondences between them. The resulting shape-normalized

facial images were called shape-free texture representations and subjected to

PCA. These studies will be revisited in section 2.1.3 when we discuss the use of both

shape and texture information.

A local representation which describes a face by a set of local features serves

as another solution to the alignment problem, if the location of the landmarks can

be found precisely. It is preferred to a global representation because of its robustness

for partial occlusions and its exibility to non-rigid shape transformation. Pentland

et al. [149] proposed an approach which represented a face by a set of local PCA

models (eigen features) located on four distinctive facial regions (i.e. eyes, nose and

mouth) and showed that a recognition system based on these local eigen features

outperformed one with the global eigenfaces. Penev and Atick [148] also proposed
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Local Feature Analysis (LFA) which analytically constructs a spatially dense set

of local topographic �lters from global PCA modes. These local �lters are de�ned

at each pixel of the image coordinates, di�erent from each other, and optimally

matched to the input ensemble, by decorrelating the outputs from these �lters as

much as possible. This topographic LFA representation maintains the same best

reconstruction property of the global PCA. A technique to sparsify the spatial allo-

cation of the �lters using residual correlation as a lateral inhibition was proposed to

reduce the dimensionality of the representation.

An advantage of these PC-based linear subspace models is that their component

vectors are learned from examples rather than picked manually. Furthermore, the

linearity of the PCs simpli�es the matching process of a subspace model to an

arbitrary input (or the estimation of model parameters which give the most similar

linear combination to the input). The parameters could be simply computed as a

dot-product of the input and each PC (or orthographic projection of the input to

the basis). The orthogonality of the PCs also simpli�es the model processes because

it coincides a basis for the linear combination and �lters for the matching process

within a single subspace model. However, these two properties of PCs also impose

a disadvantage. Due to them, PCs cannot capture variations that are non-linear.

Therefore, PCs computed from samples undergoing strong non-linear variation will

fail to account for the variation.

41



R2

e2

e1

(a) (b)

Figure 2.1: Non-linear Components

2.1.2.3 Non-Linear Subspace Models

As pointed out in the previous section, a PCA cannot perfectly capture non-linear

variations because of its restrictions to linearity and orthogonality. Within the frame-

work of the subspace model, it is of obvious interest to extend the approach such as to

capture the non-linear variations. This idea is illustrated in �gure 2.1. The right �g-

ure 2.1(b) schematizes a N -dimensional data-cloud embedded in a two-dimensional

linear PC subspace as also shown in �gure 1.1. Because of non-linearity indicated by

a curved axis, the PC-spanned linear basis cannot describe the non-linear variation

accurately. The left �gure 2.1(a) shows a non-linear component approach which

allows the component vectors to be non-linear such that the components coincide

with the non-linear variation axis. 1 Therefore, this approach intrinsically solves the

non-linearity problem in subspace methods.

1Such a non-linear component becomes a function instead of a vector, therefore it is called
components instead of component vectors.
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Independent component analysis (ICA; e.g., Common [42], Oja [99]) is a gen-

eralization of PCA, which decorrelates higher-order moments of the input ensem-

ble, while PCA addresses only second-order moments of the input. Bell and Se-

jnowski [13] and Amari et al. [4] proposed an unsupervised learning algorithm to

derive statistically independent components (ICs) by maximizing the mutual infor-

mation between the input and output of a non-linear transformation. Applications

of such ICA include a blind separation problem of various kinds of signals (e.g.,

Makeig et al. [122]). This technique has also been applied for representing facial

images by Bartlett et al. [10, 9, 8], Donato et al. [54], and Futamura et al. [71].

These studies have successfully showed that the ICA-based representation improves

the performance of face recognition over one based on PCA representations. Similar

to LFA by Penev and Atick [148], ICA tends to produce local feature-like �lters (e.g.,

Bell and Sejnowski [14]) and also provides non-orthogonal components (Futamura

et al. [71]). Note, however, that ICA provides only linear basis, not non-linear one,

although its learning process incorporates non-linearity. Therefore, a basis spanned

by ICs still fails to capture curve-linear variations (Futamura et al. [71]).

Another approach is to combine an explicit non-linear transformation and the

orthodox PCA technique for extracting actual non-linear components. For example,

Kernel PCA (e.g., Sch�olkoph et al. [177], Mika et al. [129]) computes PCs in high-

dimensional feature spaces which are derived from an input representation space by
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a non-linear mapping. They substitute kernel functions, which satisfy Mercer's con-

dition [200] and are chosen a priori, for computing dot-products of samples in the

feature space transformed by an implicit non-linear mapping, providing a way to ac-

count for higher-order statistics of inputs without a combinatorial explosion of time

complexity for explicitly evaluating the non-linear mapping. Although this method

provides a simple algorithm to construct non-linear (or curve-linear) basis, it com-

plicates the synthesis process of a subspace model; a point in the high-dimensional

feature space, representing a linear combination of these non-linear components,

might not have a mapping point in the low-dimensional input representation space.

This prevents the method from synthesizing a model view directly from arbitrary

parameters. Furthermore, there is no simple standard rule to choose the appropriate

kernel functions for a given problem.

Other approaches for learning non-linear component vectors include princi-

pal curve (Hastie and Stuetzle [87]), curvilinear component analysis using a self-

organizing neural network (Demartines and Herault [52]), and mixtures of prob-

abilistic principal component analyzers for statistically combining localized linear

subspaces (Tipping and Bishop [189]).

2.1.2.4 Transformation Models

In the previous sections 2.1.2.1, 2.1.2.2, and 2.1.2.3, we gave extensive reviews of

methods within the paradigm of the subspace model with linear or non-linear com-

ponent vectors. As another approach, one can try to explicitly address a mapping
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function between a representation space of objects and a parameter space of their

physical variations (e.g., 3D head pose angles). We call a model which consists of

such a mapping function a transformation model. The advantage of this approach

is that it makes the variations explicit and directly available to other components

of a perceptual system. This task can be solved by a general supervised learning

algorithm as a task of multivariate function approximation.

The simplest form of this model is to linearly approximate a mapping function.

In this case, a mapping function is de�ned as a matrix whose size is determined by

dimensionalities of both spaces (transfer matrix). In the �eld of statistics, this

problem is also known as multivariate regression [22]. With a su�cient number

of training samples, this transfer matrix or regression function can be computed

by solving an overcomplete set of linear equations by standard algorithms such as

singular value decomposition (SVD; e.g., Press et al. [164]).

In reality, the mapping function is non-linear for most types of variation. Thus

non-linear learning algorithms are often applied to solve this task. The back propa-

gation algorithm with a feed-forward neural network with hidden layers is a powerful

non-linear supervised learning algorithm (Rumelhart and McClelland [170]). This

algorithm has been widely used for the task of facial identi�cation (e.g., Intrator et

al. [101], Lawrence et al. [117]) or detection (e.g., Rowley et al. [169]), learning a

mapping between an input representation space and a set of variation parameters

such as identities of faces. The radial basis function (RBF) network proposed by
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Poggio and Girosi [161] is another powerful non-linear functional approximation al-

gorithm. It expands a multivariate function in terms of a network of radial basis

functions with parameter values that are learned from training samples. Edelman

and Poggio [60] further developed a theory of 3D object representation based on

the RBF network with Gaussian RF representation described in section 2.1.1.1(b).

This technique was applied for representing facial images by Edelman et al. [61]. In

this study, a Gaussian RBF classi�er is built for each known person by learning a

mapping function between an identity and multiple 2D views of the person. Another

global network was also built to account for ensemble knowledge of the output pat-

terns of an array of the classi�ers in order to improve the recognition performance.

Gutta and Wechsler [84] proposed a hybrid classi�er which consists of an ensemble

of RBF and inductive decision tree networks and applied it to classi�cation tasks

of identity, gender, and ethnicity. An extension of this technique in the context of

pose transformation of faces will be revisited in section 2.2.2. The support vector

machine (SVM) proposed by Vapnik [200] is also a well-known method for the task

of multivariate classi�cation and regression. Recently, it has been applied for a va-

riety of facial processing tasks such as pose estimation (e.g., Huang et al. [96], Ng

and Gong [135], Li et al. [119]) and face detection (e.g., Osuna et al. [144], Terrillon

et al. [188]).
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2.1.3 Combination of Geometric and Pictorial Features

As reviewed in section 2.1.1.1, two types of feature, geometric and pictorial, have

been used for single-view representation of faces. The geometric features describe

the shape information of faces, whereas the pictorial features mainly capture the

texture information. These earlier studies were based on either of the two types of

feature, not both. It is a tempting idea to utilize both shape and texture information

in order to enhance the representation power. Recently, a number of researchers

have investigated a single-view representation which consists of both geometric and

pictorial features.

Vetter and Troje [205] were the �rst to apply an optical ow technique to separate

the shape and texture information from 2D facial images. They used a coarse-to-�ne

gradient-based optical ow algorithm to establish a pixel-wise correspondence �eld

between two facial images. In their approach, the shape information is represented

by 2D shape deformation as a dense pixel-wise correspondence �eld from an input

face to a reference face. In their study, an averaged facial image from a number of

samples is used as the reference face. The texture information is then represented

by a shape-free texture image created by warping the input image to the reference

image according the corresponding �eld. They constructed linear models with PC

component vectors separately for the shape and texture representations for frontal

facial images of multiple persons and demonstrated the representation accuracy of

the linear model.
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Craw et al. [49, 44, 46, 48] represented the shape information by a vector of

image coordinates of 34 facial landmarks which are manually located. The shape-

free texture representation of an input facial image is derived by warping the input

to a �xed reference face linearly. They showed that the performance of a PCA-based

face recognition system similar to the eigenface system by Turk and Pentland [195]

was the best when a face was represented by both shape and shape-free texture

PCs, with comparison to cases of only shape or texture PCs. Furthermore, they

showed that a system only with texture PCs outperformed a system only with shape

PCs. These results suggest that both shape and texture contains information that is

crucial to identi�cation process of faces, however texture may contain more identity

information than shape.

Lanitis et al. [116, 114, 115] proposed a more complete face recognition system

using a similar technique to the one by Craw et al. In their system, 152 facial

landmarks are automatically located by multi-resolution Active Shape Model search

(Cootes et al. [43, 113]) which elastically deforms the shape model by varying shape

model parameters maximizing a proximity of local gray-level pro�les. The shape-free

representation was derived by warping an input to an average shape by a thin plate

spline-based algorithm with 14 anchor points. Last, an input face was represented by

appearance parameters that are a linear concatenation of model parameters from

the shape PC model, texture PC model, and PC models for 1D local texture pro�les.
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With this representation scheme, they demonstrated applications for facial tracking,

pose estimation, facial identi�cation, and gender and expression recognition.

These three studies [205, 49, 116] are similar in that they modeled the shape and

shape-free texture representations independently. Under certain kinds of variations

such as object rotation, however, these two types of information are not necessarily

independent. There are only a few studies which addressed this dependency between

the shape and texture information. For example, Edwards et al. [62, 63] proposed

the combined appearance model which models the correlations between shape

and shape-free texture information by applying PCA to the appearance parameters

used by Lanitis et al. They successfully applied this representation technique to

improve a model-�tting algorithm [62] and a facial identi�cation and tracking sys-

tem [63]. However, they did not explicitly discuss the correlation between the shape

and texture captured in their representation.

2.1.4 Summary of Methods for Representing Faces

We classi�ed various object/face representation methods into single-view represen-

tations and multiple-view representations. The single-view representation is derived

solely from a single 2D image and consists of two types: geometric features and

pictorial features. The geometric features are suitable for the tasks such as pose and

expression analysis based on geometric properties of objects, whereas the pictorial

features seem to capture information which is crucial for the identi�cation process.
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The multiple-view representation captures a spectrum of continuously varying

appearances of objects/faces. We classi�ed it into three types of approach: 3D

model-based approach, 2D template-based approach, and 2D model-based approach.

The 3D model-based approach explicitly reconstructs a model of 3D shape structure

from 2D views. For dealing with pose variation, which is a target of our investiga-

tion, this 3D model-based approach could be an appropriate choice. However, the

task of 3D reconstruction from 2D views is ill-posed and often requires expensive

computations. The 2D template-based and the 2D model-based approaches repre-

sent the spectrum of appearances of 3D objects implicitly by a set of 2D views.

The 2D model-based approach is preferred to the 2D template-based ap-

proach because a model provides a continuous and compact coverage of

the di�erent appearances of objects, whereas the template approach is

based only on discrete samples of the continuously varying appearances.

In the context of the 2D model-based approach, we studied four types of method:

a) the template-based linear subspace model, b) the PC-based linear subspace model,

c) the non-linear subspace model, and d) the transformation model. The �rst three

methods are based on a subspace model which describes objects/faces by a weighted

linear combination of component vectors which span a low-dimensional space embed-

ded in an input representation space. They di�er in the method used to construct

the basis of the subspace. The PC-based linear and the non-linear subspace

models statistically learn the component vectors from training samples,
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whereas the template-based model relies on a manual selection of the

component vectors. While the PC-based model provides a simple framework for

the analysis and synthesis processes of a linear model, the non-linear subspace model

complicates these model processes. Although the non-linear subspace model

could potentially be an appropriate choice in terms of properly describing

variations, the PC-based model is preferred due to its simplicity. On the

other hand, the transformation model uses a di�erent strategy from these subspace

models. The model learns a direct mapping function between an input representa-

tion space and a parameter space of variations. The advantage of this method

is that it makes the variations explicit. The di�culty of this method is that the

mapping function often tends to be complex and hard to learn (non-linear).

In the context of utilizing both shape and texture information, a number of

studies have showed that combining the shape and texture information represented

independently improves the representation power for the task of facial identi�cation.

However, the correlations between the shape and texture information is

still not fully investigated yet.

2.2 Processing Faces with Pose Variations

In this section, we study literature which speci�cally concerns processing of pose

variations of human faces. In order to make pose variations explicit, a model needs
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to undergo an analysis process of head pose from an input view and a synthe-

sis process of a model view from an input pose. In the literature, this analysis

process is often called pose estimation and the synthesis process is called pose

transformation. We are interested in realizing both analysis and synthesis in a

single framework. Many researchers have investigated the pose variations of human

faces, however they often concentrate on either the analysis or synthesis process,

not both. We are also interested in making facial identi�cation robust against pose

variations. Previous studies addressing this pose-invariant face recognition are

also reviewed in this section.

2.2.1 Head Pose Estimation

Pose estimation plays a crucial role in the process of face recognition. The similarity

measure between two di�erent views of the same person decreases as the di�erence

in head pose increases. Furthermore, since the basic features of faces are similar

across di�erent individuals, the similarity between two views of di�erent persons

with the same pose could be higher than a pair of views from the same person but

with di�erent poses. This situation easily leads to misidenti�cation. Therefore, the

pose of the face needs to be estimated and compensated prior to the recognition

process.

The task of pose estimation (or analysis of head pose variation) also plays a cru-

cial role in many computer vision applications such as interactive human-computer
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interfaces and automatic video indexing. In such applications, the pose can be

treated as an information channel which is associated with actions of the person

involved and carries certain domain-speci�c semantics. A number of studies have

addressed this task in various domains. The following provides reviews of such

studies of pose estimation of human faces classi�ed into four categories.

2.2.1.1 3D Model-Based Methods

When a 3D shape model of a face is available a priori, the head pose in 2D facial

images can be estimated by �nding a geometric transformation between a set of

control points of the 3D model and corresponding points in the images. Since an

analytical form of this transformation is known as a perspective or a�ne projection,

the pose can be computed explicitly from this transformation matrix in a straight-

forward manner. This strategy can be viewed as matching a 3D shape model to a

2D input by aligning a 2D projection of the 3D control points to the input in order

to deduce the transformation. An advantage of this method is that the analysis

process is solely based on geometric shape information thus illumination variations

which would a�ect texture information does not inuence this procedure. However,

facial deformation, often caused by facial expression, can inuence the precision of

the estimate.

It was Ullman [98] who pioneered a technique of this 3D model matching. He

showed that three corresponding points or lines are usually su�cient to determine

the transformation that aligns a 3-D model to a 2-D image, assuming the object
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can undergo only rigid transformations. Haralick [86] evaluated iterative matching

methods for pose estimation of generic objects which are robust against incorrect cor-

respondences between points. Recently, Heinzmann and Zelinsky [89] demonstrated

head pose and gaze direction estimation based on the same three-point model �t-

ting algorithm in their real-time face tracking system. Choi et al. [41] applied an

EM-algorithm to the 3D model matching, improving Ullman's algorithm with a

least-square �tting. This 3D model matching can also be achieved with edge curva-

ture information. Shimizu et al. [181] proposed a 3D model �tting algorithm based

on curvature alignment. In their approach, 3D curvature derived from a generic 3D

facial model is iteratively �t to 2D curvature information extracted from an edge

image of a 2D facial view.

Another strategy is based on reconstruction of 3D structure information from a

set of 2D views. This method derives a pose estimate by generating a 3D model

instead of assuming it a priori. For example, Xu and Akatsuka [220] proposed a

stereo method for computing relative head pose. Using correspondences of basic

facial landmarks such as pupils and the mouth in a stereo image pair, the 3D depth

of the landmarks is �rst reconstructed. The normal direction of a triangular plane

region de�ned by the 3D coordinates of three facial landmarks provides the head

pose relative to the camera axis. Gordon [78] demonstrated a pose estimation system

using a structure-from-motion algorithm (Horn [94]) based on a factorization method

proposed by Tomasi and Kanade [190]. This algorithm factorizes a feature position
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matrix derived from a video sequence into two matrices, one providing a 3D location

of the feature points (structure) and the other providing the rotational relationship

between the object and the camera at each frame.

A generic 3D model can also be used to synthesize arti�cial templates of rotated

faces (e.g, Tsukamoto et al. [194]) in order to automate the manual collection of

templates for the 2D pictorial template-based methods which will be described in

the next section. These arti�cial templates are then used for a simple template

matching in order to estimate the head pose.

As discussed in section 2.1.1.2(a), the disadvantages of these methods are due to

the overhead for reconstructing a 3D structure model for each subject. When a single

generic model is used for di�erent individuals, shape di�erences across individuals

can inuence the precision of the estimate greatly. Moreover, the accuracy of the

landmark �nding process which is often based on illumination-sensitive pictorial

features directly a�ects the precision of the estimate.

2.2.1.2 2D Pictorial Template-Based Methods

This approach is based on a template matching algorithm with a set of pictorial

feature-based templates, each of which is associated with its head pose. The in-

put face is subjected to a nearest-neighbor search with these templates, resulting in

the template most similar to the input. The pose associated with the most similar

template is interpreted as an estimate of the input pose. The pose estimate could
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approximate the input's head pose well when the set of templates covers the com-

plete viewing sphere with an adequate sampling density and variations of individuals

and illumination, etc. For example, Bichsel and Pentland [18] used templates based

on 2D gray-level image features to estimate head orientation. Instead of the simple

nearest-neighbor search, they used a coarse-to-�ne template matching with a Gaus-

sian pyramid of multi-pose templates. Kruger et al. [108] and Elagin et al. [64] also

demonstrated a technique with templates based on a facial graph whose nodes are

labeled by 2D Gabor jets and with a simple nearest-neighbor search. The above

examples only provide a rough classi�cation of discrete poses with a limited num-

ber of templates. In order to estimate the head poses accurately and continuously,

these techniques require a dense sampling of the viewing sphere, resulting in an

prohibitively large number of templates as discussed in section 2.1.1.2(b). Since

these templates are often collected manually by the operator, the preparation of the

templates becomes labor-intensive. Moreover, since these methods utilize texture

information, it is inherently sensitive to texture variations from sources other than

pose variations such as illumination and deformation. Recent studies by McKenna

and Gong [128, 75, 180, 135] utilized densely sampled templates using a special-

ized data acquisition system with a magnetic sensor and a calibrated camera. Their

system [128] aimed to mitigate the problems of coarse sampling and illumination sen-

sitivity by using template matching based on the magnitude of the Gabor wavelet

transform. However, their reported average estimation error for known persons was
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roughly 7.0 degrees along 2 rotation dimensions, which is still suboptimal. Their

extension to pose estimation for unknown persons [75] used iterative error mini-

mization algorithms using the similarity-based method (Edelman and Duvdevani-

Bar [58, 59, 56, 57]) with a vector of similarities to multi-personal templates of �xed

poses. This extended system gave a better average error of 3.5 degrees. Ng and

Gong [135] demonstrated a multi-view face detection and pose estimation system

using an ensemble of localized support vector machines, each of which is responsible

for detecting faces in a local region of the viewing sphere. Their pose estimation was

based on a nearest-neighbor matching of an input sample to a number of learned

support vectors. Their average pose estimation error is, however, 8 degrees which is

again suboptimal.

2.2.1.3 2D Geometric Transformation-Based Methods

Because a 3D model is not always available, there has been a need for pose estimation

algorithms solely based on geometric information in a set of 2D views.

Brunelli [30] proposed an algorithm which is based on quantifying the asymmetry

between the aspect of the two eyes in an intensity image. In his system, 1D (in-depth)

head poses are directly derived from a parameter computed as an integral projection

of vertical gradients of the two eye regions. 3D facial models with ray-tracing and

texture mapping technique were used to synthesize training samples which varies in

pose and illuminant direction. This method, however, su�ers from the asymmetry

heuristics which restrict its use to only vertical rotation. More holistic strategies
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can be derived from using a geometric transformation of a set of 2D facial feature

positions between a pair of 2D views. The three point 3D model �tting algorithm

described in section 2.2.1.1 can be extended to 2D geometric feature-based templates,

assuming that there is no depth in the surface of faces. For example, this technique

was used by Maurer and von der Malsburg [127] to derive head pose from a single

2D input view by computing an a�ne transformation between positions of a set of

facial landmarks in an input and in a reference template. The pose of the input face

was analytically deduced from the computed transformation matrix. The advantage

of this technique is that it is able to estimate poses from any pair of 2D views,

though it can su�er from errors due to the assumption that there is no depth on

a face. Furthermore, this technique is sensitive to the precision of the landmark

�nding process similar to the 3D model-based methods previously described. Chen

et al. [39] also proposed an algorithm based on geometrical properties of the hair and

face regions derived from color cues. Rotation angles of faces along three axes are

analytically related to the �rst and second order moments of hair and face regions.

Although this algorithm realizes the pose estimation without locating landmarks,

instability in the region �nding system can result in problems similar to those for

the landmark �nding process.
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2.2.1.4 General Transformation-Based Methods

The last approach is to view the task of pose estimation as approximating an ex-

plicit function which directly maps an input representation space to a pose pa-

rameter space, described as a transformation model in section 2.1.2.4. This is a

more general approach which allows us to apply general learning systems. It is also

characterized by a minimum usage of a priori variation-speci�c knowledge (e.g., the

analytical knowledge of 3D rotation in an a�ne transformation, etc). The most

simple way for realizing this type of method is to de�ne this mapping function as

a linear system. An advantage of this approach is that such a linear system can

be solved analytically by standard algorithms such as singular value decomposition

(SVD) [164]. Lanitis et al. [115] estimated the depth-rotation angles along two axes

from two PCs derived from the shape representations. A linear mapping function

from a PC to a corresponding rotation angle was computed for each rotation axis by

linear regression. The nature of this mapping function is, however, often non-linear.

Thus it is tempting to approximate the mapping function by a general non-linear

supervised learning algorithm as described in section 2.1.2.4. For the task of facial

pose estimation, Lando and Edelman [112] have used a Gaussian RBF network to

approximate mapping from texture information in a high frequency band to head

poses. This RBF network is trained to classify an input pose into �ve di�erent

poses. (This system will be revisited in the context of pose transformation and face

recognition in sections 2.2.2 and 2.2.3, respectively.) Huang et al. [96] applied a
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support vector machine (SVM) for classi�cation of head poses into three discrete

poses by learning a direct mapping from 2D gray-level image representation to head

poses. Recently, Wu and Toyama [217] demonstrated a pose estimation system ro-

bust against person- and illumination-variations. In their system, the task of pose

estimation is formulated as Bayesian inference from probability density functions

of Gabor and Gaussian features annotated on an ellipsoid point-distribution model.

The maximum a posteriori pose is derived by �nding a maximum likelihood solution

of the inference. Although they claimed insensitivity to the named variations, their

average estimation error was 10 degrees in the best case.

These general transformation-based methods provide a simple framework to make

the pose variations explicit by directly associating a single-view representation with

its 3D head angles. An inherent problem is the approximation accuracy of the

mapping function. Non-linear learning algorithms often result in a near to perfect

�t to training samples but have poor generalization capabilities. The work by Lanitis

et al. utilized a linear transformation model which often has better generalization

capabilities, however they only provided preliminary results without quantitative

analyses.

2.2.2 Head Pose Transformation

As pointed out in section 2.1.1.1(b), pictorial features are sensitive to pose variations;

the similarity measure between two di�erent views of the same person decreases as
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Figure 2.2: Two Types of Pose Transformation

the di�erence of the head poses in the two views increases. This problem makes

recognition of faces with di�erent poses a di�cult task. A solution to this prob-

lem is to align the head pose of an input and a stored model by applying a pose

transformation which is learned from example 2D views. A number of studies have

attempted to solve this pose transformation problem and can be categorized into

two approaches as shown in �gure 2.2.

In the �rst approach, the pose transformation relates facial appearances with

one pose to appearances with another pose (e.g., a transformation between a frontal

appearance to a pro�le appearance). Thus this type of pose transformation can be

formalized as a transformation between two points in a single vector space. We call

this approach discrete-transformation. In the second approach, the pose trans-

formation directly relates pose variation parameters to facial appearances. This type

of pose transformation can be formalized as a mapping between two di�erent vec-

tor spaces: from a parameter space of the pose variations to an input representation

space of the facial appearances. We call this approach continuous-transformation
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2.2.2.1 Discrete-Transformation Methods

Poggio and his colleagues were the �rst to show that, given one example view at

a known pose, it is possible to synthesize views of the face as seen from di�erent

poses by exploiting a priori knowledge in the form of a class-speci�c transforma-

tion described in section 2.1.2.1. This class-speci�c transformation was de�ned

as a discrete-transformation generalized over di�erent individuals (class-speci�c

discrete-transformation). In other words, it was de�ned as a mapping between a

pair of template-based linear subspace models, each of which models facial appear-

ances of di�erent people at a speci�c pose. This class-speci�c discrete-transformation

can be pre-computed with a pair of prototypical template sets at two poses and ap-

plied to rotate an arbitrary input face.

Vetter and Poggio [204] proposed an algorithm using a delta function of model

parameters as a class-speci�c discrete-transformation. The use of delta function is

postulated by the linear class theory proposed by Poggio [162], in which di�erent

views of an object share the same model parameters. In their algorithm, an example

face is analyzed by a linear model of the same pose, resulting in model parameters

which give the most similar model view to the example. In order to synthesize a

model view of a target pose, these model parameters are then directly translated to

model parameters of the target pose, synthesizing the model view by a linear com-

bination. They also treated shape and texture information separately in the same
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manner, Vetter and Troje [205] (see section 2.1.3 for details). The shape informa-

tion of an input is extracted as a pixel-wise correspondence �eld of an input from

a reference face of the same pose using an optical ow or a recursive bootstrapping

algorithm (Vetter et al. [203]). Using this correspondence �eld, the input face is

warped to the shape of the reference face, resulting in a shape-free texture repre-

sentation. Both shape and shape-free texture representations of an input face are

independently transformed to a target pose by the linear class algorithm described

above. In order to generate a �nal model view, the rotated shape and texture are

merged by linear interpolation of the nearest three pixel values (forward-warping).

Beymer and Poggio [16] proposed an algorithm which synthesizes novel views

from a single-view example according to a linear combination of 2D shape deforma-

tions between pairs of prototypical faces at di�erent poses. This algorithm, called

parallel deformation, utilized a template-based linear subspace model of pixel-

wise correspondence �elds between the pairs of prototypical faces at di�erent poses.

It also synthesized a novel view directly from the input's texture, unlike Vetter and

Poggio who extracted texture of a novel view from a linear texture model of a target

pose. Similar to Vetter and Poggio's algorithm, shape information of an input is �rst

represented as a pixel-wise correspondence �eld to an averaged face used as a ref-

erence. This input's correspondence �eld is then expressed as a linear combination

of correspondence �elds of prototypical templates with the input pose, resulting in

model parameters that describe the decomposition. Using these model parameters,
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a correspondence �eld from the input's pose to a target pose is synthesized by a

linear combination of prototypical pixel-wise correspondence �elds between the two

poses. The �nal model view is then generated by a forward-warping of the input

face according to the synthesized correspondence �eld without using prototypical

texture information at the target pose.

The two algorithms of Vetter and Beymer are similar in that they both used the

linear class theory with a delta function and the shape and texture decomposition

by an optical ow computation. One advantage of Vetter's approach is that it

is only required to �nd correspondence �elds of faces at the same pose, whereas

Beymer's approach requires correspondence �elds of faces at di�erent poses. The

optical ow algorithm used in both algorithms can perform poorly as the shape

di�erence between a pair of faces increases. Since shape deformation caused by

a pose di�erence often exceeds deformation caused by an individual di�erence, it

is more di�cult to �nd the correspondence �elds of faces at di�erent poses than of

faces at the same pose. Moreover, when the shape of an input face cannot accurately

be described by prototypical shape templates, the resulting model view by parallel

deformation will appear geometrically distorted. The parallel deformation algorithm

also requires the existence of pixel correspondences between two di�erent poses,

which does not necessarily exist due to self-occlusion. This is not a requirement for

Vetter's algorithm. An advantage of parallel deformation over Vetter's approach is

its ability to preserve peculiarities of texture such as moles. Since Vetter's algorithm
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synthesizes the texture of a model view from a linear model of target pose, not

from an input, such peculiarities in the input often fail to be recovered. Since both

algorithms are based on template-based linear subspace models, they su�er from the

same problems of template selection described in section 2.1.1.2(b).

Maurer and von der Malsburg [126] proposed a di�erent approach for synthesizing

novel views from a single-view example according to a priori knowledge of the pose

transformation. In their algorithm, a face is represented by a graph whose nodes

are located at facial landmarks and labeled by 2D Gabor jets in the same manner

as Wiskott et al. [215] described in section 2.1.1.1(b). With an assumption that

an image region around each facial landmark is painted on a local at 3D surface

plane, they related two jets, sampled at the same landmark of a face with two

di�erent poses, by a linear transformation as a function of normal angles at the

landmark for both poses. They used a simple exhaustive search algorithm [125] to

learn the normal angles at each landmark for di�erent poses. These normal angles

are learned from pairs of prototypical template sets, each of which contains faces of

di�erent individuals at a speci�c pose, and are used as a priori knowledge. Since the

knowledge of the normal angles are in the basic-level, the linear jet transformation

together with this knowledge can be seen as a class-speci�c discrete-transformation.

This algorithm is di�erent from the previous two in that it uses explicit 3D structure

information which is learned from a set of 2D views. Because of the assumption of
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locally planar faces, the learning results can be unstable and inaccurate, which limits

the precision of the pose transformation.

Lando and Edelman [112] proposed a pose transformation algorithm based

on a class-speci�c discrete-transformation in an RF representation space (see sec-

tion 2.1.1.1(b) for descriptions of this RF representation). Their system �rst classi�es

a head pose of an input view by an RBF network, as described in section 2.2.1.4.

Using the classi�ed pose, the input view was transformed to a �xed canonical pose

by applying the class-speci�c discrete-transformation computed as an average of

di�erence vectors between prototype pairs at the input and canonical poses. The

approximation of a class-speci�c discrete-transformation by a simple mean di�erence

vector limited the overall accuracy of their pose transformation.

These four algorithms based on class-speci�c discrete-transformations realize the

task of synthesizing novel views from a single-view example using the transforma-

tion as a priori knowledge. These algorithms also serve as computational models of

generalization capabilities from a single-view in human visual systems (Schyns and

B�ultho� [178], Troje and B�ultho� [192, 193], O'Toole et al. [146]). The problem of

these algorithms is due to the characteristics of the discrete-transformation. The

discrete-transformation covers the viewing sphere only discretely. Therefore, a pro-

hibitively large number of di�erent transformations need to be computed in order

to continuously cover the complete viewing sphere. Furthermore, in order to learn a

single transformation between a reference and target pose, training samples with the
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speci�c head poses need to be collected for many subjects. This makes the collection

of training samples a practically di�cult task requiring assistance of an operator and

collaboration of the subjects, especially as the number of transformations increases.

2.2.2.2 Continuous-Transformation Methods

The continuous-transformation is a mapping between two di�erent vector spaces.

For the task of pose transformation, a continuous-transformation from a parameter

space of pose variations to an input representation space is learned as a transfor-

mation model explained in section 2.1.2.4 (similar to the general transformation-

based methods for pose estimation described in section 2.2.1.4). This transforma-

tion model provides a simple framework to synthesize a single-view representation

(model view) directly from an explicit 3D head angle.

Note that this type of pose transformation can be easily realized by a texture

mapping or ray tracing when a 3D structure of a face is given. As described in sec-

tion 2.1.1.2(b), a number of view-based methods for reconstructing such 3D models

are available such as, for example, a linear class of 3D model recorded by a Cyber-

ware scanner (Blanz and Vetter [24]), an illumination cone estimation by using a

generalized bas-relief transformation (Georghiades et al. [73]), and a structure-from-

shading technique (Zhao and Chellappa [223]). Although much attention has been

given to these methods with explicit 3D models, pose transformation based on a

continuous-transformation of 2D views has scarcely been reported.
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Beymer et al. [17] demonstrated an example of a pose estimation and transfor-

mation system using a transformation model based on an RBF network [161]. For

pose estimation, a mapping from a representation space (based on normalized 2D

gray-level images) to a parameter space of pose and expression variations are ap-

proximated by a Gaussian RBF network with 4 examples (analysis network). This

analysis network continuously estimates an input pose by interpolation between two

examples (the two examples code pose variations and the other two code expression

variations). For pose transformation, an inverse mapping from the parameter space

to the representation space is approximated by a regularization network [161] with

tensor products of piece-wise linear splines (synthesis network). These networks

are trained to account for facial appearances of a single person from a number of ex-

ample views. The shape of these example views, as well as test views, are normalized

to a reference face by a coarse-to-�ne gradient-based optical ow algorithm. They

successfully showed a reconstruction of an input face by an analysis-synthesis

chain, a sequential application of the analysis and synthesis networks, using an

output of the analysis network as an input of the synthesis network. Moreover, the

model was applied to generate a model view of one person with pose and expression

extracted from another person by connecting an analysis network learned for the

latter person and a synthesis network learned for the former person. A limitation
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of this work is that they only considered pose variations along one axis (horizon-

tal rotation). Furthermore, their model requires �nding pixel-wise correspondences

between di�erent poses, which is often a di�cult task as discussed in section 2.2.2.1.

The general advantage of this approach is that, given a proper distribution of

training samples, it provides a continuous transformation between the two parame-

ter spaces, whereas the discrete-transformation approach covers the viewing sphere

only discretely. Moreover, this approach is data-driven; the learning algorithm does

not require training samples with a speci�c pose as is the case for the discrete-

transformation approach. This implies a solution to the problem of manual sample

collection, however it also suggests that the quality of a learned transformation

directly relies on the distribution characteristics of the training samples. An open

problem in the continuous-transformation approach is how to approximate this map-

ping function which is often non-linear. As discussed in section 2.2.1.4, non-linear

learning algorithms which can achieve high approximation accuracy have a tendency

to over�t training samples. This over�tting decreases the generalization capability

of a model. An alternative is to use a linear learning system, however, the linear

assumption often limits the approximation accuracy.

2.2.3 Pose-Invariant Face Recognition

Most studies in the face recognition literature address the issue of pose-invariance at

least to a certain extent since it is one of the most obvious di�culties for automating
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the task. As mentioned earlier, the pose transformation for providing model views

of speci�c head poses is originally motivated by this need for making existing iden-

ti�cation systems robust against the pose variation. In this section, we provide a

review of such studies from the viewpoint of identifying individuals from 2D facial

images. Because literature on this topic is vast, this review only concerns a number

of characteristic studies. Surveys of face recognition systems in general (e.g., Samal

and Iyengar [173], Valentin et al. [199], and Chellappa et al. [38]) are recommended

for supplemental examples. It is also worth noting that the term, pose-invariant,

has been used very loosely in the literature and most of the previous recognition

systems are not completely invariant against pose variation. Although other terms

such as pose-insensitive may be better suited for describing these systems, we

choose to use this term, even for these non-invariant systems, in order to maintain

consistency with the literature.

2.2.3.1 Di�erent Approaches

We classify a number of previous methods into three categories: single-view,

multiple-view, and non-nearest-neighbor approaches. They are characterized

by a general framework for realizing the identi�cation process and also by a speci�c

method used for accommodating the pose variations.

The �rst two approaches are based on a template-based nearest-neighbor clas-

si�cation. These approaches postulate that each known person is associated with
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a stored template (or a set of templates) which is directly comparable to a prepro-

cessed input, and that there exists a reasonable metric which gives similarity mea-

sures between the inputs and templates. In the framework of the nearest-neighbor

classi�cation, an identity associated with the template most similar to an input gives

an estimate of the input's identity. In order to make a system of this framework

insensitive to the pose variations, head poses of the inputs and templates need to be

aligned.

The �rst two approaches di�er from each other in the number of templates used

to represent each known person. The single-view approach represents each known

person by a single view of the person, while the multiple-view approach represents

each known person by multiple views. Because of this di�erence, the two approaches

achieve the pose alignment between the inputs and templates in a di�erent manner.

For clarity, see �gure 5.1 which illustrates these two approaches.

The last approach utilizes other classi�cation methods such as a multivariate non-

linear function learned in an arti�cial neural network. Such a function can be learned

from a number of training samples for various individuals in order to classify the

identity of arbitrary inputs. In order to make a system of this approach insensitive

to the pose variations, the structure and/or learning algorithm of a system need

to be modi�ed such that the outputs of the learned classi�cation function are not

inuenced by the pose variations.
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2.2.3.2 Single-View Approach

The single-view approach is based on a template-based nearest-neighbor classi�ca-

tion, in which each known person is represented by a single-view template. The head

pose of these templates are usually assumed to be constant and called a canonical

pose. In this approach, each test sample undergoes a pose transformation that syn-

thesizes a canonical view of the test sample. This can be viewed as a normalization

of various head poses of test samples into a �xed known pose. In order to automate

this type of recognition system, it is necessary to estimate head poses of each test

sample.

Maurer and von der Malsburg [126] demonstrated a recognition system of this

approach with the Gabor jet-based single-view representation. Each test sample

with various but known head poses were transformed to a frontal pose as the canon-

ical pose. As described in section 2.2.2, their pose transformation utilized a linear

class-speci�c discrete-transformation of Gabor jets with di�erent head poses as a

function of a crude 3D structure of generic faces learned from pairs of training sam-

ples. The input's head poses were assumed either given a priori or estimated by

their 2D geometric transformation-based system [127]. They reported 53% average

correct-identi�cation rate using 90 known person pairs of the FERET database with

frontal and roughly �45 degree rotated poses along one depth-rotation axis. This

average correct-identi�cation rate improved the rate of a system without the pose

transformation by 17%.
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Lando and Edelman [112] proposed a pose-invariant face recognition system

based on a class-speci�c discrete-transformation in an RF representation space. As

described in sections 2.2.1.4 and 2.2.2.1, their RBF network-based system classi�ed

an input head pose exploiting high frequency information of the RF representation,

and transformed the input view to a �xed canonical pose by an average di�erence

vector between prototype pairs of the input and canonical poses. The identi�ca-

tion process was realized by another RBF network utilizing a low frequency RF

representation. This network was trained to identify faces with the canonical pose.

With 18 known persons with �34 degree 1D depth-rotation, the average correct-

identi�cation rate was 76% when the bilateral symmetry assumption was used to

increase the number of training samples. Note that this system can also be catego-

rized as a non-nearest-neighbor system since the identi�cation process is realized by

the multivariate function approximated by the RBF network.

A number of studies employed a generic 3D facial structure model to trans-

form input views to the canonical pose. In a pose-invariant face recognition system

reported by Imaoka and Sakamoto [100], each known person was represented by

6 raw-image-based localized templates. Given a 3D head pose of an input, these

templates were geometrically transformed to templates of a frontal pose using cor-

respondences between the rotated 3D structure and 2D views. They reported 84%

average correct-identi�cation rate with a database of 100 known persons with 1D
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depth-rotation between 0 to 90 degrees. Zhao and Chellappa [223] reported a simi-

lar approach using 3D model-based image warping for transforming input views of a

known pose into a frontal head pose. Their system which combined the PC-subspace

method and LDA resulted in 66.7% average correct-identi�cation rate using 42 pairs

of the FERET database which was a subset of data used in Maurer's study [126].

The subspace models described in section 2.1.2 can be used to provide a pose-

invariant face description, whose e�ect is similar to transforming input views of

arbitrary head poses to the canonical pose. Pentland et al. [149] proposed a pose-

invariant face recognition system based on a view-speci�c eigenspace. Their

system consists of a set of subspace models (as system knowledge), each of which

describes a speci�c pose of faces. Using the distance-from-face-space metric, a view-

speci�c eigenspace, which describes the input view of an arbitrary pose most accu-

rately, is found in the nearest-neighbor manner. The input view is then encoded by

this pose-aligned view-speci�c eigenspace, followed by the eigenface-based identi�-

cation process shown by Turk and Pentland [195].

An advantage of this approach is the relatively small size of the database of known

persons. Because each known person is represented by only a single template, a sys-

tem can be compact which is a favorable characteristics towards developing a scalable

and/or real-time recognition system. However, the shortcomings of the class-speci�c

discrete-transformation, needed to align head poses, hurt this approach. The trans-

formation needs to be class-speci�c because inputs without identity information are
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subjected to this transformation. The nature of the discrete-transformation poses

a tradeo� between the size of database and the accuracy of the transformation.

Because of these shortcomings, previous studies in this approach reported either

relatively poor accuracy or experimental results in a very limited setting.

2.2.3.3 Multiple-View Approach

The multiple-view approach is based on a template-based nearest-neighbor classi-

�cation, in which each known person is represented by multiple templates of the

person in di�erent poses. If the head poses of stored templates for each known per-

son cover the viewing sphere su�ciently, each test sample is guaranteed to �nd a

template with a matching head pose. With the fair assumption that a pair of pose-

aligned samples gives a higher similarity than a pair of samples with di�erent poses,

an identi�cation system which is insensitive to the pose variation can be constructed

based solely on nearest-neighbor classi�cation. Therefore, in theory, the pose esti-

mation and transformation of inputs or templates are not necessary for automating

a recognition system of this type.

The simplest way to realize a face recognition system of this approach is to

manually prepare multiple-view templates for every known individual. Beymer [15]

demonstrated this type of system based on a correlation metric of raw-image-based

single-view representation. Each input view was geometrically registered to the
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known person's templates by using locations of eyes and nose which were automati-

cally located by his system. Their experiments with 62 unknown persons with �30

degree 2D head rotations resulted in 98.7% average correct-identi�cation rate.

As discussed in the introduction, however, manual collection of multiple-view

templates is often impractical because the number of all possible views is simply

too large. This obvious disadvantage motivated an approach which utilizes a pose

transformation synthesizing the multiple-view templates from a single view.

Beymer and Poggio [16] demonstrated a recognition system which utilized a

multiple-view database synthesized from a single-view database of a canonical pose

by using a technique which is already described in the context of pose transformation

in section 2.2.2.1. A depth-rotated pose was used as a canonical pose in order to

reduce the number of target poses by using a bilateral symmetry of facial structure.

Class-speci�c discrete-transformations were constructed for 9 �xed poses, in order

to generate 15 di�erent views for every known individual. This study compared

the discrete-transformations based on parallel deformation algorithm and the linear

class algorithm [204] described in section 2.2.2. With a database of 62 known persons

with �30 degree 2D head rotations, their experiments showed that a system with the

parallel deformation (85.2%) outperformed one with the linear class transformation

(73.5%). This is perhaps because the parallel deformation system can preserve

individual peculiarities such as facial moles. It is also worth mentioning that either
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system could not perform as well as the real-view system, indicating that errors of

the pose transformation process greatly inuence the identi�cation performance.

Such multiple-view synthesis from a single-view can also be realized by a number

of di�erent methods. Tsukamoto et al. [194] reported a face detection and pose

estimation system which utilized templates of various poses synthesized from a single

view of arbitrary persons. This multiple-view synthesis was carried out by rendering

a generic 3D facial structure model whose texture was mapped from known single-

views. Their study did not, however, address the identi�cation task. Georghiades

et al. [73] demonstrated a pose- and illumination-invariant recognition system based

on a 3D surface reconstruction from a set of training samples. Arbitrary images of

a convex Lambertian object was modeled by an illumination cone which was a

superposition of image models due to di�erent point-light sources. This illumination

cone was completely characterized by the product of the albedo with the inward

pointing unit normal at 3D surface points corresponding to each pixel-point. 3D

surface structure was reconstructed by iteratively improving the generalized bas-

relief transformation ambiguity. Once the surface was reconstructed, views with

arbitrary pose and illumination could be synthesized by ray tracing.

The above studies were based on the nearest-neighbor classi�cation framework,

in which each known person is associated with many templates that are directly

comparable to an input by a simple similarity metric. An obvious disadvantage

of these methods is that their known-person database becomes very large as the
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number of known persons increases. There are a number of studies which resolved

this issue by representing each known person by a compact representation model

trained by di�erent views of each individual. These systems can still be viewed

as a multiple-view approach by considering the multiple-view templates as training

samples for each individual model.

Murase and Nayar [133] proposed a pose- and illumination-invariant generic ob-

ject recognition system based on a parametric eigenspace. Their system consisted

of two di�erent eigenspaces, universal eigenspace and object eigenspace, which

corresponded to the basic and subordinate levels of object classes. Each di�erent

object was represented by a manifold (or a locus of di�erent views of an object)

in the universal eigenspace, which was interpolated by cubic splines. Their system

identi�ed a test object by �nding the object-speci�c manifold which minimized the

distance to a projection of the test sample in the eigenspace. This minimization

task was realized by a binary search algorithm or an RBF network. After �nding

the identity of test objects, the object was further analyzed for pose estimation

by an object eigenspace, which was trained for the speci�c object. Their experi-

ments with 4 known objects with complete 360 degree 1D depth-rotation resulted

in 100% correct-identi�cation rate when tested with views whose poses lie between

the training views.

Graham and Allinson [80, 79] demonstrated a face recognition system based on a

linear combination of prototypical manifolds. They trained an RBF network which
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reconstructed a full manifold representation in a universal eigenspace from a single

view of an arbitrary pose. The universal eigenspace was learned by images of 20

people whose head poses varied between 0 and 90 degrees along one depth-rotation

axis in 10-degree intervals. A virtual manifold of an unknown person was then

interpolated by 9 manifolds derived from 9 di�erent views of the person. Their

system resulted in a 93.1% average correct-identi�cation rate with a database of 20

known persons.

Wieghardt and von der Malsburg [210] recently proposed a learning method for

constructing a parametric eigenspace representing an object without using explicit

knowledge of 3D head angles. They utilized a similarity-based clustering algorithm

to construct view-speci�c local eigenspaces. These local eigenspaces were then pieced

together in a global coordinate space by using multi dimensional scaling (MDS).

Their experiments showed a successful construction of a global space for a speci�c

object which maintained the topology of pose variations. Their study did not report

the identi�cation performance of their system. Tenenbaum et al. [186] also pro-

posed a related learning method utilizing a combination of PCA and MDS (Isomap

algorithm), which addresses the same problem. This study demonstrated a success-

ful application of their algorithm to facial images, hand images, and hand-written

numbers.

In summary, a study by Beymer showed that the simple multiple-view system

with templates of recorded samples performs very well against pose variations. In
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terms of accuracy and identi�cation performance, the multiple-view system is pre-

ferred to the single-view system. However, the obvious shortcoming of this approach

is that the size of the known-person database becomes enormous. A number of stud-

ies attempted to resolve this problem by constructing a multi-view database from

a single-view database by a class-speci�c discrete-transformation. These methods,

however, have not been too successful in terms of their identi�cation performance

because of the limitation of their pose transformation accuracy.

A subspace-manifold-based system by Murase and Nayar gave an alternative, in

which each known person was represented by a compact and continuous model in a

form of a continuous-transformation. In this method, the models can be relatively

accurate because each model captures a subordinate level transformation which is

expected to behave better than the class-speci�c transformation for the generic face

class. The continuous nature of the model also helps to improve its accuracy. The

two systems based on the subspace-manifold, however, utilized non-linear interpo-

lation methods for constructing the continuous-transformation. Therefore, their

identi�cation process required an expensive search in parameter space, which was a

shortcoming of their methods.

Studies by Wieghardt and Tenenbaum raised an interesting point questioning

a role of the ground-truth pose information. Many systems which explicitly ad-

dress pose variations consisted of pose-speci�c models learned or constructed with
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ground-truth 3D pose information for each training sample. Their studies, in con-

trast, showed the possibility of constructing a parametric eigenspace without such

ground-truth information. Another study by Tenenbaum [185] also addressed the

same point using a di�erent approach which attempts to solve a two-factor prob-

lem: separating two di�erent types of information such as identity and pose directly

from facial images by using a factorization method similar to the one by Tomasi and

Kanade [190]. These considerations for the cases in which ground-truth parameter

information is not available is theoretically signi�cant and very attractive in certain

application scenarios.

2.2.3.4 Non-Nearest-Neighbor Approach

The previous single- and multi-view approaches are based on the nearest-neighbor

classi�cation framework for realizing identi�cation. This section presents a few sam-

ples of studies based on multivariate functions approximated by arti�cial neural

networks

Duvedevani-Bar et al. [57] proposed a pose- and expression-invariant face recog-

nition system based on their similarity-based object representation method [58, 56],

using an ensemble of prototype RBF networks and the Gabor jet-based single-view

representation. Their system consisted of 10 prototype networks, each of which was

trained to output a constant for di�erent views of a speci�c person and lower val-

ues for di�erent people's faces. A vector of these networks' outputs described the

proximity of a face to the 10 prototypical faces. For identi�cation, an input view
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with an arbitrary pose was �rst subjected to the 10 prototype networks, resulting

in an output vector. Next, the 10 coe�cients of the output vector were subjected

to a weighted summation whose weights were pre-computed for each known person.

A person associated with the weights which resulted in the highest sum gave an

identity estimate of the input. These individual-speci�c weights were computed as

an inverse of an output vector from each person's frontal view with a neutral expres-

sion by the same 10 prototype networks. Their experiments with 18 known persons

of 14 discrete poses within �34 degree 1D depth-rotation resulted in 69% average

correct-identi�cation rate.

Huang et al. [95] demonstrated a pose-invariant face recognition system based on

an ensemble of view-speci�c backpropagation 3-layer networks. Their system was

constructed with 2 levels. The �rst level consisted of 4 view-speci�c modules, each

of which was a combination of a view-speci�c eigenspace and a 3-layer backpropa-

gation network which models transformation from the eigen manifolds to identities.

Another combinatorial neural network was used on top of these view-speci�c mod-

ules in order to achieve the �nal identi�cation. Their experiments with a database

of 5 known persons with �30 degree 1D depth-rotation resulted in 98.7% average

correct-identi�cation rate.

Bartlett et al. [10] reported two neural network-based face recognition systems.

The �rst system was based on ICA of a training image ensemble described in sec-

tion 2.1.2.3. Their experiments with 40 known persons with 5 discrete poses of �30
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degree 1D rotation showed that the ICA system performed slightly better (87%)

than the PCA system using the same data (84%). The second system explicitly

utilized the temporal continuity of visual stimuli, in which patterns presented in the

proximal time were more likely to be associated with each other. The continuity was

modeled by an attractor network which consisted of a competitive Hebbian learning

network with a temporal low-pass �lter. Their experiments with 20 known persons

resulted in 73% correct-identi�cation rate while the ICA system resulted in 89%

using the same database.

Gong et al. [75] also reported a face recognition system utilizing temporal conti-

nuity information for real-time facial analysis from continuous video input. In their

system, each input sample was represented by a vector of its similarities to a set of

pose-varying prototype templates generalized over di�erent people. Both pose esti-

mation (as described in section 2.2.1.3) and face identi�cation were formulated as

a maximization of likelihood functions which included a temporal continuity term.

Their experiments with prototype templates of 11 discrete poses (20 degree interval

between �90 degrees of 1D depth-rotation) for 11 di�erent persons resulted in 97%

average correct-identi�cation rate when tested with 6 known persons.

Face recognition systems in this approach are restricted by the di�culty of scal-

ing their neural network-based systems to the large number of known persons and

various 3D head poses (curse of dimensionality). As the number of unknown
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persons increases, the learning of such non-linear networks becomes extremely dif-

�cult. A common compromise for this type of system is to consider only a subset

of the 3D rotation dimensions or to crudely discretize the viewing sphere into a few

number of prototype views. Therefore, these systems often result in poor accuracy

in terms of processing the pose information, or poor practicality. A simple function

approximation approach such as the one used by Huang et al. also poses di�culties

for incrementally introducing new persons into the system. Each time a new person

is added, the system needs to be re-learned from scratch. In contrast, in the case of

template-based nearest-neighbor approach, this can be done by simply adding a new

single-view template into a known-person database. A study by Duvedevani-Bar et

al. showed that this problem could be solved by describing a novel view by a com-

bination of prototypes, however their identi�cation performance is still suboptimal

due to its discrete handling of pose variations.

2.2.4 Summary of Methods for Processing Faces with Pose

Variations

A number of recently proposed systems for pose estimation are classi�ed into four

types: 1) 3D model-based methods, 2) 2D pictorial template-based methods, 3) 2D

geometric transformation-based methods, and 4) general transformation-based meth-

ods.
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The 3D model-based method is perhaps the most rational choice for this task,

since pose estimation is formally a problem of 3D geometry. There is the least ambi-

guity in the estimation process in comparison to other types of method. This method

is, however, limited by an overhead for 3D model construction as discussed in sec-

tion 2.1.4. The state-of-the-art systems in this method use either special hardware

or expensive algorithms for reconstructing 3D structure from 2D views. The special

hardware is not widely available and the 3D reconstruction algorithms often require

tedious manual steps, while automatic algorithms are unstable and suboptimal in

accuracy. Moreover, this method is intrinsically limited to this special case of pose

and does not constitute a general method for handling other types of image variation.

Therefore, it is still highly desirable to realize the task of pose estimation

based on 2D sample views. The 2D pictorial template-based method classi�es

an input pose by a template matching algorithm with templates based on pictorial

features. These methods are limited by using pictorial features, which are sensitive

to illumination variations, and furthermore the 2D template-based approach pro-

hibits continuous estimation of all possible head poses (classi�cation rather than

continuous estimation). On the other hand, the 2D geometric transformation-based

method which is based on a restricted three point model �tting algorithm improves

the two disadvantages of the 2D pictorial template-based methods by using geomet-

ric features. Disadvantages of these methods are, however, that strict assumptions
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are required to apply the �tting algorithm in 2D and that the accuracy of the es-

timate is greatly inuenced by the precision of the landmark �nding process (see

section 2.1.1.1(a) for details). The general transformation-based method views the

task of pose estimation as approximating an explicit mapping function which directly

associates an input representation space to a pose parameter space. The transforma-

tion is general because it does not assume variation-speci�c analytical knowledge.

Both geometric and pictorial feature-based single-view representations have been

utilized in this method. Using the transformation model in section 2.1.2.4, these

methods provide a simple framework to make the pose variations explicit directly

from a single-view representation. An open problem of the transformation

model also applies to these methods; there is no clear answer for learning

the non-linear mapping function accurately without compromising the

generalization capability.

Comparing performances of the reviewed systems is di�cult since most studies

only provide qualitative performance analyses with either angular errors only along

one or two rotation dimensions within a small range of pose variations or rates of

classi�cation errors for coarsely sampled discrete head poses. Among a few stud-

ies which reported results of quantitative error analysis, the best average pose

estimation error was roughly 3 degrees to our best knowledge. The stereo-

based system by Xu and Akatsuka [220] reported an average angular error of 3.2

degrees for full 3D rotations within �10 degrees along each axis. The 3D shape
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model �tting system using an EM algorithm by Choi et al. reported approximately

3 degrees average error for full 3D rotations within �40 degrees along each axis. The

similarity-based method with Gabor magnitude images by Gong et al. reported 3.5

degrees for 2D depth-rotations within �90 and �40 degrees for yaw and tilt axes.

For many application scenarios, a pose estimation error of 3 degrees, as reported

at best, is still not adequate. The parametric eigenface system by Murase and Na-

yar [133] reported very high pose estimation accuracy with average angular errors of

1.0 and 1.5 degrees for known and unknown faces, respectively. However, this result

cannot be directly compared to the ones by the above systems because their study

consider only one rotation dimension and generic objects instead of faces.

Algorithms for pose transformation are categorized into two types: methods for

1) discrete-transformation and continuous-transformation. We reviewed four state-

of-the-art systems based on a class-speci�c discrete-transformation. These systems

realize the task of synthesizing novel views from a single-view example by exploiting

a transformation mechanism constructed on the basis of a priori knowledge. The

�rst two systems by Vetter and Beymer are based on the linear class theory with

separate shape and texture representations. Therefore, there are problems in select-

ing templates for the template-based linear subspace model. Moreover, the method

requires computation of pixel-wise correspondence �elds, which is an ill-posed prob-

lem. Maurer's system is based on an analytical linear jet transformation with 3D
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normal angles of facial landmarks learned from 2D template sets. Because of its lo-

cally planar face assumption, the resulting jet transformation is limited in accuracy.

Lando's system exploits a class-speci�c discrete-transformation in an RF representa-

tion space, implemented as an average of di�erence vectors between prototypical RF

feature vectors at two poses. This approximation by an average also limits accuracy

of the system.

An inherent limitation of these systems lies in the fact that they only

realize discrete-transformations. A discrete-transformation covers the viewing

sphere only discretely and requires training samples with speci�c head poses, which

makes the sample collection procedure a di�cult task requiring collaboration of the

subjects.

Realization of full continuous-transformation solves these problems, because the

resulting pose transformation can cover the viewing sphere continuously. An open

problem is how to approximate the mapping function accurately without

compromising the generalization capability. We are aware of only one system,

proposed by Beymer, which exploited this approach with RBF networks.

A number of face recognition systems robust against the pose variation are clas-

si�ed into three approaches: 1) single-view approach, 2) multiple-view approach, and

3) non-nearest-neighbor approach.

In the single-view approach, the size of the known-person database is relatively

small, which is a favorable characteristic towards scalability and the real-time speed
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of a system. However, the class-speci�c discrete-transformation, needed to align head

poses, limits the accuracy of this approach. In the multiple-view approach, on the

other hand, the very large size of a known-person database becomes a problem, while

the identi�cation performance of the multiple-view approach tends to be

better than the single-view approach. Solutions with class-speci�c discrete-

transformations to derive pose-varying views from a given single view do not seem

to give good identi�cation rate. PC-manifold-based (parametric eigenspace) sys-

tems based on individual-speci�c continuous-transformations give a solution to this

problem by modeling each known individual by a compact and continuous model.

These systems still require an expensive search for pose estimation and facial iden-

ti�cation because of its use of non-linear interpolation. The non-nearest-neighbor

approach often su�ers from the curse of dimensionality problem which limits system

scalability. Systems of this type commonly consider only a subset of the 3D rotation

dimensions or crudely discretize the viewing sphere into a small number of proto-

type views, resulting in poor accuracy, or in di�culty in constructing a system for

a realistic scenario.

Table 2.1 summarizes the identi�cation performance of face recognition systems

reviewed in this chapter. The �rst three columns of this table give system de-

scriptions. They denote 1) system type, 2) authors of the study, and 3) year of

publication, respectively. The codes for system type, SV, MV, and NN, denote the

single-view, multiple-view, and non-nearest-neighbor approaches, respectively. The
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Sys Authors Year Rate DOF #Pos Range #Per

SV Maurer-Malsburg [126] 1995 53% 1D 2 �45� 90

SV Lando-Edelman [112] 1995 76% 1D 5 �34� 18

SV Imaoka-Sakamoto [100] 1999 84% 1D 8 0-90� 100

SV Zhao-Chellappa [223] 2000 67% 1D 2 �45� 42

SV Pentland et al. [149] 1994 87% 1D 9 �90� 21

MV Beymer [15] 1993 99% 2D 15 �30� 62

MV Beymer-Poggio [16] 1995 85% 2D 15 �30� 62

MV Vetter-Poggio [16] 1995 74% 2D 15 �30� 62

MV Georghiades et al. [73] 2000 97% 2D 117 �24� 10

MV Murase-Nayar [133] 1995 100% 1D 72 360� 20

MV Graham-Allinson [80] 1998 93% 1D 10 0-90� 20

NN Duvedevani-Bar [57] 1998 69% 1D 5 �34� 18

NN Huang et al. [95] 2000 99% 1D 4 �30� 5

NN Bartlett(ICA) [10] 1997 87% 1D 5 �30� 40

NN Bartlett(AtNet) [10] 1997 73% 1D 5 �30� 20

NN Gong et al. [75] 1998 97% 1D 11 �90� 11

Table 2.1: Comparison of Pose-Invariant Face Recognition System's Performance

last �ve columns of this table summarize experimental results. They denote 4) the

best correct-identi�cation rate, 5) the number of rotation dimensions considered, 6)

the number of the discrete head poses used, 7) the range of pose variation in the

samples, and 8) the number of known persons in the database.

Comparing performances of these systems is di�cult since the studies use di�er-

ent databases and experimental settings. However, it is obvious that most of the

studies considered only a subset of the 3D rotation dimensions and/or a

rather narrow range of pose variations. Numerical experiments of 1D pose vari-

ation cannot provide meaningful insights about pose generalization in a full 3D head

angle space. In terms of the pose variation range, the reviewed systems were limited
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to either a relatively wide pose range only along one rotation dimension or a narrow

range along one or two rotation dimensions. The former, using very dense sets of

pose variation samples, tend to result in a high correct-identi�cation rate, however

their generalization capability is still questionable because of the above argument.

The latter impose too strict limitation on the variations since pose variations of a

freely moving human head often surpass these ranges. These observations of the

previous studies urge us to investigate our recognition system for a much

wider pose range in full 3D rotation dimensions. This need for increasing

the range and dimensionality of the variation parameter space also agrees with our

goal of realizing a widely applicable method, for which its parameter space becomes

intrinsically high-dimensional.

2.3 Discussion: Why Our Approach?

2.3.1 Open Problems

The review of literature in this chapter revealed that the state-of-the-art systems for

the analysis and synthesis of human faces with pose variations have the following

open problems;

1. The discrete-transformation.

(a) Covers the viewing sphere only discretely which leads to poor overall

accuracy.
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(b) Sampling points connected by a transformation are chosen manually

rather than learning from samples.

(c) Requires operator assistance and subject collaboration for acquiring train-

ing samples with a speci�c head poses.

2. Suboptimal accuracy and limited pose variation.

(a) Only a few report systematic performance analysis of pose estimation

systems.

(b) The best performance of pose estimation in the literature is not high

enough.

(c) Accuracy of pose estimation is inevitably inuenced by accuracy of �nding

pixel-wise correspondences or facial landmarks in 2D views.

The main problem of many systems in the literature stems from the discreteness of

the coverage of 3D head angle space (1, 1a). Such systems are rigid: they require

an enormous number of templates or discrete-transformations in order to accurately

cover the complete viewing sphere. In reality, their accuracy is often compromised

by only using a small number of templates or transformations. Moreover, these rigid

systems are bounded to be a variation-speci�c solution, confronted by the curse of

dimensionality problem, when considering other types of variation. This discreteness

also makes it di�cult for the systems to be data-driven (1b, 1c). The discrete

sampling points in pose parameter space are often determined a priori, which implies
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that samples with speci�c head poses need to be collected. This imposes operator

assistance and subject collaboration, preventing the systems from being on-line and

increasing the labor for sample collection. In practice, many learning systems su�er

tremendously from this type of di�culty. For pose transformation, several studies

have utilized the continuous-transformation which mitigates the above problems,

however none of them addressed full three DOF of 3D rotations.

For pose estimation, many of the reviewed studies utilized geometrical features

for characterizing facial information from 2D views. This is perhaps a natural choice

since the problem of pose estimation can be formulated strictly as a problem of 3D

geometry. The main disadvantage that is innate in this type of feature is sensitivity

to errors of feature localization (2c); �nding the accurate position of features in 2D

images is not a trivial task. In practice, the state-of-the-art automatic systems for

this task (e.g., Wiskott et al. [215]) are often less accurate than pixel width due

to image digitization and inuences from all sorts of image variations. 2 Because

of this unavoidable inaccuracy in feature localization, algorithms which derive pose

information from geometrical features need to be robust against input errors. Most

of studies reviewed in this chapter did not address this problem. Another pitfall of

these systems is that a usage of analytical knowledge of rotation variation makes

it di�cult for them to be data-driven. Therefore, they also tend to be a variation-

speci�c solution only applicable for head pose variations. Furthermore, most systems

2Note that the Wiskott's system in theory achieves sub-pixel accuracy, although the above
argument still holds when it is applied for practical problems.
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in the literature are incomplete; they are often limited in the number of DOF or the

range of the angle space (2). The performance of the systems has not been analyzed

rigorously nor with high accuracy (2a, 2b).

There will be further discussion of the issues of pose-invariant face recognition in

chapter 5, in which our proposed method is compared with several methods derived

from the previous studies reviewed in this chapter.

2.3.2 Our Approach

In the introduction, we discussed how a compact, generalizable, data-driven and

exible representation model parameterized by 3D head angles can solve the prob-

lems of processing pose variations in 2D facial images. We furthermore proposed a

method of implementing the model by LPCMAP model (Linear Principal Compo-

nent MAPing functions), a combination of two linear systems; 1) a PC-based linear

subspace model and 2) linear mapping functions between the face representation

and 3D head angle spaces. The PC-based linear subspace model (hereafter PC-

LSM) was described as a 2D model-based approach for multiple-view representation

in section 2.1.2.2. This representation model provides us with a compact and contin-

uous (exible) LSM that is learned from sample statistics (and is thus data-driven).

However, it does not provide explicit physical parameterization. On the other hand,

the linear mapping function (hereafter LMF) is equivalent to the transformation

model in a simple linear form described in section 2.1.2.4. It provides a platform
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for the explicit parameterization missing in the PC-LSM, by learning a mapping

function between the two vector spaces. As a format of single-view representation,

the LPCMAP model utilizes separate representations for shape and texture infor-

mation. Shape and texture representations are related by a linear transformation

model capturing the correlation between them, while only the shape representation

based on geometrical features is related to head angles for processing pose variations.

How does this proposed system help to solve the open problems described above?

As discussed in the introduction, the nature of the data-driven exiblemodel innately

solves the discreteness problem by continuously covering 3D head angle space. This

leads to improved accuracy and generalizability of the system while reducing its size.

Moreover, it has the advantage of reducing labor during sample collection, enabling

the system's extension towards an on-line learning system.

The design of the LPCMAP model as a combination of two linear models derives

advantage from the models' nature. While the PC-LSM provides the core of a

model which satis�es the criterion of being compact, generalizable, data-driven and

exible, the LMF achieves the task of pose estimation and pose transformation

directly in terms of the absolute values of 3D head angles. The combination then

provides us with a continuous-transformation instead of a discrete-transformation

whose disadvantages were discussed previously.
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The use of the transformation model, however, poses an open problem, namely

how to approximate the mapping function accurately without compromising gen-

eralization capability. A mapping between head angles and facial appearances is

non-linear in general. However, we assume as our working hypothesis that this map-

ping can be linearly approximated. See �gures 1.1 and 1.2 for illustrations of this

linear idea. We prefer linear approximations to non-linear ones because of their

robustness against errors in inputs and their computational simplicity. Moreover,

linear approximations have the potential for generalization while avoiding over�tting

statistical peculiarities of training samples that are not innate characteristics of the

objects to be learned.

Decomposition of shape and texture information from 2D images is motivated

by the fact that the two types of information have di�erent advantages. Shape

information based on geometrical features is suitable for pose processing. Ullman and

Basri [197] showed that the shape information based on image coordinates of facial

landmarks is su�cient to recover the 3D pose of faces. On the other hand, texture

information based on pictorial features is suitable for identity processing. Studies by

Brunelli and Poggio [33] and by Craw et al. [49] showed that face recognition systems

based on texture representation outperform ones based on shape representation.

The LPCMAP model as a representation model should bene�t from this shape and

texture decomposition not only for the accuracy of pose processing but also for that

of recognition tasks.
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Lastly, the data-driven and exible nature of the proposed model facilitates its

extension to other types of variation. As discussed in the introduction, our long-

term goal is to realize a simple uni�ed framework which extracts all possible image

variation sources. Although our focus in this study is limited to pose variation,

it would not be a success if our solution cannot be extended to other variation

sources. The nature of our model assures that it does not depend on the speci�cs

of our particular problem (e.g., view-invariant features) thus does not pre-suppose

theoretical analysis of the problem (e.g., in terms of geometry, optics, facial muscle

physiology, etc). By this emphasis, our model improves the previous studies reviewed

in this chapter whose applicability to other types of variation is limited.

2.3.3 Advantages of Single-View Representation

by 2D Gabor Jets

As described in the next chapter, we use 2D Gabor jets as representation of

localized texture information. This representation scheme has been used for the

state-of-the-art face recognition system whose performance has been proven by the

FERET tests (Phillips et al. [157, 153, 152, 156, 154, 155]). There are also a number

of psychological studies which support the system as a biological model of human

face processing (Kalocsai et al. [104, 105], Biederman and Kalocsai [20], Hancock et

al. [85], Bruce et al. [27]). Our model with the 2D Gabor jet-based texture represen-

tation is therefore expected to improve recognition performance of the previous pose
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processing systems that are based on features with raw pixel-values. Another ad-

vantage of the Gabor jet-based representation is that it allows for a spatially sparse

graph representation. Although each jet is localized at a single pixel, it captures

contrast variations within a region surrounding the center pixel. Therefore, only a

few jets sampled at sparse locations are su�cient to represent the whole face. This

frees our system from the di�culty of �nding pixel-wise correspondences used in

other pose processing systems.

2.3.4 Related Work

There are a few previous studies that are closely related to our approach. A study

of 3D object recognition by Murase and Nayar [133] addressed the advantage of the

continuous coverage of the viewing sphere by parameterized, compact, data-driven,

and exible models. They proposed the parametric eigenspace which models pose-

dependent manifolds (trajectory of pose varying samples) in PC-spanned subspaces

by a cubic spline technique. Our LPCMAP model can also be viewed as a type

of the parametric eigenspace but with linear systems while they use a non-linear

(cubic-spline) system to derive the explicit mapping which connects representations

to 3D pose angles. The di�erences of their system from our approach include; 1)

their system targeted generic 3D objects while we focus on faces speci�cally, 2) only

1D depth-rotation was considered in their experiments while our model accounts

for the full 3D head rotations, 3) an issue of generalization to unknown poses was
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not seriously investigated, 4) their system was entirely based on image-based global

texture representation while both shape and texture information are utilized for dif-

ferent tasks in our approach, and 5) manifolds in PC subspaces were modeled by a

non-linear system while our approach uses a linear map for the same purpose. As

discussed in the introduction, we favor linear models for parameterizing the man-

ifolds, emphasizing the generalization capability of our systems. Moreover, their

non-linear interpolation of the PC-manifolds makes the process of pose estimation

more complicated requiring an expensive exhaustive search in a potentially very

high-dimensional parameter space. Regardless of these di�erences, their study suc-

cessfully showed very accurate pose estimation and object identi�cation. Therefore,

their results can serve as a bench mark of our numerical experiments which will be

described in later chapters.

Beymer et al. [17] proposed a system based on a continuous-transformation

learned by RBF networks which is capable of pose estimation and transformation.

This is another implementation of a data-driven exible model parameterized by

pose variations. Their approach is di�erent from ours in that; 1) only 1D depth-

rotation was considered in their experiments while our model accounts for the full

3D head rotations, 2) the issue of generalization to unknown poses was not seri-

ously investigated, 3) their system su�ered from the di�culty of �nding pixel-wise

correspondences for shape normalization, 4) head poses were estimated based on an

image-based texture representation while pose estimation in our approach is based
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on shape information, 5) their study did not address the task of person identi�ca-

tion using the model as a representation model, and 6) our model utilizes localized

Gabor jet features for representing texture. We expect our speci�c model design,

with geometrical features and a linear 2D model-based approach, helps to improve

Beymer's algorithm in performance of pose estimation. For pose transformation,

their focus was rather on computer graphics and animation applications which are

out of the scope of our current investigation.

Another related study by Lanitis et al. [115] showed that their PC-LSM-based

system could perform pose estimation using a simple linear regression of shape model

parameters. Although their system consists of a combination of two linear systems

that are very similar to our model, their approach di�ers in that; 1) their study did

not attempt to construct a representation explicitly parameterized by physical vari-

ations. 2) their study did not address explicitly the problem of pose transformation

parameterized by 3D head angles, 3) only 2D depth-rotations were considered in

their experiments while our model provides the full 3D head rotations, 4) an issue of

generalization to unknown poses was not investigated at all, and 5) a speci�c PC for

each rotation dimension was manually picked while our model is purely data-driven

in that we do not give any bias to speci�c PCs, Although their PC-LSM-based

system provides a well-structured architecture for various tasks using facial informa-

tion, the aspect of head pose variation was not fully investigated in their study. Our

approach is expected to improve the accuracy of processing head pose variation.
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Chapter 3

Description of the LPCMAP Model

In this chapter, we describe the LPCMAP model (Okada et al. [140]) introduced in

the previous chapters as an implementation of a compact, generalizable, data-driven

and exible representation model parameterized by 3D head angles.

3.1 De�nition of Our Problem

Let a pair of vectors (~vm; ~�m) denote a training sample of our model, where ~vm is the

m-th vectorized facial image and ~�m = (�m1 ; �
m
2 ; �

m
3 ) is the vector of 3D head angles

of the face and we suppose that we have M training samples consisting of a set of

the M pairs,

f(~v1; ~�1); ::; (~vm; ~�m); ::; (~vM; ~�M)g: (3.1)
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Our focus is to �nd a mapping function between ~v and ~� from the M training

samples,

A : ~v 7! ~� (Analysis)

S : ~� 7! ~v (Synthesis):

(3.2)

An analysis mapA gives an estimate of 3D head angles ~̂� = A(~v) while a synthesis

map S synthesizes a vectorized facial images ~̂v = S(~�).

Given the above training samples, we can formulate two error functions, ERR

and ERR, of the mapping functions A and S,

ERR =
MX

m=1

j~�m � ~̂�mj+
MX

m=1

j~vm � ~̂vmj; and (3.3)

ERR =
1X
i=1

j~�i � ~̂�ij+
1X
i=1

j~vi � ~̂vij; (3.4)

where the (~vi; ~�i) are samples, (~vi; ~�i) =2 f (~v1; ~�1); ::; (~vm; ~�m); ::; (~vM; ~�M )g;8i. ERR

denotes an average error of estimates for training samples given as ground-truth,

while ERR denotes an average error of all the samples in the same object class that

are not included in the training sample set.

ERR represents the accuracy of the mapping functions; how well the learned

functions approximate an individual transformation of each training sample. On

the other hand, ERR represents the generalization capability of the mapping

functions; how well the learned functions approximate a general transformation of
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the object class between facial images and their corresponding 3D head angles. These

error functions provide the tools to guide our design of the mapping functions.

Obviously, our wish is to learn mapping functions which minimize both errors. In

reality, however, it is impossible to compute ERR because it is impossible to collect

an in�nite number of samples. Therefore, we are forced to approximate ERR by

ERR
0
which is an average error of a �nite number of I test samples,

ERR
0
=

IX
i=1

j~�i � ~̂�ij+
IX

i=1

j~vi � ~̂vij: (3.5)

Therefore, our problem is reduced to the determination of a structural design

and learning algorithm of A and S which minimizes both ERR and ERR
0
together,

Find A and S which minimize ERR and ERR
0
together. (3.6)

Additionally, it is important to note here that the choice of training and test samples

directly inuences the validity of this criterion as in any problem which involves a

learning process. Therefore these choices need careful consideration to avoid over-

sampling from a small data domain.

3.2 Overview of the Model

In this section, we present an informal illustration of the LPCMAP model. As

proposed in the introduction, the LPCMAP model, consisting of a combination of
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Figure 3.1: Shape and Texture Decomposition

two linear models (PC-based linear subspace model and linear transformation model),

serves as a representation model that is compact, generalizable, data-driven, exible,

and parameterized by 3D head angles. The model realizes the bidirectional linear

mappings A and S learned from training samples (~vm; ~�m), providing a solution to

the problem 3.6.

As a �rst step, we determine a type of single-view representation. As discussed

in section 2.3, we decompose a facial image into shape and texture information.

Figure 3.1 illustrates this decomposition process.

First, a set of facial landmarks are located in a facial image. The �gure shows a

case of 20 landmarks. The localization of the landmarks can be achieved either by an

automatic system, such as a facial feature tracking system developed by Maurer and

von der Malsburg [127], or by manual labor with the aid of a user-interface system.
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At each landmark, information of local image contrast variation is extracted from the

image and stored in a jet. A jet is a representation of the texture in the local image

region around a landmark. It contains responses of multi-level multi-directional 2D

Gabor �lters and is computed by extracting image structure with a �lter bank

at a landmark location. A topological graph, whose nodes are located at the set of

landmarks and labeled by a set of corresponding jets, has proven to be one of the best

single-view representations of 2D facial images for the task of facial identi�cation

(Wiskott et al. [214] and Okada et al. [141], see section 2.1.1.1 for more details.).

Next, information of the facial shape and texture is decomposed. Shape infor-

mation is captured in the form of con�gurations of the set of facial landmarks. In

order to achieve translation invariance, 2D image coordinates of the landmarks are

transformed into an object-centered 2D coordinate system whose origin is set at

the center of gravity of all the landmarks. We call the array of object-centered

2D coordinates the shape representation of a facial image. On the other hand,

texture information is captured in the set of Gabor jets. We call the set of Gabor

jets the texture representation of a facial image. Note that the texture infor-

mation is organized in a set of local representations; each landmark has a separate

vector representation. In contrast, the shape information is organized in a global

representation; a face is represented by a single vector.

As a second step, the PC-based linear subspace models for shape and texture

representations are learned from training samples. Figure 3.2 illustrates this step.
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Figure 3.2: Shape and Texture Models

Given a set of facial images, the previous step results in a set of shape and tex-

ture representations. For the shape representations, a rectangular box in the �gure

denotes the set of the representations. Because of its locality, the set of texture

representations are organized at each landmark separately, resulting in a set of lo-

cal texture representations (jets) at each landmark. For the texture representation,

therefore, a rectangular box in the �gure denotes a local texture set for a single

landmark.

These sets of representations are subjected to principal component analysis (here-

after PCA), resulting in a set of principal components (hereafter PCs) for each rep-

resentation set. They are orthonormal and ordered by their corresponding variances.

We call PCs for shape representations shape PCs and PCs for texture represen-

tations texture PCs. A subset of the PCs can be treated as the basis of a vector

space whose dimensionality is reduced from the original representation space. This

subset of PCs constitutes a PC-based linear subspace model and is known to have
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Figure 3.3: Linear Subspace Model

optimal reconstruction accuracy in the least-square sense when the subset is spanned

by PCs whose variances (eigenvalues) are larger than those of any discarded PCs.

We call a linear subspace model with shape PCs the shape model, and the set of

linear subspace models, one for each landmark, the texture model.

The linearity of the PCs simpli�es the process of parameterizing an input sample

by a subspace model, as illustrated in �gure 3.3. An input is parameterized by pro-

jecting it onto the PCs of the model. We call a vector of the projection coe�cients

model parameters and this parameterization process linear projection. More

speci�cally, model parameters of the shape representation are called shape param-

eters and those of the texture representations are called texture parameters.

Reconstruction of a sample from model parameters is possible by a linear com-

bination of the PCs weighted by the parameters. The orthonormality of the PCs

assures that the same PCs can be used for both linear projection and combination.
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Figure 3.4: Trigonometric Functional Transformation

We represent the 3D head pose of a face by 3D rotation angles ~� (roll or shaking

within a view plane, pitch or nodding, and yaw or shaking in depth) from a frontal

pose. We refer to the 3D angular deviations by 3D head angles. For training sam-

ples, knowledge of the 3D head angles is required for each facial image as ground

truth. They can be measured by a physical device such as a magnetic tracker. In

order to mitigate non-linearity in mapping between shape representation and 3D

head angles, we have expanded the 3D vector space of head angles to a feature space

spanned by trigonometric functions of the angles and products of the functions. In a

simple 1st order case shown in �gure 3.4, the feature space becomes a 6 dimensional

space. We call a coe�cient vector in this feature space, derived from a sample's 3D

head angles, pose parameters. This expansion of dimensionality in the represen-

tation space is related to a recently proposed non-linear learning technique, kernel

PCA (Sch�olkopf et al. [177] and Mika et al. [129]). Note that this introduction of

non-linearity is qualitatively di�erent from a type of non-linear learning method in

which a functional form itself is non-linear. We have earlier discussed shortcomings

of such methods, hindering generalizability and extendability of a model and mak-

ing its learning process more complicated and time-consuming. Our method, which
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keeps a linear functional form, is therefore expected to avoid these pitfalls, however

this claim needs to be carefully evaluated by thorough numerical experiments.

As a third step, shape, texture, and pose parameters are linearly related with

each other in order to realize an explicit parameterization of our model with physical

variations by using a transformation model. Figure 3.5 illustrates this step. Pose

parameters are only related to shape parameters because pose variation correlates

better to its inuence on shape than to texture (see section 4.2.2 for experimental

results supporting this argument). Bidirectional mappings need to be learned in

order to support both the analysis and synthesis processes. Texture parameters are

then linearly related to shape parameters. As a consequence, texture representation

can be directly synthesized from shape representation. Note that the shape-to-

texture map is localized at each landmark as shown in �gure 3.6. This localization

of mapping is necessary in order to accommodate di�erent depth pro�les of faces at
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di�erent landmarks. These mappings are computed by a singular value decomposi-

tion (hereafter SVD) algorithm with a set of corresponding parameter pairs derived

from training samples.

Figure 3.6 summarizes the learning process of the LPCMAP model. The two

boxes with thick lines denote the set of training samples. Processes of shape and

texture decomposition and trigonometric functional transformation are referenced

in the �gure by 1, 2, and 3, respectively. Note that texture models are localized at

N facial landmarks. After learning, data entities inside the dashed box are stored

as model knowledge while training samples can be discarded.

Figure 3.7 illustrates the analysis and synthesis processes. The task of pose

estimation is realized by the analysis process of a model. Shape representation is

�rst derived from an input facial image by �nding a set of landmarks. It is then
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projected to a learned shape model, resulting in shape parameters. Pose parameters

are next transformed from the shape parameters by a shape-to-pose linear map.

Finally, 3D head angles of the input can be derived from the pose parameters by

applying arcsine and arccosine functions. 1 Note that the manifold or trajectory of

shape parameters always goes through the origin of shape PC subspace. Therefore,

sine of head angles should align better with a shape parameter distribution than

cosine of angles. For this reason, 3D head angles can also be derived solely from

arcsine of the pose parameters.

On the other hand, the task of pose transformation is realized by the synthesis

process of a model. Input 3D head angles are �rst expanded to pose parameters.

1or by applying arctangent functions for simplicity.
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Shape and texture parameters are then linearly transformed from the pose param-

eters sequentially by pose-to-shape and shape-to-texture linear maps, respectively.

Shape and texture representations are then synthesized by a linear combination pro-

cess of learned shape and texture models. A facial image can be reconstructed from

the synthesized shape and texture representations by a reconstruction algorithm of

Gabor jet-based facial representation developed by P�otzsch et al [163]. Sequentially

applying the analysis and synthesis processes to an input image results in an es-

timate of the input image based solely on model knowledge. We call this process

analysis-synthesis chain or model matching. As will be described in chapter 5,

this process plays a crucial role in utilizing the LPCMAP model as a representation

unit of a database of known persons for identi�cation tasks.

3.3 Formal Description of the Model

3.3.1 Shape and Texture Decomposition

The set of the facial images, ~v1; ::; ~vm; ::; ~vM, are �rst subjected to a landmark �nder,

resulting in a localization of N landmarks in each image. Using this information,

a set of shape and texture representations are extracted from the image set. The

shape representation stands for object-centered 2D coordinates of the N landmarks

while the texture representation stands for a set of N Gabor jets sampled at the N

landmarks.
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Let 2N -component vector ~xm denote the shape representation of the ~vm,

~xm = (xm1 � umx ; y
m
1 � umy ; ::; x

m
n � umx ; y

m
n � umy ; ::; x

m
N � umx ; y

m
N � umy )

t;

umx = 1

N

PN
n=1 x

m
n ;

umy = 1

N

PN
n=1 y

m
n ;

(3.7)

where xmn and ymn are x and y image coordinates of the n-th landmark in the ~vm.

Let also L-component vector ~jm;n denote the texture representation of the ~vm,

~jm;n = (jm;n
1 ; ::; jm;n

l ; ::; jm;n
L )t; (3.8)

where jm;n
l is the l-th jet coe�cient derived from a response of the l-th Gabor �lter

with ~vm at the n-th landmark.

As a result of the above operations, each image is decomposed into shape and

texture representations,

~vm 7! (~xm;~jm;1; ::;~jm;n; ::;~jm;N): (3.9)

Let Dx and Dj denote operations of shape and texture decomposition, respec-

tively,

Dx(~v
m) = ~xm;

Dj(~v
m) = ~jm;1; ::;~jm;n; ::;~jm;N :

(3.10)
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3.3.2 Linear Subspace Models for Shape and Texture

Representations

A set of the shape representations, ~x1; ::; ~xm; ::; ~xM, are subjected to principal compo-

nent analysis (hereafter PCA), resulting in P principal components (hereafter PCs)

of the shape representations.

Let 2N -component vector ~yp denote the p-th shape PC and a scalar �py denote

variance of f~xmg along the direction of ~yp. Then ~yp satis�es,

XX t~yp = �py~y
p; (3.11)

where X is a centered column matrix of ~xm,

X = (~x1 � ~ux; ::; ~x
m � ~ux; ::; ~x

M � ~ux);

~ux =
1

M

PM
m=1 ~x

m:

(3.12)

PCA solves equation (3.11) as eigen decomposition of a covariance matrix of X,

resulting in an ordered array of pairs of eigenvalue and eigenvectors,

(�1y; ~y
1); ::; (�py; ~y

p); ::; (�Py ; ~y
P );

�1y >; ::;> �py >; ::;> �Py ;

~y1 ?; ::;? ~yp ?; ::;? ~yP ;

j~y1j =; ::; j~ypj =; ::; j~yP j = 1:

(3.13)
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For each landmark n, a set of the texture representations, ~j1;n; ::;~jm;n; ::;~jM;n,

are also subjected to PCA, resulting in S PCs of the texture representations for

each landmark.

Let L-component vector ~bs;n denote the s-th texture PC at a landmark n and a

scalar �
s;n
b denote variance of f~jm;ng along the direction of ~bs;n. Then ~bs;n satis�es,

(J1)(J1)t~bs;1 = �
s;1
b
~bs;1;

�

�

(Jn)(Jn)t~bs;n = �
s;n
b
~bs;n;

�

�

(JN)(JN )t~bs;N = �
s;N
b
~bs;N ;

(3.14)

where Jn is a centered column matrix of ~jm;n,

Jn = (~j1;n � ~unj ; ::;~j
m;n � ~unj ; ::;~j

M;n � ~unj );

~unj =
1

M

PM
m=1

~jm;n:

(3.15)
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Solving the set of equations (3.14) by PCA results in a set of ordered eigenvalue

and eigenvector arrays,

(�1;1b ;~b1;1); ::; (�s;1b ;~bs;1); ::; (�S;1b ;~bS;1);

�

�

(�1;nb ;~b1;n); ::; (�s;nb ;~bs;n); ::; (�S;nb ;~bS;n);

�

�

(�1;Nb ;~b1;N); ::; (�s;Nb ;~bs;N ); ::; (�S;Nb ;~bS;N);

(3.16)

where �s;nb and ~bs;n hold the same properties as in (3.13).

Next, we construct linear models of shape and texture representations in order

to optimally parameterize them in a vector space with reduced dimensions. A vector

space spanned by a subset of these PCs in decreasing order of corresponding variances

assures the optimal L2 error in the reconstruction of a training sample. We call these

subsets of PCs a linear subspace model.

A linear subspace model Y for shape representation (hereafter shape model) is

constructed with the �rst P0 shape PCs as a row matrix of ~yp,

Y = (~y1; ::; ~yp; ::; ~yP0)t: (3.17)
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Let P0-component vector ~qm denote a parameterization of a shape representation

~xm by Y (by linear projection),

~qm = Y (~xm � ~ux); (3.18)

where,

~qm = (qm1 ; ::; q
m
p ; ::; q

m
P0
);

qmp = ~yp � (~xm � ~ux):

(3.19)

We call this ~qm shape parameter of ~xm. The original shape representation can

be approximated from the shape parameter (by linear combination),

~xm � ~ux + Y t~qm: (3.20)

Note that (3.20) becomes an equation when P0 = P = 2N � 1.

For each landmark n, a linear subspace model Bn for local texture representation

(hereafter texture model) is constructed with the �rst S0 texture PCs as a row matrix

of ~bs;n,
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B1 = (~b1;1; ::;~bs;1; ::;~bS0;1)t;

�

�

Bn = (~b1;n; ::;~bs;n; ::;~bS0;n)t;

�

�

BN = (~b1;N ; ::;~bs;N; ::;~bS0;N )t:

(3.21)

Let S0-component vector ~rm;n denote a parameterization of a texture represen-

tation ~jm;n by Bn,

~rm;1 = B1(~jm;1 � ~u1j );

�

�

~rm;n = Bn(~jm;n � ~unj );

�

�

~rm;N = BN(~jm;N � ~uNj );

(3.22)

where,

~rm;n = (rm;n
1 ; ::; rm;n

s ; ::; rm;n
S0

);

rm;n
s = ~bs;n � (~jm;n � ~unj ):

(3.23)
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We call this ~rm;n a texture parameter of ~jm;n. The original texture representation

can be approximated from the texture parameter,

(~jm;1; ::;~jm;n; ::;~jm;N) � (~u1j + (B1)t~rm;1; ::; ~unj + (Bn)t~rm;n; ::; ~uNj + (BN )t~rm;N ):

(3.24)

Note that (3.24) becomes a set of equations when S0 = S = L � 1.

3.3.3 Linear Mappings between Di�erent Parameter Spaces

Lastly, we construct bidirectional maps between ~vm and ~�m by linearly relating

di�erent parameters. We call a map from image to 3D head angles (~vm 7! ~�m)

analysis mapping and an inverse map (~�m 7! ~vm) synthesis mapping.

3D head angles ~�m are �rst non-linearly transformed to a T -component vector

~'m; T � 3 by a trigonometric functional transformation K,

~'m = K(~�m); (3.25)

where the function K �rst centers the distribution of theM 3D angle vectors ~�1; ::; ~�M

and expands the angular deviations from the average to a vector of trigonometric

functions of these angles (and their products),
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K(~�m) =

(cos (�m1 � u�1); sin (�
m
1 � u�1);

cos (�m2 � u�2); sin (�
m
2 � u�2);

cos (�m3 � u�3); sin (�
m
3 � u�3));

(3.26)

where,

~u� = (u�1; u�2; u�3) =
1

M

MX
m=1

~�m: (3.27)

We call the ~'m pose parameter. There exists an inverse transformation K�1 such

that,

~�m = K�1(~'m) = ~u� + (arctan(
'm
2

'm
1

); arctan(
'm
4

'm
3

); arctan(
'm
6

'm
5

)): (3.28)

As discussed in section 3.2, another form for deriving 3D angle vectors from pose

parameters is to use only sine components of pose parameters,

~�m = K�1(~'m) = ~u� + (arcsin('m
2 ); arcsin('

m
4 ); arcsin('

m
6 )): (3.29)

This transformation looses information by discarding cosine components of pose pa-

rameters, however this function performs better than the equation (3.28) when there

exist measurement errors which inuence the cosine components of pose parameters

more strongly than their sine components.
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For the analysis mapping, the shape parameter ~qm is linearly related to the pose

parameter ~'m,

~'m = F~qm; (3.30)

where F is a T � P0 transfer matrix. A combination of equations (3.10), (3.18),

(3.30), and (3.29) in this order, therefore, constitutes the analysis mapping. Let a

symbol A denote this mapping.

For the synthesis mapping, the pose parameter ~'m is �rst linearly related to the

shape parameter ~qm,

~qm = G~'m; (3.31)

where G is a P0 � T transfer matrix. The texture parameter ~rm;n at each landmark

is then linearly related with the shape parameter ~qm instead of the pose parameter

~'m,

~rm;1 = H1~qm;

�

�

~rm;n = Hn~qm;

�

�

~rm;N = HN~qm;

(3.32)
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where Hn is a S0 � P0 transfer matrix at landmark n. As a result, a combination

of equations (3.25), (3.31), and (3.20) in this order constitutes the synthesis map-

ping for shape representation and a combination of equations (3.25), (3.31), (3.32),

and (3.24) in this order constitutes the synthesis mapping for texture representa-

tion. Let symbols SS and T S denote synthesis mappings for shape and texture

representations, respectively.

F , G, and H1; ::;HN are learned from the training samples in (3.1). Let P0�M

matrix Q denote a column matrix of M shape parameters,

Q = Y �X: (3.33)

Let S0 �M matrix Rn denote a column matrix of M texture parameters at each

landmark n,

R1 = B1 � J1;

�

�

RN = BN � JN :

(3.34)

Let T �M matrix � denote a column matrix of M pose parameters,

� = K(�); where � = (~�1; ::; ~�m; ::; ~�M): (3.35)
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Substituting transposes of (3.33), (3.34), and (3.35) to transposes of (3.30),

(3.31), and (3.32) results in the following overcomplete sets of linear equations,

Qt � F t = �t;

�t �Gt = Qt;

Qt � (H1)t = (R1)t;

�

�

Qt � (HN )t = (RN )t;

(3.36)

respectively. The transfer matrices F;G;H1; ::;HN are computed from (3.36). Sin-

gular Value Decomposition algorithm (hereafter SVD) is used for computing inverse

matrices,

F t = (Qt)�1 � �t = VQt � [diag( 1

w
k

)]Qt � U t
Qt � �t;

Gt = (�t)�1 �Qt = V�t � [diag(
1

w
k

)]�t � U
t
�t
�Qt;

(H1)t = (Qt)�1 � (R1)t = VQt � [diag( 1

w
k

)]Qt � U t
Qt � (R1)t;

�

�

(HN )t = (Qt)�1 � (RN )t = VQt � [diag( 1

w
k

)]Qt � U t
Qt � (RN )t;

(3.37)

where VQt and V�t are orthogonal matrices of P0 � P0 and T � T , UQt and U�t are

column-orthogonal matrices of M�P0 and M�T , and wk is the k-th singular value.
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Finally, we de�ne a LPCMAP model LM as a set of data entities and mapping

functions,

LM = f~ux; ~u
1
j ; ::; ~u

N
j ; ~u�;

Y;B1; ::; BN;

F;G;H1; ::;HN ;

A : ~vm 7! ~�m;

SS : ~�m 7! ~xm;

T S : ~�m 7! (~jm;1; ::;~jm;N)g;

(3.38)

where ~ux and ~u
1
j ; ::; ~u

N
j are average shape and texture representations, ~u� is an average

3D head angle vector, Y and B1; ::; BN are shape and texture models, F is a shape-

to-pose parameter map, G is a pose-to-shape parameter map, H1; ::;HN are shape-

to-texture parameter maps, A is a function of analysis mapping, and SS and T S are

functions of synthesis mappings for shape and texture representations, respectively.

3.3.4 Applying the LPCMAP Model

In this section, we demonstrate a number of applications of the LPCMAP model.

Suppose we are given a facial image ~v which was not present in the training

sample set,

~v =2 f~v1; ::; ~vMg: (3.39)
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The problem of �nding 3D head angles of ~v is called pose estimation. This problem

can be solved by using an analysis mapping A of LM . Let ~̂� denote the estimated

3D head angles of ~v by LM ,

~̂� = ALM(~v) = K�1(FLM � YLM � (Dx(~v)� ~uLMx )): (3.40)

Suppose, next, we are given a 3D head angle vector ~� which was not present in

the training sample set,

~� =2 f~�1; ::; ~�Mg: (3.41)

The problem of synthesizing a corresponding facial image is called pose transforma-

tion or model animation. This problem can be solved by using synthesis mappings

SS and T S of LM . Let ~̂x denote the synthesized shape representation from ~� by

LM ,

~̂x = SSLM (~�) = ~uLMx + Y t
LM �GLM � K(~�): (3.42)

And let (~̂j1; ::; ~̂jN) denote the synthesized texture representation from ~� by LM ,

(~̂j1; ::; ~̂jN) = T SLM(~�)

= (~u1;LMj +B1
LM �H1

LM �GLM � K(~�); ::; ~uN;LM
j +BN

LM �HN
LM �GLM � K(~�)):

(3.43)

125



There exists an operation which reconstructs a facial image ~v from shape and texture

representations ~x;~j1; ::;~jN . Let a symbol R denote this operation (~x;~j1; ::;~jN) 7! ~v,

~v = R(~x;~j1; ::;~jN): (3.44)

Now let ~̂v denote the synthesized facial image from ~� by LM . Substituting (3.42)

and (3.43) to (3.44) results in,

~̂v = R(SSLM (~�);T SLM (~�)): (3.45)

Another application of the LPCMAP model is to represent faces with arbitrary

head poses. Suppose a LPCMAP model is learned by a set of training samples.

When the set consists of facial images of a single person with many head poses, the

model acquires the knowledge of how a facial image of the person transforms under

various poses. A facial image of the same person with an arbitrary head pose can

then be described purely by the internal model knowledge by �tting the model to

the input image,

~̂v = R(SSLM(ALM (~v));T SLM (ALM(~v))); (3.46)

where ~̂v is an input's description by the internal knowledge of LM . We call the

operation of �tting the model to an input model matching, and the synthesized

facial image ~̂v model view.
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3.4 Why the LPCMAP Model?

In section 2.3, we have argued how di�erent aspects of our general approach will

solve open problems found in the current literature. In this section, we extend

our theoretical arguments, introduced in section 1.5, to validate particular design

decisions of the LPCMAP model which emphasize linearity.

The di�culty of designing the mapping functions A and S stems from a prob-

lem known as the bias/variance dilemma described in Geman et al. [72]. The

bias/variance dilemma depicts a trade-o� between over�tting and oversmoothing

in a learning system. In their argument, the number of internal degrees of freedom

(hereafter internal DOF) plays a key role. Given a mapping that has an innate

complexity with a certain number of DOF (hereafter innate DOF), a system whose

internal DOF is larger than the innate DOF adapts itself to the peculiarities of the

given training samples, such as noise, and cannot generalize to unknown samples

of the same class (over�tting). On the other hand, a system with fewer internal

DOF than the innate DOF cannot accurately capture the innate characteristics of

the mapping due to too few DOF (oversmoothing) although it may have better

generalization capability.

In our problem, it is known a priori that there are 3 innate DOF. However,

these 3 DOF interact non-linearly with each other in the mapping functions. We

choose to linearly approximate the non-linear mapping functions because 1) it helps

to avoid over�tting and 2) it helps to avoid the necessity for iterative optimization.
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Carelessly introducing explicit non-linear terms into a learning system often leads

to over�tting. To avoid over�tting is a priority since one of the key criteria for our

model is generalization capability. When the functions are linearly formulated, they

can be analytically computed by matrix operations. This helps to avoid the necessity

for iterative optimization which is often deteriorated when its solution is trapped in

local minima.

Due to the bias/variance dilemma, however, our emphasis on avoiding over�tting

may create a situation of oversmoothing. More speci�cally, the inability of the linear

approximation to fully represent the non-linearity may produce a large error outside

of a very limited range of 3D head angles which a single model is only capable

of capturing. This range limitation depends on the degree of non-linearity; the

stronger the non-linearity, the narrower the range. This poses a problem since it

directly violates the exibility criterion which we want to meet with our model.

We have proposed to decompose the learning process of the mapping functions

into two parts in order to mitigate this shortcoming of the linear model. One part is

dedicated to extracting a set of statistical modes or components, which correspond

to the innate DOF, from a set of training facial images. The other is dedicated to

learning a linear map between the modes and 3D head angles. This decomposition

provides our model with the capability to control which components should be in-

cluded or not. Although our analysis and synthesis mappings between the 3D head

angles ~� and the facial images ~v are intrinsically non-linear, those between the angles
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and the shape model parameters ~q of components corresponding to the innate DOF

modes are expected to become more linear when a set of components to be included

in a shape model are found correctly. This means that the model should capture a

complete spectrum but nothing more of a given non-linear variation. Therefore, our

model needs to be constructed by extracting only shape components corresponding

to the innate DOF and discarding the rest of the components.

From a number of methods for extracting statistical modes or component vectors

from data ensemble (reviewed in chapter 2), we have chosen principal component

analysis (PCA) for this task. We favored PCA because of its linear nature, the

general advantages of which have been discussed above. A disadvantage of PCA is its

inaccuracy: PCA will result in more than three signi�cant component vectors for our

3 innate DOF problem because the linear nature of PCs does not allow for capturing

curve-linear or correlated statistical modes. Moreover, their orthogonality further

restricts exibility of linear models spanned by them. This inaccuracy increases

non-linearity in the mapping we linearly approximate. We mitigate this problem by

applying an explicitly non-linear transformation K to the 3D angle vector ~�, such

that mapping functions between model parameters of the inaccurate PCs and the

transformed pose parameters ~' become approximately linear. Therefore, our model

should remain accurate while maintaining its generalization capability. Because this

non-linearity is derived from formal analytical knowledge of pose variations and is
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not included within a functional form of the mappings, it should not exhibit the

disadvantages of the general non-linear model discussed above.

3.5 Issues for Further Discussion

In this section, we address a number of issues that need to be clari�ed by numerical

experiments. We will present results and discussion of several experiments in the

next two chapters.

Our model's design, described in the previous sections, is based on a number of

implicit assumptions which still need to be proven. They are listed below:

1. Should the analysis mapping only use shape information?

2. Should a shape-to-texture map be used instead of pose-to-texture for synthesis?

3. What type of non-linear function should be used for K?

Other concerns involve the characteristics of our model during its learning pro-

cess. The following questions should be answered in order to claim feasibility for the

proposed model:

1. Can the model generalize (by interpolation)?

2. If not, in what range of the head poses can the model be accurate?

3. What is the minimum number of samples needed to achieve good accuracy in

the model?
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4. How do di�erent distributions of training samples inuence the accuracy of

the model?

5. Can the model generalize over di�erent individuals?

6. Can the model extrapolate?

Related to the above learning issues, a trade-o� problem between the accuracy

and size of a model needs to be further discussed. In order to apply a LPCMAP

model for representation purposes, the size of the model needs to be small while it

maintains acceptable accuracy. If the size of the model is allowed to become large,

we may simply store the set of all the training samples, which defeats the purpose of

the proposed model. The optimal number of size parameters P0 and S0 for a linear

subspace model needs to be found for resolving this trade-o�.

Lastly, it is again worth stressing the importance of the generalization capability

of the model. If the model does not possess this capability, we are forced to collect

an enormous number of all possible pose conditions as training samples. This makes

the model infeasible, even if the model can represent the given training samples

very accurately. Therefore, the generalization performance of our model needs to be

examined rigorously.
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Chapter 4

Analysis and Synthesis of Human Faces with Pose

Variations by the LPCMAP Model

In this chapter, we evaluate the performance of the analysis (pose estimation) and

synthesis (pose transformation) processes of the LPCMAP model by a series of

numerical experiments. The purpose of this chapter is to empirically assess the

feasibility of the proposed model described in chapter 3. These experiments are

conducted with a C++ implementation of our model as a part of FLAVOR, a class

library for computer vision applications developed by a group of researchers headed

by von der Malsburg.

4.1 Numerical Experiments with Arti�cial Data

In this section, we present results of experiments using shape representations that

are created arti�cially. The purpose of these experiments is to give experimental

proof of the correctness of our model. Additionally, we seek to �nd an optimal
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non-linear function K described in section 3.3.3 for improving the accuracy of the

mappings between shape representation and 3D head angles.

4.1.1 Data Set

We generated a set of arti�cial shape representations by orthographically projecting

a set of 3D control points located on the surface of a unit sphere to a 2D plane,

while we rotate the sphere around its center. We used 25 control points on a 5 by

5 square grid pasted on the sphere. The 2D coordinates of the projected points

are scaled and translated in order to �t into a 128 by 128 image coordinate space.

Since the rotation is explicitly controlled by a program, 3D rotation angles for each

shape representation are available without measurements. We prepared two types of

training samples which di�er in the sphere's rotation. For the �rst type, pure samples

(PUR), the sphere is rotated along only one axis at a time. Along each axis, the

sphere was rotated from -30 to 30 degrees and the orthographic projection was carried

out at 2 degrees intervals, resulting in 31 samples for each axis. Therefore, the PUR

set consists of 93 samples, each one-third of which contains sphere rotations along

strictly one axis. For the second type, noisy samples (NOI), the sphere is rotated in

the same way as the PUR but with a small (between �5) degrees of rotations along

the other two axes. The NOI set consists of 186 samples, including samples from the

PUR set. This set corresponds to more realistic training samples since one cannot

strictly control head rotations of subjects. In order to assess the generalization
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capability, a test set (TST) was also prepared. The TST set consists of 62 samples

which are derived from rotating the sphere along three axes simultaneously so that

the 3D rotation angle of these samples is di�erent from any of the training samples.

4.1.2 Non-Linear Filter K for 3D Head Angles

As described in section 3.3.3, we apply a non-linear transformation K to the 3D head

angles, projecting the angles to the pose parameter space spanned by trigonometric

functions of the angles and their products (trigonometric functional transfor-

mation). After this transformation, a mapping between these pose and the shape

parameters is expected to become less non-linear. Thus, the accuracy of pose esti-

mation and shape synthesis of our model should become better. However, due to

its possible shortcomings discussed in section 3.2, we need to carefully examine the

feasibility of this non-linear process. We test three types of function as candidates

for K:

A a delta function, (�; �; ) 7! (�; �; ),

B 3 angles to 6 trigonometric functions,

(�; �; ) 7! (cos(�); sin(�); cos(�); sin(�); cos(); sin()), and

C 3 angles to 6 trigonometric functions and 12 products,

(�; �; ) 7! (cos(�); sin(�); cos(�); sin(�); cos(); sin();

sin(�)sin(�); sin(�)cos(�); cos(�)sin(�); cos(�)cos(�);
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Figure 4.1: Accuracy of Pose-to-Shape Mapping with Toy Data, (PUR,PUR,High)
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For analysis, 3D head angles are derived from pose parameters by using the

equation 3.29, which disregards cosine components of pose parameters. This is

because arccosine function often ampli�es small errors in these components, resulting

in unreliable pose estimates. Our pilot study indicated that this equation performs

the best among others including the equation (3.28).

4.1.3 Experimental Results

First, we compared the three types of non-linear transformation K in terms of the

accuracy of shape synthesis from 3D rotation angles (pose-to-shape mapping). Fig-

ure 4.1 displays the average landmark position errors of the synthesized shapes in

pixels as a function of P0, the number of shape PCs included in the shape model. In
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Figure 4.2: Accuracy of Pose-to-Shape Mapping with Toy Data, (NOI,NOI,Low)

this experiment, a model was trained with the PUR set and tested with the same

PUR set. We also used oat (High) precision for each vector component of the shape

representation. Shape models with the type C transformation resulted in a perfect

synthesis when the size of the model was more than 5 PCs. The accuracy of models

with the type A and B transformations was lower than that of the type C.

Figure 4.2 shows the results of an experiment evaluating the inuence of using

more realistic (noisy) data. In this case, the models were trained with the NOI

set and tested with the same NOI set. We also used integer (Low) precision for

each component of the shape representation. This is a natural setting when the

shape representation is extracted from a facial image, since we only have pixel-

level precision for the location of landmarks. The results indicate that the perfect

synthesis can no longer be achieved with this setting. However, models with type B

and C transformations still reach acceptable accuracy (1 pixel error).
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Figure 4.3: Accuracy of Pose-to-Shape Mapping with Toy Data, (NOI,TST,Low)

Figure 4.3 shows the results of an experiment assessing the generalization capa-

bility of the models. In this case, the models were trained with the NOI set and

tested with the TST set. Integer precision was used also for this experiment. Unlike

the previous two cases, models with the type C transformation resulted in much

less accuracy, while the accuracy of models with the type A and B was maintained.

A possible reason for the inaccurate results of the type C is that the model over�t

the noise presented in the training samples. The results from these three experi-

ments suggest that models with the type B transformation provide the best balance

between accuracy and generalization capability.

Next, we conducted the same three experiments for the task of pose estimation

(shape-to-pose mapping). Figure 4.4 displays the average angular errors (in degrees)

of 3D rotation angles estimated by our model's analysis process with di�erent types

of K. The set of training samples, test samples, and precision of sample vector

137



0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12
Artificial Shape to Angles Mapping: Learn(PUR),Test(PUR),High

Number of Shape PCs

Av
er

ag
e 

An
gu

lar
 E

rro
r (

de
gr

ee
s)

type A
type B
type C

Figure 4.4: Accuracy of Shape-to-Pose Mapping with Toy Data, (PUR,PUR,High)

components are the same as in the case for �gure 4.1. Models with both the type

B and C transformations resulted in perfect pose estimation when the size of the

models was more than 3 PCs. This result matches with the fact that there are 3

DOFs in the pose variation.

Figure 4.5 displays the pose estimation accuracy for the same setting as in �g-

ure 4.2. The average angular errors were about 1 degree with su�ciently sized models

and there were no signi�cant di�erences in the value of errors across di�erent types

of the K.

Figure 4.6 shows the pose estimation accuracy in the most realistic setting as

in �gure 4.3. Similar to the results of the experiment for the shape synthesis, the

accuracy of models with the type C transformation was reduced, while models with

type A and B resulted in acceptable accuracy.
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Figure 4.5: Accuracy of Shape-to-Pose Mapping with Toy Data, (NOI,NOI,Low)

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25
Artificial Shape to Angles Mapping: Learn(NOI),Test(TST),Low

Number of Shape PCs

Av
er

ag
e 

An
gu

lar
 E

rro
r (

de
gr

ee
s)

type A
type B
type C

Figure 4.6: Accuracy of Shape-to-Pose Mapping with Toy Data, (NOI,TST,Low)
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In summary, the results of our experiments with arti�cial data indicate that 1)

mappings between the shape representations and 3D head angles can be correctly

learned by our model in an optimal setting and 2) the type B transformation provides

the best balance between the accuracy and generalization capability of our model in

a more realistic setting.

4.2 Numerical Experiments with Real Faces

In this section, we test the performance of the analysis and synthesis processes of our

model with samples derived from 2D images of real faces. According to the results

in the previous section, we used the type B transformation as the trigonometric

functional transformation K throughout this section.

4.2.1 Data Set

In this section, we describe our methods used to derive training and test samples

from a video sequence of continuously rotating faces. Figure 4.7 shows examples of

facial images in the video sequence used for training samples.

For each person, we collected 1600 images of 128 by 128 pixels from a continuous

video stream capturing rotating faces. Three quarters (1200) of the total samples

are used as training samples while the rest of the samples (400) are used as test

samples. For training samples, each third of the 1200 samples contains faces rotated

mainly along one axis while rotations along the other two axes are minimal. We
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Figure 4.8: Variation of 3D Head Angles in the Training Samples
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verbally instructed subjects to perform these speci�c head rotations. The acquisi-

tion took place after several practice sessions. For test samples, each subject was

asked to rotate the head freely. We collected these samples for 4 people. During

the acquisition of these samples, the lighting conditions and background remained

unchanged.

We also measured the 3D head angles of each sample in degrees with the help of

a magnetic sensor synchronized to a frame grabber used for the image acquisition.

Horizontal (shaking), vertical (nodding), and planar (plane-shaking) rotations of the

head (denoted in the �gure as 1,2,3, respectively) are measured as a continuous 3D

angular deviation from the frontal pose of the head. Figure 4.8 displays the 3D head

angles of the training samples shown in �gure 4.7. Each plot illustrates the angles

along x (planar), y (horizontal), or z (vertical) axis for the total sequence of 1200

training samples. The maximum range of the head angles was approximately �25

degrees on average.

Next, these samples are subjected to a landmark �nding system in order to

generate both the shape and texture representation for each sample. Figure 4.9

illustrates the de�nition of the facial landmarks. Locations of 20 landmarks are

de�ned mainly around the inner region of faces (i.e., eyes, nose, and mouth). They

are indexed by numbers between 0 to 19 as shown in this �gure. We used this

de�nition throughout this dissertation.
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We used a facial feature tracking system developed by Maurer [127] in order to

locate the landmarks in images of a rotated face. This tracking system utilizes the

phase information of Gabor jets in order to track a local feature within a continuous

image sequence. In this system, we �rst �nd the landmarks in a frontal face using

elastic graph matching [215], then each landmark is independently tracked over the

sequence. Although the precision of the facial feature tracking system is sub-pixel

between two frames, the system can accumulate errors over time. Thus we corrected

a few ill-located landmarks manually in order to achieve the highest accuracy of the

landmark locations for our analysis. Figure 4.10 shows the examples of the training

samples with the correctly located facial landmarks.

After these landmarks are found for each sample, we generate a shape repre-

sentation as a 40-component vector of object-centered image coordinates of these

landmarks, and a texture representation as a set of jets, one for each landmark. To

compute a jet, we used a set of Gabor �lters varying in 5 frequency levels and 8

orientations. Thus, a jet can be seen as an 80-component vector. 1

4.2.2 Statistical Analyses of the Data

In this section, we evaluate statistical properties of the data described in the previous

section. In the LPCMAP model, the shape and texture information is modeled by

the PC-based linear subspace models. Analyses of both shape and texture PCs

1Note that a response of a Gabor �lter is a complex value. Thus the number of vector compo-
nents of a jet becomes 80 = 5(level)� 8(orientation)� 2.
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Figure 4.11: Variations Coded in the First 5 Shape PCs

derived from our training samples illustrate the functionality of the two subspace

models, and help to determine P0 and S0, the number of PCs to be included in

both models. We also study linear correlations between shape, texture, and pose

parameters in this section, whose results prove our design of the LPCMAP model.

4.2.2.1 Shape Representation

In this section, we evaluate the PCs extracted from a set of shape representations

(shape PCs). 1200 shape representations extracted from the samples shown in �g-

ure 4.7 are subjected to PCA, resulting in 40 shape PCs sorted by the size of variance.

Figure 4.11 illustrates variations coded in the �rst 5 shape PCs. To display the vari-

ations, we computed the average of all the shape representations displayed in the

middle column and move or distort it along the direction of each PC. Intervals of

the movement along each PC are normalized by the standard deviation (denoted as
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Figure 4.12: Accumulated Variances in Shape Models of Di�erent Sizes

sd in �gure 4.11) of the shape representations along each PC. The �rst PC clearly

coded variation of the planar rotation angle(r = 0:99). Variation of the head size,

horizontal rotation, and vertical rotation were coded in the second, third (r = 0:88),

and fourth (r = 0:65) PCs, respectively.

We now investigate how many shape PCs are needed to accurately describe the

variation present in the set of training shape representations. Figure 4.12 displays

the accumulated variances covered by the shape models of di�erent size. The vertical

axis denotes the accumulated variance, while the horizontal axis denotes the number

of shape PCs included in the shape model, which always includes the subset of

PCs with the largest accumulated variance. For example, a shape model with 10

PCs means that it includes the shape PCs with the �rst to tenth largest variance.

The �gure shows that a small number of PCs can account for most of the shape
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Figure 4.13: Accuracy of Shape Models of Di�erent Sizes in Average Position Errors

variations in the training samples; only 8 PCs are enough to cover 95% of the total

data variance.

Next we evaluate the accuracy of the shape models of di�erent size by means of

reconstruction errors. Each test sample is �rst parameterized by the shape model

by linear projection, yielding shape parameter vectors whose length depends on

the size of the model. By linear combination of the model components, we then

reconstruct each test sample from the shape parameters. Similarity of the test and

reconstructed samples depends on the size of the model and expresses the model's

accuracy. Figure 4.13 shows average landmark position errors of the reconstructed

training samples for di�erent model size. The errors are averaged over 4 persons,

1200 samples, and 20 nodes. An average error of the shape model with the �rst 8

PCs (which are enough to cover 95% of the total variances shown in �gure 4.12) was

0.6 pixels.
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The feature tracking system we used has sub-pixel accuracy in theory, although

it generates errors because of the use of a Taylor expansion and loss of information

when objects move fast. Once an error is generated, the system accumulates it

over time. We therefore consider a shape model to be accurate if the average error

is within 1 pixel (sub-pixel accuracy). The above results indicate that a shape

model has long become accurate in the above sense when it includes the �rst 8 PCs.

4.2.2.2 Texture Representation

In this section, we evaluate the PCs extracted from the set of texture representations

at each landmark (texture PCs). The format of the evaluation is same as that of

the shape PCs in the previous section.

PCA is performed for the set of 1200 texture representations at each landmark,

resulting in 80 texture PCs at each landmark. Figure 4.14 illustrates variations
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coded in the �rst 8 texture PCs at node 0 (top of the left eye) by the same manner

used in �gure 4.11. For visualization, we reconstructed gray-level images from the

texture representations by an algorithm developed by P�otzsch et al [163]. At node

0, the �rst PC encodes variation of the illumination. This is natural because the

head rotation greatly changes the distribution of image irradiance. The rest of the

PCs code the di�erent appearances of the left eye rotating in various ways. Note

that, unlike shape PCs, the texture PCs do not code the head rotation exclusively

along any speci�c axis. This is caused by either degeneration of PCs or non-linear

interaction of pose variations in the texture representation. In the former case, PCA

will results in an arbitrary mixture (rotated components) in the space of degenerate

components which have the same eigenvalue. In the latter case, orthogonal PCs

cannot separate the variations into a few PCs. The same result was observed for the

texture PCs at the other 19 landmarks.

Figure 4.15 displays accumulated variance covered by texture models of di�erent

size at nodes 4 and 16 (see �gure 4.9 for their positions). The legend of these �gures

is the same as �gure 4.12. The case for node 16 was the best. It shows that the �rst

19 texture PCs were enough to cover 95% of the total variance present in the texture

representations. The worst case was at node 4. The �rst 21 PCs were needed to

cover 95% of the total variance. The fact that a large number of PCs are needed

to cover the variance of 3 DOF indicates that the pose variations in the texture
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Figure 4.15: Accumulated Variances in Texture Models of Di�erent Sizes at Node

16 and 4
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Figure 4.16: Accuracy of Texture Model of Di�erent Sizes in Average Jet Similarities

representation interact non-linearly with each other in greater extent than in shape

representation.

Lastly, we evaluate the accuracy of the texture models for di�erent size by means

of the error of reconstruction from a subspace model. The format of the evaluation is

the same as the shape models in �gure 4.13. Figure 4.16 shows average jet similarities

of the reconstructed training samples as a function of model size. The jet similarity

is computed as a normalized dot-product of the two jets compared. The similarities

are averaged over 4 persons, 1200 samples, and 20 nodes. For simplicity of the

evaluation, we do not vary S0, the number of shape PCs, for di�erent landmarks.

The average similarity of the texture model with the �rst 21 PCs (which are enough

to cover 95% of the total variance) was 0.995.

Although the �rst three texture PCs cannot capture the innate 3 DOF of the

pose variations, the above results show that a compact texture model with only 21
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texture PCs (25% of the total number of texture PCs) can accurately account for

the pose variation of faces.

4.2.2.3 Correlation between Di�erent Parameter Spaces

In this section, we investigate the nature of mappings between pose, shape, and tex-

ture parameters. We examine Pearson or linear correlation coe�cients [55] between

them because we linearly approximate these mappings as described in chapter 3.

The results of these experiments provide us with answers to two questions raised in

section 3.5 regarding the design of the LPCMAP model,

1. Should the analysis mapping only use shape information?

2. Should shape-to-texture map be used instead of pose-to-texture for synthesis?

4.2.2.3(a) Correlation between the Pose and Shape or Texture Parame-

ters In this section, we study linear correlations of the 3D head angles to the shape

and texture parameters. Both for analysis and synthesis, the LPCMAP model relates

the pose parameters only to the shape parameters. The results of these experiments

strongly support this design decision by showing that the head angles correlate much

better to the shape than to the texture parameters.

Figure 4.17 illustrates a matrix of correlation coe�cients between the 3D head

angles and shape parameters derived from the training samples in �gure 4.7. Each

cell of this image corresponds to the magnitude of a correlation coe�cient between

one of the 3 head angles and one of the 40 parameter components of the shape
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Figure 4.17: Correlation Matrix between 3D Head Angles and Shape Parameters

representations. Thus, this �gure shows the linear relationship between the 3D head

angles and the shape parameters. In the image, the magnitudes of the coe�cients

are expressed as 8-bit gray-level values between black (0) and white (255) where

black represents correlation 0 and white represents correlation 0.5 and above. In

the �gure, the planar, vertical, and horizontal head angles are denoted as 1, 2, and

3, respectively. The maximum correlation coe�cient was r = 0:993 between the

planar head angles and �rst shape PC. The horizontal and vertical angles displayed

their highest correlations to the third shape PC (r = 0:878) and the fourth shape

PC (r = 0:648), respectively. A mean of these three highest correlation coe�cients

for each head angles was rmean = 0:840. We use this mean correlation value for

comparing mappings between di�erent parameter spaces. Note also that only the

�rst few PCs correlated to the angles. This coincides with results of the previous

section shown in �gures 4.12 and 4.13.
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Figure 4.18: Correlation Matrices between 3D Head Angles and Texture Parameters

Next, we study the nature of the mapping between the 3D head angles and the

texture parameters. Since the texture model is localized, we analyze 20 separate

correlation matrices, one for each landmark. Figure 4.18 displays two correlation

matrices between the head angles and the texture parameters, at node 11 (bottom

of lower lip) and node 0 (top of the left eye). They are the best and worst cases in

terms of the value of rmean, the mean of the three highest correlation coe�cients. The

maximummean correlation value was r11mean = 0:775 at node 11 and the minimumwas

r0mean = 0:544 at node 0. The average of the mean correlation values r0mean; :::; r
19
mean

over 20 landmarks was rmean = 0:598.

The results of these experiments indicate that 1) the shape PCs linearly separate

3 statistical modes of the 3D pose variations well and 2) the 3D head angles are much

more tightly correlated to the shape parameters (rmean = 0:840) than the texture
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Figure 4.19: Correlation Matrices between Shape and Texture Parameters

parameters (rmean = 0:598). This supports our design of the LPCMAP model, in

which the pose parameters are linearly related solely to the shape parameters.

4.2.2.3(b) Correlation between the Shape and Texture Parameters

Lastly, we study linear correlations between the shape and texture parameters. The

LPCMAP model synthesizes texture from the shape parameters instead of the pose

parameters. This design assumes that the texture parameters correlate better to

shape than the pose parameters. This experiment empirically assesses this assump-

tion.

Figure 4.19 shows two correlation matrices between the shape and texture pa-

rameters at the node 11 and node 0 as the best and worst case, respectively. Similar

to the analyses of the pose-to-texture mapping in �gure 4.18, we analyze 20 separate

correlation matrices, one for each landmark. The maximum of the mean of the three
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highest correlation coe�cients was r11mean = 0:795 at the node 11 and the minimum

was r0mean = 0:503 at the node 0. The average of the 20 mean correlation values

r0mean; :::; r
19
mean was rmean = 0:620.

Although the di�erence is small, the average mean correlation between shape

and texture is larger than the one between head angles and texture. This is also

the case for the other three individuals. These results support our model design,

in which the texture parameters are related to the shape parameters instead of the

pose parameters. Note also that most of the white-colored cells representing strong

correlations are located in a small region around the top-left corner of the images.

This suggests the compactness of our model, in that only a small number of PCs in

the shape and texture models su�ce to describe the correlation structure.

4.2.3 Pose Estimation

In this section, we empirically evaluate the accuracy and generalization capability

of the pose estimation process of the LPCMAP model. For evaluating the accuracy

of the process, we �rst learn a shape-to-pose analysis mapping A from 1200 training

samples, and then test the mapping on the same training samples (accuracy test).

For evaluating the generalization capability, the mapping is tested with the test

samples of the person described in section 4.2.1 (generalization test) after the

same learning process. This experiment is conducted for 4 di�erent persons. The

numerical results are averaged over these 4 persons.
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# of Shape PCs Planar (x) Vertical (y) Horizontal (z) Average

1 1.17 4.87 4.17 3.41

8 0.98 2.29 1.72 1.66

20 0.92 2.14 1.45 1.50

30 0.90 2.08 1.44 1.47

40 0.90 2.06 1.42 1.46

Table 4.1: Accuracy of the Pose Estimation in Ave. Angular Errors (degs.)

# of Shape PCs Planar (x) Vertical (y) Horizontal (z) Average

1 1.17 2.72 4.26 2.72

8 0.93 2.26 2.36 1.85

20 0.94 2.33 1.71 1.66

30 0.96 2.30 1.70 1.65

40 0.95 2.31 1.58 1.61

Table 4.2: Generalization of the Pose Estimation in Ave. Angular Errors (degs.)

Table 4.1 shows the results of our experiments for the accuracy test. We compute

average angular errors (AAEi) for each rotation axis i and for 5 di�erent sizes of

the shape model. The average angular error is an average error of estimated 3D

head angles in degrees, AAEi := 1=4M
P4PM

m=1 k�
m
i � �̂mi k. For comparison, we

also compute an average value (AAE) of these errors over the 3 rotation dimensions,

AAE := 1=3
P3

i=1AAEi.

Table 4.2 shows results of our experiments for the generalization test. The errors

are computed in the same manner as in table 4.1. With a shape model with the

�rst 8 PCs, the average angular error was 1.7 degrees for the accuracy test and

1.9 degrees for the generalization test. For the accuracy test, standard deviation

of the errors and the worst error were 0.9 and 4.8 degrees, respectively. For the
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generalization test, the standard deviation and the worst error were 1.1 and 5.0

degrees, respectively. We highlight the errors with the 8 PCs and use them for our

evaluations according to our experimental results presented in section 4.2.2.

These results support the accuracy and generalization capability of the LPCMAP

model for the pose estimation task. The average angular errors for both the accuracy

and generalization tests were small; they were much smaller than the best facial

pose estimation accuracy reported in the literature, not better than 3 degrees using

a 3D model-based method. These errors were almost the same as those for arti�cial

data shown in �gures 4.5 and 4.6. Note that the arti�cial data is free from errors of

rotation angle measurements and of landmark locations, while these errors cannot be

avoided for the real face data and can decrease the accuracy of our model. Therefore,

they suggest the robustness of our model against these measurement noises. Lastly,

the errors for the generalization test were not signi�cantly larger than that for the

accuracy test. This displays our model's generalization capability to di�erent poses.

4.2.4 Pose Transformation

In this section, we evaluate the accuracy and generalization capability of the pose

transformation process (shape and texture syntheses) of the LPCMAP model. We

performed the accuracy and generalization tests, described in section 4.2.3, for the

shape synthesis (pose-to-shape) mapping SS and for the texture synthesis (pose-

to-shape-to-texture) mapping T S of our model. Equivalent to the experiments in
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Figure 4.20: Accuracy of Shape Synthesis in Ave. Position Errors (pixels)

section 4.2.3, they are conducted for 4 persons and the results are averaged over

these four.

4.2.4.1 Shape Synthesis

Figure 4.20 displays the accuracy of the shape synthesis process. We compute

average position errors (APE) for di�erent sizes of the shape model. The aver-

age position error is an average of root-mean-square errors of synthesized land-

marks ~x in pixels. This position error is averaged over M samples and 4 persons,

APE := 1=80M
P4PM

m=1

P20
n=1 k~x

m
n � ~̂xmn k. With only the �rst 8 PCs, the error

was below 0.8 pixels. Standard deviation of the errors and the worst error were 0.2

and 1.4 pixels, respectively. This meets the accuracy criterion of the shape model

discussed in section 4.2.2.2.
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Figure 4.21: Generalization of Shape Synthesis in Ave. Position Errors (pixels)

Figure 4.21 shows the generalization capability of the shape synthesis process.

The average position errors are computed with the test samples of each person in

the same manner as the accuracy test in �gure 4.20. With the �rst 8 PCs, the error

was about 1.1 pixels. Standard deviation of the errors and the worst error were 0.3

and 2.0 pixels, respectively. It is slightly above the accuracy criterion although the

di�erence is negligible. Moreover, the di�erence of the errors between the accuracy

and generalization tests was very small. These results indicate again the capability

of our model to generalize over head poses which are not presented in the training

samples.

4.2.4.2 Texture Synthesis

Figure 4.22 displays the accuracy of the texture synthesis process. Each training

sample and the corresponding synthesized texture representation are compared using
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Figure 4.22: Accuracy of Texture Synthesis in Ave. Jet Similarities

average jet similarity (AJS) of a pair of texture representations as a similaritymetric.

The jet similarity (cosine between the two normalized jets) is averaged over 20 nodes,

M samples, and 4 persons,

AJS := 1=80M
4X MX

m=1

20X
n=1

(amp(~jmn ) � amp(
^~jmn ))=(kamp(~jmn )k kamp(

^~jmn )k);

where amp transforms a jet ~jmn in a Cartesian (real-imaginary) coordinate system

to one in a polar (magnitude-phase) coordinate system and extracts only the mag-

nitudes of the polar jet. We conducted this similarity evaluation for varying size

of both shape and texture models. Combinations of shape models of 40 di�erent

sizes and texture models of 3 di�erent sizes were tested and are shown in �gure 4.22.

Although the size of the shape model a�ected the average jet similarities, the size

of the texture model did not have a signi�cant inuence. The jet coe�cients of
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Figure 4.23: Generalization of Texture Synthesis in Ave. Jet Similarities

the synthesized texture representations were indeed inuenced by the size of texture

models, however, the e�ect was too small to alter the similarity values. Considering

only 8 shape and 21 texture PCs (which had been shown in section 4.2.2.2 to cover

most of variations in the training samples), the average similarity value was about

0.97. Standard deviation of the similarities and the worst similarity value were 0.02

and 0.91, respectively.

Figure 4.23 shows results of the generalization test using the same settings as for

the accuracy test, �gure 4.22. The jet similarities were also insensitive to the size

of the texture model as was the case for the accuracy test. With 8 shape and 21

texture PCs, the average similarity value was about 0.96. The standard deviation

and the worst similarity value were 0.03 and 0.90, respectively.

The di�erence of the average similarities between the accuracy and generaliza-

tion tests with our compact LPCMAP model (8 shape and 21 texture PCs) was
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small (0.01). This indicates our model's generalization capability to unknown poses

similar to the results of the previous experiments for the pose estimation and shape

synthesis. The di�erence of the similarities between these tests and our previous sta-

tistical analyses in section 4.2.2 was, however, not negligible. In the analysis for the

texture model shown in �gure 4.16, we showed that a texture model with 21 PCs can

achieve accuracy of 0.99 with the aforementioned similarity metric. Because these

similarity values ranging between 0 and 1 are not directly associated with physical

units, it is di�cult to interpret their implication directly from the values. Although

the similarity di�erence is relatively small in its magnitude, we still need to carefully

assess how this loss of similarity inuences the proper capabilities of our model, its

ability to capture 3D pose variations, innate facial characteristics and to generalize

over unknown poses. We suspect that this loss of similarity is due to approximation

errors when linearly approximating the non-linear mappings between the shape and

texture parameters.

In order to provide a reference for interpreting the jet similarity values, we studied

distribution characteristics of the similarity values using the FERET database (e.g.,

Phillips et al., [157]). This database includes pairs of frontal facial images with

slight variation in facial expression (i.e., fa and fb galleries [157]). Figure 4.24 shows

two histograms of jet similarity values. A histogram in dark color illustrates a

distribution of similarities between facial image pairs of the same person, while the

other illustrates similarities between facial images of di�erent person which are most
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Figure 4.24: Similarity Histogram of the FERET Database

similar to one another among other persons. The similarity values were computed for

454 image pairs and the same format of the Gabor jet and the similarity metric used

throughout this dissertation were also used in this study. A facial representation

by a labeled graph with 48 facial landmarks including those on facial contour and

hair region (e.g., Okada et al., [141]) was used instead of the 20 facial landmarks for

our model. Despite discrepancy of the type of image variation and facial landmarks,

this analysis provides an idea of a similarity value range which must be reached for

a correct identi�cation. The average and standard deviation of the similarity values

were 0.94 and 0.03 for the same person case and 0.86 and 0.02 for the di�erent person

case, respectively. The result suggests that the correct identi�cation is assured with

a similarity value of 0.94 which is safely above an overlapping region of the two

histograms. Note that the average jet similarity values resulted from the texture
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Figure 4.25: Reconstructed Training Samples

synthesis process of our LPCMAP model were well above 0.94, supporting its fair

accuracy in terms of the identity information.

4.2.4.3 Reconstructed Images of Synthesized Samples

Next, we visually evaluate the synthesized shape and texture representations by

reconstructing gray-level image samples from them. We used an algorithm developed

by P�otzsch et al [163] for reconstructing an image sample from a topological graph

whose nodes are labeled by Gabor jets. The purpose of these experiments is to

visually illustrate the generalization capability of our model to unknown poses. For

this purpose, we display synthesized representations that are rotated to poses which

are not presented in the training samples. Moreover, in this section, our model's

proper faculty to capture the pose variations and the innate facial characteristics is

tested. If the similarity loss described in the previous section reduced these abilities

of the model, the reconstructed image samples should not look proper.
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Figure 4.26: Synthesized Samples of Known Poses with 8 Shape and 21 Texture PCs

Figure 4.25 displays reconstructed training samples. The original training sam-

ples shown in �gure 4.7 are �rst encoded into the shape and texture representations.

The �gure shows image samples which are directly reconstructed from these rep-

resentations by the P�otzsch algorithm. The image quality of these reconstructed

samples cannot be perfect because some information of the original image is lost

during the encoding process due to the coarse sampling of the jets only at the 20

landmarks. These image samples, however, serve as reference for the images recon-

structed from synthesized samples.

Next, we synthesized samples using the pose transformation process SS and T S

of the learned LPCMAP model in the same way as described for the similarity anal-

ysis in �gures 4.22 and 4.23. Figure 4.26 displays image reconstruction of samples

synthesized from the 3D head angles of each training sample in �gure 4.7 with a

LPCMAP model with 8 shape and 21 texture PCs. Therefore, each image in this

�gure corresponds to the one used in �gure 4.25. Although a comparison of these
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Figure 4.27: Synthesized Samples of Unknown Poses with 8 Shape and 21 Texture

PCs

two �gures is subjective, the 3D pose variations and the innate facial characteris-

tics presented in the training samples seem to be captured correctly. The shape

of faces with large rotations, however, are slightly more distorted compared to the

corresponding facial samples in �gure 4.25.

Next, we synthesized samples whose head poses were not presented in the training

samples in order to assess our model's generalization capability to unknown poses.

In this case, the pose transformation process of our model is used for generating an

animation of a face rotating arbitrarily. The same face used in the previous �gures

was rotated along all three rotation axes simultaneously between �15 degrees in two

di�erent ways (A and B). Figure 4.27 displays reconstructed images of these samples

of unknown poses synthesized by a LPCMAP model with 8 shape and 21 texture

PCs. It is again up to a subjective evaluation of the reader. However the given pose

variations and the innate facial characteristics seem to be captured correctly. This

supports our model's generalization capability to unknown poses, discussed with the

experimental results of our pose estimation tests shown in tables 4.1 and 4.2. Both

the shape and texture of strongly rotated faces in this �gure, however, seem to be

167



A

B

Figure 4.28: Synthesized Samples of Unknown Poses with 40 Shape and 80 Texture

PCs

more distorted compared to the reconstructed images in �gure 4.26. This suggests

that the generalization capability of our model might be restricted by a range of 3D

head angles; the model does not seem to be able to extrapolate the pose variations.

Lastly, we synthesized samples with the same head poses as in �gure 4.27 but

by a LPCMAP model with complete sets of the PCs (40 shape and 80 texture PC)

in order to assess our model's sensitivity to the information loss due to data com-

pression. Figure 4.28 displays reconstructed images of these synthesized samples.

A comparison of the two �gures 4.28 and 4.27 indicates that there is no signi�cant

information loss between them except a slight loss of some peculiar details in �g-

ure 4.28. This is a pleasing result since it suggests that the compactness of our model

does not inuence our model's generalization capability and the ability to capture

pose variations and innate facial characteristics correctly.
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4.3 Limitation for a Range of Head Poses in

Samples

As we discussed in section 4.2.4, a synthesized facial sample loses some information

from the original in terms of the average jet similarity value. This was also visually

illustrated in �gure 4.27; the reconstructed images of the synthesized samples were

more distorted as head rotation angles increased. Although the visual examples and

the comparison to the similarity statistics using the FERET database in the previous

sections validate that the information loss is not signi�cantly reducing the model's

ability to capture pose variations and innate facial characteristics, it is preferable to

maintain a higher similarity pro�le, thereby minimizing the disturbance.

We have discussed that the loss of information is perhaps due to approximation

errors of the mapping between di�erent parameter spaces (pose, shape, and texture)

because we linearly approximate these non-linear mappings. It is obvious that the

non-linear distortion between di�erent parameter spaces becomes stronger as the

range of head rotation in the training samples increases. Therefore, we can expect

to improve the linear mapping approximation by limiting the range of 3D head

poses in the training and test samples. In order to clarify this point, we conducted a

number of experiments with various sets of training and test samples, each containing

samples with a di�erent range of 3D head angles.
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Figure 4.29: Accuracy of Synthesis Process with Various Pose Ranges in Ave. Jet
Similarities

Figure 4.29 shows results of our experiments for the accuracy tests where learned

models are tested by the same training samples. Similar to our experiments for the

texture synthesis in the previous section, we synthesized samples from the 3D head

angles of each training sample by the pose-to-shape-to-texture mappings of a learned

LPCMAP model. In these experiments, however, we estimated the head angles

of each training sample by our model's analysis process (analysis-synthesis chain)

instead of using the angles in the training samples. The size of the texture model is

�xed to the �rst 21 texture PCs while the average jet similarities are computed for

40 di�erent sizes of the shape model. We used �ve di�erent sets of pose ranges in

training and test samples,

1. samples whose head angles are within a range of �5 degrees for all three axes,

2. samples within �10 degrees range,
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Figure 4.30: Generalization of Synthesis Process with Various Pose Ranges in Ave.
Jet Similarities

3. samples within �15 degrees range,

4. samples within �20 degrees range,

5. samples within �25 degrees range.

The training sets include 450, 526, 621, 686, and 781 samples, respectively. The

results of these experiments showed that the average jet similarities between the

test and synthesized samples monotonically improves as the range of pose variations

is narrowed. Similarity pro�les for each pose range set become atter as the range

becomes more limited. The average similarity value between the test and synthesized

model with 8 shape and 21 texture PCs was improved to 0.975 with the �10 degrees

range and to 0.982 with the �5 degrees range.

Figure 4.30 shows the results of our experiments for the generalization test, where

learned models are tested for test samples with unknown head poses. The settings
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of the training samples remained the same as in the previous experiments for the

accuracy test shown in �gure 4.29. The pose range of the test samples were also

restricted in the same manner as the training samples. The test sets consist of 162,

204, 271, 293, and 300 samples, respectively. Between the �5 and �10 degrees

ranges, there was a signi�cant decrease in the similarity pro�les. A similar decrease

of similarity values was observed between the �10 and �15 degrees ranges. This

is perhaps due to the fact that the number of samples was much smaller for the

narrower pose range sets than for the wider range sets in the training samples. This

result, however, indicates that the generalization capability of our model to unknown

poses is limited by the range of pose variation. Beyond 20 degrees, the similarity

values decrease rapidly. Therefore, the accuracy of our model is maintained only

within a limited pose range.

4.4 Discussion

In this chapter, we presented the results of numerical experiments assessing the fea-

sibility of the LPCMAP model. We have concentrated on analyzing the performance

of our model learned with multiple views of a single person. In chapter 8, we will

discuss an application of our model towards representing the general class of faces

by learning a LPCMAP model with views from multiple persons.
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The experimental results in this chapter indicate that our model achieves a good

balance between accuracy and generalization capability. Our experiments with arti-

�cial data in section 4.1 �rst proved the correctness of our model by showing perfect

accuracy in an optimal setting. The series of numerical experiments using the accu-

racy and generalization tests in section 4.2 revealed that the LPCMAP model, whose

size was derived from the statistics of the data, was able to generalize to unknown

poses while maintaining good accuracy. Moreover, good balance was achieved with

a compact model, compressing the data size of model knowledge. For example, with

the 8 shape and 21 texture PCs, the model compresses an amount of information cap-

tured in 1200 training samples to roughly 22 samples, resulting in a compression by

a factor of 60. Lastly, a study of the synthesized samples in section 4.2.4 indicated

our model's capability to capture pose variations and innate facial characteristics

present in the training samples.

Similarity analysis of the synthesized faces in section 4.2.4 showed that the sim-

ilarity values of the synthesized faces were somewhat lower than expected from the

accuracy shown in our statistical study. Although the loss does not seem to sig-

ni�cantly disturb the model's ability to capture the pose variations and the innate

facial characteristics, it indicates some information loss during the mapping pro-

cesses. Since our model is designed to compactly represent the pose variations of

a face, not to maintain all the pixel-level information for an optimal reconstruction

property, it is natural to have lower similarity values among the synthesized faces. A
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model can be a general and compact representation of a large number of pose-varying

views only by eliminating redundant information and irrelevant variational factors.

These redundancies and variational factors might contain peculiarities presented in

single images which can work as cues that accidentally increase similarity values. In

this view, the model should suppress similarity values of speci�c single views by its

nature. The data compression aspect of our model can also be considered a byprod-

uct of this redundancy and peculiarity reduction for enabling the generalization to

unknown poses. A question we need to answer here, however, is if this loss of in-

formation inuences the capability of the model to capture the 3D pose variations

and the innate characteristics of a learned face. The study of reconstructed images

of synthesized samples in section 4.2.4 supports our model's ability to capture these

types of information. In the next chapter, we also explore our model's retainment

of the innate facial characteristics by applying the model to a facial identi�cation

task.

Figures 4.26 and 4.27 in section 4.2.4 displayed that the synthesized face with

large head rotations seemed to be more distorted compared to the original sam-

ples. The innate facial characteristics used for the identi�cation task are often

sensitive to a slight deformation of con�gurational information in shapes (Bruce and

Humphreys [28]). Therefore, this distortion might have an a�ect on the innate fa-

cial characteristics captured in a learned model. The similarity metric used in our

jet similarity analysis in �gures 4.22 and 4.23 will also be used for our recognition
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system which utilizes the innate characteristics. This metric is mostly insensitive to

the shape deformation, 2 therefore it might be able to suppress the negative e�ect

of the shape distortion. The next chapter should provide experimental answers to

this argument.

This chapter also experimentally revealed an important shortcoming of our

model. The proper faculty of the LPCMAP model is limited in the range of pose

variations presented in samples. Any limitation in poses of training samples means

that the model requires operator assistance and subject's collaboration for sample

collection, so that our model would no longer be data-driven and exible. Therefore,

this is clearly an intolerable restriction to our system. Our solution to this problem

will be explored in chapter 6.

2The similaritymetric based on the node-wise jet similarities does not account for the location of
landmarks. However the shape deformation in con�guration can be partially captured in responses
of low frequency �lters whose receptive �elds are relatively large.
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Chapter 5

Pose-Invariant Face Recognition by the LPCMAP

Model

In this chapter, we present a novel pose-invariant face recognition method using

the LPCMAP model for representing each person in a database of known persons

(Okada et al. [143]). We �rst illustrate three di�erent methods of pose-invariant face

recognition based on a nearest-neighbor classi�er, in order to depict di�erences of

our method from the other two. In section 5.2, we describe our method and illustrate

it with qualitative evaluations using the real face data described in section 4.2.1. In

section 5.3, the feasibility of our method is assessed by numerical experiments with

a data set created by a Cyberware scanner.
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5.1 Three Di�erent Methods for Pose-Invariant

Face Recognition

In the literature, a number of systems have been proposed for recognizing faces

robustly against pose variations (pose-invariant face recognition). We have re-

viewed a number of examples of such systems in section 2.2.3. The review presented

the two types of approach based on a nearest-neighbor recognizer, the single-view

and multiple-view approaches. In the nearest-neighbor framework, an input's iden-

tity is estimated by �nding the entry most similar to the input from a known-person

database or gallery using a speci�c similarity metric. In other words, the input's

identity is derived from the identity associated with a gallery entry which is most

similar to the input. In order to robustly recognize faces with pose variations, head

poses of arbitrary inputs and gallery entries need to be aligned for each comparison.

In this section, we �rst illustrate two recognition methods based on these two ap-

proaches. Next, we compare these methods to our approach. Figure 5.1 schematizes

these two methods.

The single-view method (SVM) utilizes a gallery which represents each

known individual by a single view of the person. In this method, all entries of a

gallery are supposed to have the same canonical pose (e.g., a frontal pose). In or-

der to compensate for pose variations, the input view is transformed to canonical

pose, thereby aligning the head pose of the input and the gallery entries. After this
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Figure 5.1: Two Basic Methods of Pose-Invariant Face Recognition Systems

alignment, the input can be subjected to a nearest-neighbor recognizer for an identi-

�cation. Recognition systems by Maurer and von der Malsburg [126] and Lando and

Edelman [112] are based on this method with a class-speci�c discrete-transformation.

See section 2.2.3.2 for details.

The multiple-view method (MVM) utilizes a gallery which represents each

known individual by multiple views. In this case, each entry of the gallery consists

of views of di�erent pose for a speci�c person. The identi�cation process of this

method is realized by two-level nearest-neighbor classi�cation. For each gallery

entry, an input is compared against all the views of the entry. The gallery view most

similar to the input then serves as a representative view of the entry and the

highest similarity value represents proximity of the input to the person. An input's

identity is estimated by another nearest-neighbor classi�cation over all the gallery

entries �nding an entry whose proximity to the input is the highest. Assuming that

each entry always contains a view whose pose matches with an arbitrary input, head
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Figure 5.2: Our Method of Pose-Invariant Face Recognition System

poses of the representative views are likely to be aligned to the input's head pose.

These multiple views of each person are either manually recorded or synthesized from

a single-view of a �xed head pose by using a class-speci�c discrete-transformation.

Recognition systems by Beymer and Poggio [15, 16] demonstrated both types of

multiple-view gallery construction. See section 2.2.3.3 for details.

In this dissertation, we propose a novel method for pose-invariant face recognition

using the LPCMAP model as the data format of a gallery entry. Figure 5.2 schema-

tizes this recognition method. Using the analysis-synthesis chain of learned models,

we align the head pose of each known person to the input pose, by synthesizing the

appropriate model views. This method combines the SVM and MVM by that 1) it

uses estimated pose information of inputs, similar to the SVM, and 2) it represents

each known person by compact knowledge derived from multiple views of the person

similar to the MVM. Using the information derived from inputs, the search space

within the gallery can be greatly reduced in comparison to the MVM. Moreover, this
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model-based gallery is more compact than the MVM, which represents each known

person by a set of multiple views.

As described in sections 1.4, 2.3, and 3.4, the LPCMAP model is based on

continuous-transformation. This continuous-transformation allows the model to

cover the viewing sphere continuously, while the discrete-transformation covers it

only discretely. Our method is not restricted to a canonical pose, as is often the case

in the previous methods. In our approach, knowledge of the canonical pose should

be learned directly from sample statistics instead of given a priori.

The recognition systems based on the PC-manifold representations (parametric

eigenspace) proposed by Murase and Nayar [133] and Graham and Allinson [80, 79]

resemble our method in that both systems also represented each known person by

a compact and continuous PC-subspace model. However, their systems undergo an

exhaustive (or binary in Nayar's case) search of the all possible poses. Therefore, our

method, using the input pose estimate, is expected to make the matching process

more e�cient and potentially more accurate.

5.2 Illustration of Our System

In this section, we describe our face recognition system using the method described

in the previous section. Figure 5.3 shows an overview. In this system, each gallery

entry for a single known person is represented by an LPCMAP model learned for the

person. For identi�cation, an arbitrary input is subjected to the analysis-synthesis
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Figure 5.3: Pose-Invariant Recognition System with LPCMAP Models

chain process of the LPCMAP models stored in the gallery. This results in syn-

thesized views of each known person with its pose aligned to the input. After this

pose alignment, the input is subjected to a nearest-neighbor classi�cation with these

synthesized views. Because of the pose alignment, the identi�cation performance

should be robust against pose variations. Furthermore, there is no systematic limi-

tation to particular discrete head poses due to the continuous coverage of the pose

parameter space as a result of using the LPCMAP model. As long as the learned

linear PCMAPs cover a su�cient range of head poses, an input with arbitrary pose

can be processed without any pose restrictions.

Next, we qualitatively assess our face recognition system with samples used in

section 4.2. For comparison, we build three recognition systems for our method,
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MVM, and SVM. They all are based on the same nearest-neighbor classi�cation

system but di�er in a way the known-persons gallery is constructed.

For our system, each known person is represented by a LPCMAP model which

is trained by 1200 training samples of the person as shown in �gure 4.7. Only 8

shape PCs and 21 texture PCs were included in the shape and texture models,

respectively, and the type B trigonometric functional transformation is used. With

the same 1200 training samples used to train the LPCMAP model, we also construct

known-persons galleries for the MVM and SVM systems. For the MVM system, each

known person is represented by a number of views with di�erent poses by storing

all the 1200 training samples of the person. For the SVM system, each known

person is represented by a single frontal view taken from the training samples. Pose

transformation described in the previous section was not used for both MVM and

SVM systems for simplicity.

Each gallery entry in these systems provides the most similar view to a given

input facial image for computing the input-to-entry similarity values. We call this

most similar view model view of the entry. A model view of our system is syn-

thesized from the input's head pose by the analysis-synthesis chain process of a

LPCMAP entry. For the MVM system, a model view is the most similar view to

the input among the set of views in the entry. For the SVM system, a model view

is the single view of the entry since there is no other choice.
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Figure 5.4: Examples of Model Views by the Three Di�erent Systems

Figure 5.4 compares the model views of 5 di�erent input views by the three

systems. This �gure only shows model views derived from a gallery entry whose

identity is the same as the inputs. We collected 5 facial images with arbitrary head

poses in di�erent environments from the one used for the training samples shown

in �gure 4.7. These input views are shown in the �rst row of the �gure 5.4. The

second, third, and fourth row of this �gure shows the model views by our system,

MVM, and SVM, respectively. A comparison of the model views by LPCMAP and

MVM illustrates the advantage of using the LPCMAP models as gallery entries.

Note that head poses in the training samples were restricted to rotations along only

one axis at a time, while head poses of the inputs were not restricted. Although the

gallery entry for both systems contained the same amount of information, having

been built from the same training samples, our system's model views are clearly

more aligned to the input's poses than those by the MVM. This again suggests our

model's generalization capability to unknown poses shown in �gure 4.27.
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Model Type a b c d e

LPCMAP 0.915 0.871 0.862 0.891 0.878

MVM 0.930 0.872 0.876 0.913 0.897

SVM 0.926 0.852 0.816 0.878 0.862

Table 5.1: Similarities Between the Input and Model Views in Figure 5.4

Table 5.1 provides the jet similarity values between the 5 input views and the

corresponding model views shown in �gure 5.4. The similarity values by the SVM

provides the base-line in which the pose variation is not compensated. The similarity

values by our LPCMAP system exceeded the base-line similarities except for the

image a, suggesting the e�ectiveness of our system's handling of the pose variations.

In other words, the head pose alignment between input and model views helped to

improve the similarity values from the base-line. The similarity values by our system

are, however, slightly lower than those by the MVM. Since our system's model views

are more aligned to the inputs than the MVM's model views, one could expect that

they have a higher similarity values than the MVM's model views. As discussed in

section 4.4, this similarity decrease by the LPCMAP model is due to its reduction of

the redundancies and irrelevant variational factors presented in the training samples.

This reduction is a key factor which enables the generalization to unknown poses,

however it might also give a negative inuence to our model's ability to capture the

innate facial characteristics.

Next, we conducted an identi�cation test with a gallery of 3 individuals in order

to develop insights for our system's performance. 1200 samples for each individual
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Figure 5.5: Model Views of our System with 3 Person Gallery

described in section 4.2 are used to train 3 LPCMAP entries which represent the 3

known persons. 400 test samples for each person are used for the identi�cation test.

These test samples are recorded in the same environment as the training samples but

their head poses are di�erent from any training samples. The 3 LPCMAP entries

in the gallery give 3 model views for each test sample. The entry with the most

similar model view to the test sample in terms of the jet similarity values provides

the estimate of the sample's identity.

Figure 5.5 illustrates 3 examples of such an identi�cation process. Each row of

this �gure shows a single identi�cation process for di�erent test samples. Three test

samples are shown in the left most column of this �gure and the rest of columns

display the synthesized model views for each test sample by the 3 LPCMAP entries.

This �gure shows that the 3 synthesized views in each row have the same head pose

while the 3 views in each column maintains the same personal appearance.
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Input View LPCMAP 1 LPCMAP 2 LPCMAP 3

A 0.920 0.816 0.871

B 0.849 0.960 0.797

C 0.855 0.736 0.943

Table 5.2: Similarities Between the Input and Model Views in Figure 5.5

Table 5.2 lists the jet similarity values between the 3 tests and model views shown

in �gure 5.5. Similarity values between the 3 tests and their corresponding entries

are highlighted in the diagonal of this table. The table shows 3 correct identi�cation

cases. Using the total test set of 1200 samples, we compared the identi�cation

performance of our system and the MVM system described earlier. As a result, our

system had no failure, whereas the MVM system failed in 3 cases. The average

value of the similarity between the test and model views was again smaller for our

system (0.96) than for the MVM system (0.98). We also computed the average of

similarity di�erences between model views of the best and the 2nd best match as

a statistical measure of discrimination-power of a recognition system. The higher

the value of this measure, the more discrimination-power the recognition system

possesses. This value was the same for both systems (0.09). This seems to suggest

that the similarity decrease in comparison to the MVM system does not negatively

inuence the identi�cation performance of our system.

Figure 5.6 illustrates one of the failure cases of the MVM system. In this case,

our system correctly identi�ed the test as the person 1 while the MVM system falsely

identi�ed it as the person 3. Two other failure cases by the MVM were also caused
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Figure 5.6: An Example of Successful Identi�cation with our System where MVM
fails

by the disagreement of head poses, but our LPCMAP system correctly identi�ed

them. This qualitatively shows the advantage of our system by aligning head poses

of model views to an arbitrary input pose by the analysis-synthesis chain process of

the LPCMAP model for all the gallery entries.

5.3 Numerical Experiments with 3D Cyberware

Scanner Data

In this section, we present results of numerical experiments with 3D facial data

created by a Cyberware scanner in order to quantitatively assess the feasibility of

our method for pose-invariant face recognition. A series of qualitative illustrations in

the previous section implied the feasibility of our method, however the multi-person

statistics with only 3 gallery entries can not provide a convincing proof. Quantitative
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Figure 5.7: 20 Known Persons in 3D ATR-Database

experiments with more gallery entries for more individuals in this section aim to show

more convincing arguments for supporting our recognition system.

5.3.1 Data Set

In this experiment, we use 2D samples generated from 3D facial models recorded by

a Cyberware 3030 scanner. Twenty models (10:female,10:male, shown in �gure 5.7)

are randomly picked from a 3D facial model database of Japanese faces developed

at the Human Information Research Laboratories of ATR in Kyoto, Japan (ATR-

Database).
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A common problem for conducting numerical experiments to evaluate a given

recognition system is the di�culty of collecting training and test samples. In our

case, rigorous numerical evaluation of our system requires a su�ciently large number

of gallery entries and samples with a wide variety of pose variations for each entry.

The samples used in sections 4.2 and 5.2 do not serve as a good test-bed because

there are two few individuals and their pose distributions are speci�c and arbitrary,

although these particular distributions provided a convenient experimental setting

to show our model's generalization capability to unknown poses. Although our

LPCMAP model is designed to accommodate uncontrolled continuous pose vari-

ations, we require a controlled data set for evaluating our system's performance

numerically. The collection of real face samples in the manner described in sec-

tion 4.2.1 is cumbersome because it is hard to control di�erent subjects for the same

pose variations and it is vulnerable to measurement errors of landmark locations

and 3D head angles. In order to mitigate these problems, we use 3D facial models

recorded by a Cyberware scanner. The scanner captures a 3D structural models

together with their texture images by rotating a slit-laser range �nder around a still

subject. An advantage of this method is that it is free from the measurement errors

since landmark locations and 3D head angles are derived from explicit rotations of

the 3D models. This method also provides a convenient way to create arbitrary pose

variations without further recording of the same subject.

189



x

y

z

−30 −15 0 15 30 (degrees)

Figure 5.8: Examples of Training Samples from the ATR-DB

For each model, test and training samples are generated by rendering 2D snap-

shot views while explicitly rotating the 3D facial model [102]. We used distributions

of pose variations similar to those described in section 4.1.1. For the training sam-

ples, each model is rotated along only one axis at a time as shown in �gure 5.8. We

generated 248 training samples for each rotation axis and 744 training samples for

each person. For the test samples, each model is rotated along the three axes simul-

taneously, as shown in �gure 5.9. We generated 186 test samples for each person.

We generated these training and test samples for 20 individuals. Locations of the 20

facial landmarks in various poses are determined by explicitly rotating 3D reference

coordinates that are found manually for a frontal view of each 3D model. The 3D

head angles of each sample are directly given from the explicit rotation angles. One

may be concerned about the arti�ciality of the data due to the 2D rendering process.

However, these two �gures show that facial appearances in these 2D views are very

realistic since the appearances are based on the actual images of the person.
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Figure 5.9: Examples of Test Samples from the ATR-DB

5.3.2 Experimental Results

Figure 5.10 shows the result of our numerical experiments for evaluating the iden-

ti�cation performance of our system. Using the same training samples, the SVM,

MVM, and our proposed systems are built in the manner described in the previous

section. 5 di�erent test sets are derived from the test samples for the 20 persons

by limiting the range of pose variations to �5, �10, �15, �20, and �30 degrees,

respectively. The bars in the �gure show the percentages of correct identi�cations by

the 3 systems for each test set. The correct-identi�cation rates of our system were

constantly better than or equivalent to the SVM system. Our system's performance

was equally good in comparison to the MVM within the pose range of �20 degrees,

although the performance of both systems reached the ceiling. The MVM system

outperformed our system beyond the �20 pose range.
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Figure 5.10: Percentages of Correct Identi�cations with the SVM, MVM, and our
Systems

5.4 Discussion

In this chapter, we have proposed a novel pose-invariant face recognition system

using LPCMAP models as entry format for a known-persons gallery. Our recog-

nition system postulates that pose-invariance can be achieved by providing the

memory/knowledge systems, a known-persons gallery in this case with a learning

capability, instead of trying to �nd pose-invariant properties in input representa-

tions within a perceptual process. The continuous coverage of the pose parameter

space by our LPCMAP model should improve the identi�cation performance of the

SVM and MVM systems which can cover the space only at discrete points given a

priori.
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The numerical experiments presented in section 5.3 assess the feasibility of this

recognition system. The results showed that identi�cation performance of our system

against pose variations improved that of the SVM system, which represented a known

person by a single frontal view. The qualitative analysis of our system in section 5.2

also supported the feasibility of this system.

The experimental results, however, clari�ed a limitation of our recognition sys-

tem. The MVM system outperformed our system beyond the pose range of �20

degrees, although the performance of our system was equivalent to the MVM sys-

tem within this pose range. The results in chapter 4 supported an e�ectiveness of our

model for correctly capturing the pose variations and for generalizing to unknown

poses. However, they also showed that the e�ectiveness was limited to the range of

pose variations. Our hope was that this pose limitation does not negatively inuence

our model's capability to capture the innate facial characteristics, therefore it does

not interfere with the correct identi�cations. Unfortunately, our results showed that

the identi�cation performance of our recognition system was also good only within

a limited range of pose variations. The choice of the linear approximations in the

LPCMAP model provides the advantage of generalization for unknown poses, but

unfortunately it leads to this limitation. Moreover, samples derived from 3D Cy-

berware data contain artifacts that distinguish them and may improve recognition

performance unrealistically. Therefore, the absolute values of correct-identi�cation

rates need to be interpreted with caution.

193



One of the encouraging implications from the experimental results is that the

identi�cation performance of our system was as good as the MVM system within the

pose range of �15 degrees, in which the LPCMAP model was shown to be accurate

in chapter 4. This suggests that our proposed recognition method can be e�ective

if we can mitigate the pose range limitation of the LPCMAP model. Furthermore,

the performance of the MVM system was very high; the correct-identi�cation rate

was close to 90% even with the test samples of the widest �30 degrees pose range.

This is perhaps due to our choice of the Gabor jet-based single-view representation,

which has been successfully shown to be e�ective for the identi�cation task [141] and

to be robust against a small range of pose variations [111]. This high performance

is su�cient for many application scenarios, however the system is not practical

because the size of its gallery will become too large to handle especially when we

deal with additional image variations such as illumination changes. By reducing the

pose range limitation of our model, the performance of our recognition system may

be able to improve up to this su�cient level, while the size of the known-persons

gallery is maintained much smaller because of the model's data compression nature

which also improves recognition time by limiting the search space. These arguments

clearly set a new goal of our investigation for the rest of this dissertation: extending

the LPCMAP model to overcome the pose range limitation. The next chapter will

address our solution to this problem using a piecewise linear model approach.
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Chapter 6

Extension of the LPCMAP Model to a Piecewise

Linear Model Approach

In the previous chapters, we showed that there is a range limitation of 3D head

angles which restricts the LPCMAP model's accuracy and generalization capability

to unknown poses. In this chapter, we propose a method which overcomes this

restriction by piecing together a set of localized LPCMAP models. The idea is to

cover the wide range of the 3D angle space by a number of local linear models since a

single model cannot cover the whole. There has been a similar idea in the literature

of various �elds. Borrowing the terminology from these previous studies, we call our

approach piecewise linear model (hereafter PWLM) approach.

Figure 6.1 shows a sketch of such an approach in a hypothetical 2D parameter

space. Each circle in this sketch represents a parameter range that a single model

wishes to cover. The broken-lined large circle covers an adequate range of the pa-

rameter, however, the model cannot be accurate around the peripheral of the circle.
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Figure 6.1: A 2D Sketch of the Piecewise Linear Model Approach

Our approach tries to cover the same parameter range by a number of smaller solid-

lined circles. Since each model only covers a limited range with good accuracy, the

collection of these models results in better overall �tting accuracy.

Also remember that the pose range limitation of the LPCMAP model was caused

by non-linearity of pose variation in our facial representations. Figure 6.2 illustrates

how the PWLM approach overcomes the non-linearity problem while keeping virtue

of a linear system. The right �gure 6.2(b) schematizes a N -dimensional data-cloud

embedded in a two-dimensional linear subspace as also shown in �gure 1.1. A curved

axis of the data-cloud indicates that the sample distribution is non-linear. Because

of this non-linearity, the linear basis cannot describe the non-linear variation ac-

curately; ~e1 does not align with the curved axis. The left �gure 6.2(a) shows a

PWLM approach which covers the same data-cloud by a number of localized linear

subspaces (R2
1, R

2
2, and R2

3). The non-linear variation axis is collectively covered by
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Figure 6.2: Non-linearity and Piecewise Linear Model Approach

linear components from the di�erent subspaces, providing a better alignment than

the case in �gure 6.2(b).

6.1 Related Studies

In this section, we briey review the literature related to our piecewise linear model

approach. As discussed in chapter 1, one of our main goals is to use samples to learn

mappings which directly associate image-based facial representations and physical

parameters. This problem can be formalized as a problem of multivariate function

approximation. In fact, many problems in various �elds such as pattern classi�ca-

tion and multivariate regression can be generalized to this problem (Bishop [22]).

The di�culty of this problem depends on the nature of the mappings to be learned.

When we can expect the mappings to be linear, simple analytical solutions to this

problem with well studied behaviors become available. However, these mappings of

interest are non-linear in most realistic cases, including the problem of interest here.
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In such cases, these linear methods fail to approximate the mappings accurately. In

past decades, many studies have proposed to solve this function approximation prob-

lem by using learning methods which �t a non-linear function to sample statistics.

For this purpose, arti�cial neural networks such as the back-propagation network by

Rumelhart and McClelland [170] became popular and have been investigated rigor-

ously. However, they have the following common pitfalls; 1) their performance often

depends on the choice of a speci�c non-linearity that needs to be given a priori, 2)

their computational processes tend to be complicated and time-consuming, and 3)

they often result in over�tting, leading to poor generalization (see discussion about

the bias-variance dilemma described by Geman et al. [72] in section 1.6).

Another solution to solve this problem is to use a collection of localized linear

functions. The idea is to cover a wide range of parameter space by a number of linear

functions, each of which can only be accurate within a limited range of the whole

parameter space due to its linearity. Since a single linear function cannot cover the

whole space, this type of method utilizes a collection of such localized linear functions

in order to cover the entire space. Because it only consists of linear functions, the

common problems of non-linear learning methods can be avoided. Methods of this

type have been called piecewise linear approach. They have been incorporated into

a number of common techniques and applied to solve various practical problems.

The techniques which have been extended to the piecewise linear approach include

the multivariate regression (Brailovsky and Kempner [25], Schaal and Atkeson [176],
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and Vijayakumar and Schaal [206]), the growing neural gas network (Fritzke [69]),

the self-organizing map (SOM) network (Walter [209]), the binary-tree classi�er

(Chai et al. [36]), and the layered neural network classi�er (Herman and Yeung [90],

Vriesenga and Sklansky [208], and Tenmoto et al. [187]). The problems to which

piecewise linear methods have been applied include sensor-motor coordination for

robot control (Mael [121], Schaal and Atkeson [176], Vijayakumar and Schaal [206],

and Walter [209]), plane curve approximation (Sato [174]), 3D texture morphing

(Venkatraman and Poston [201]), 2D image warping (Uchida and Sakoe [196]), image

restoration (Acton and Bovik [2]), image compression (Modayil et al. [130]), and

MPEG video decoding (Cheng and Hang [40]).

An important issue for this piecewise linear approach is how to interpolate an

intermediate data point with stored local linear models. As illustrated in �gures 6.1

and 7.1, there are regions of the parameter space which can be covered by multiple

local models or by no models depending on speci�c sample distributions. For the

data points in such a parameter region, it is important to interpolate neighboring

linear models in order to cover the parameter space smoothly.
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6.2 Description of the Piecewise Linear Model

Approach

In the following, the extension of the LPCMAP model to the piecewise linear model

(PWLM) approach is demonstrated. In our case, a local linear model is a linear

mapping function which is valid only within a speci�c local area of the model's

parameter space. We treat the LPCMAP model described in chapter 3 as local linear

model without modi�cations of its design such as introducing explicit parameter

windows. The extension utilizes weighted averaging of the outputs of the LPCMAP

models for piecing together the local linear models.

Suppose K LPCMAP models are learned from K sets of training samples for a

single person, each of which includes a limited range of pose variations,

fLM1; ::; LMk; ::; LMKg; (6.1)

where each LMk denotes a single LPCMAP as a local linear model. We assume that

the average of the 3D pose distributions of the training sample sets for each local

model, ~uLMk

� , are appropriately distanced from each other. We call ~uLMk

� themodel

center of LMk in the 3D angle space.
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The analysis mapping of a single LPCMAP model in (3.40) can be extended to

the PWLM approach by averaging K pose estimates by the set of theK local models

with appropriate weights,

~̂� =
KX
k=1

wk
~̂�k =

KX
k=1

wkALM
k
(~v); (6.2)

where wk is a weight for the k-th local LPCMAP model LMk and ~̂�k is a pose

estimate of an image sample ~v by the LMk.

Similarly, the synthesis mapping in (3.45) can be extended by averaging K syn-

thesized representations with the same weights,

~̂v = R(
PK

k=1 wk~̂xk;
PK

k=1wk
~̂j1k; :: ;

PK
k=1wk

^~jNk )

= R(
PK

k=1wkSSLM
k
(~�);

PK
k=1 wkT SLM

k
(~�));

(6.3)

where ~̂xk and ~̂j1k ; ::;
~̂jNk are synthesized shape and texture representations from 3D

head angles ~� by the k-th local model LMk.

The choice of the weight vector ~w = (w1; ::; wk:::; wK) is essential for the feasi-

bility of this proposed method. These weights are responsible for the localization

of the model's outputs. Their functional behavior also decides the extent to which

each single local model inuences the averaged output ~̂� and ~̂v of our system. For

localizing the linear models, the weights should be a function of the distance in

the 3D angle space between an input pose and each model centers such that the
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value of weights decays as the distance increases. We also prefer a fast-decaying

weight function since the results of our previous numerical experiments suggested

that the accuracy of the LPCMAP model decreases rapidly as the distance between

the input pose and the model center increases. In this study, we use a normalized

exponentially-decaying weight functions of Gaussian shape in 3D angle space,

wk(~�) =
�k(~� � ~u

LM
k

� )
PK

k=1 �k(
~� � ~u

LM
k

� )
; where �k(~�) =

1
p
2��k

exp(�
k~�k2

2�2k
); (6.4)

where �k controls the width of the k-th Gaussian. We consider the �k as a function

of the sample standard deviation of the training 3D head angle vectors for each local

model LMk,

�k = p �

vuut 1

Mk � 1

M
kX

m=1

k~�m � ~uLMk

� k2; (6.5)

where p is a positive scalar factor and Mk is the number of training samples used

for the local model LMk. When not speci�ed, we set p to 1.

6.3 Gradient-Descent Algorithm

for Pose Estimation

A shortcoming of this weight function is that it is a function of an input's 3D head

angles ~�. This makes the extended analysis mapping in (6.2) infeasible, although

the extended synthesis mapping in (6.3) remains valid.
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In order to overcome this shortcoming, another approach is introduced next.

The idea is to formulate a gradient-descent algorithm which iteratively improves an

estimate of the input's head pose ~̂�. For each step of the iteration, pose estimate

~̂� is modi�ed such that a shape synthesis error decreases relative to the previous

pose estimate. Since the modi�cation of the pose estimate in each iteration step

utilizes information from the previous step, the extended analysis mapping in (6.2)

becomes feasible. By setting an initial condition carefully, this algorithm is expected

to �nd a correct pose estimate and to avoid local minima. The following describes

this algorithm.

Let a shape vector ~x be an input to the algorithm. Let a shape vector ~xi and a

3D angle vector ~�i denote the shape and angle estimates by the i-th iteration of the

algorithm. The task of this algorithm is then to accurately approximate the correct

pose estimate ~̂� in (6.2) by the iterative estimate ~�i.

An initial condition ~�0 and ~x0 are set with a model center and its corresponding

shape vector of the local LPCMAP model whose center (average) shape ~uLMk

x is the

closest to the input shape,

~x0 = ~u
LM

k
min

x ;

~�0 = ~u
LM

k
min

� ;

kmin = index(minKk=1 k~x� ~uLMk

x k2);

(6.6)
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where kmin is an index of the local model whose center shape is the closest to the

input ~x and a function index() retrieves an index k from a shape vector representing

a model center.

Iteration rules are de�ned as follows,

�~xi = ~x� ~xi; (6.7)

�~�i =
KX
k=1

wk(~�i)A
0
LM

k

(�~xi); (6.8)

~�i+1 = ~�i + ��~�i; (6.9)

~xi+1 =
KX
k=1

wk(~�i+1)SSLM
k
(~�i+1); (6.10)

where � is a learning rate which is set to a very small value and A0 is a slight

modi�cation of the analysis mapping A in (3.40), which has an interface with shape

vector ~x instead of image sample ~v,

~̂� = A0
LM

k

(~x) = K�1(FLM
k
YLM

k
(~x� ~uLMk

x )): (6.11)

The algorithm iterates equations (6.7) to (6.10) in this order until the mean-square

error k�~xik2 becomes su�ciently small.

The equation (6.8) utilizes the shape-to-pose analysis mapping A0 as an approx-

imation of gradients of ~� with respect to ~xi at the current pose estimate ~�i. Note

that, in our case, such gradients �~�

�~x
are only available at the set of K discrete points
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(model centers) in the 3D angle space. Therefore, our method interpolates the gra-

dients at an arbitrary point of the space from the K local gradient matrices. In this

sense, it is not strictly a gradient-descent algorithm, for which each iteration step

would have to precisely take the negative gradient direction assuring local minimiza-

tion of the energy or error. We also do not know the analytical form of the gradient

function required for such algorithms. The good local accuracy of the LPCMAP

model shown in chapters 4 and 5, however, suggests that the approximation of the

local gradients �~�

�~x
by the shape-to-pose mapping A0

LM
k

(�~xi) should be valid. The

error function is also expected to be smooth and monotonic at least locally so that

a small interpolation error of gradients will not greatly inuence performance of our

method. Our choice of the initial condition should also decrease the chance of being

trapped at a local minimum during the iterations as long as a su�cient number of

local models are allocated in the 3D angle space and the input is close to one of their

model centers.

6.4 Handling of the Self-Occlusion

of Facial Landmarks

In the construction of our proposed models we have implicitly assumed that all the

facial landmarks are visible regardless of the various 3D head poses. This assumption

may be valid when the range of pose variations is kept narrow. However, it inevitably
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fails when the face is largely rotated because some landmarks can become invisible

hidden behind other facial parts. This problem has been commonly called self-

occlusion of landmarks. It is obviously important for our PWLM system to handle

this problem because the system extends the LPCMAP model in order to cover a

wider range of head poses, in which such a self-occlusion occurs naturally. This

section introduces our solution to this problem.

6.4.1 Missing Data Problem

The self-occlusion of landmarks for certain facial views introduces uncertainties in

shape vectors, our single-view representations of shape information. Remember

that a shape vector consists of a set of 2D landmark locations in a facial image.

When certain landmarks are self-occluded, data values for the corresponding vector

components become unavailable. This can be termed either by saying that the

length of the shape vectors becomes variable or that arbitrary components of the

shape vectors are missing.

These uncertainties cause a great deal of trouble for statistical analysis. When

the uncertainties are present, simplemoments such as data mean and variance cannot

be computed correctly in the same manner. Therefore, common statistical analysis

methods based on such moments become erroneous. In the �eld of statistics, this

problem is called the missing data problem (e.g., Little and Rubin [120]).
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Our problem with landmark self-occlusion is indeed an example of this missing

data problem. The missing data problem inevitably hurts our model because of the

model's intrinsic statistical nature imposed by the data-drivenness criterion. More

speci�cally, the uncertainties due to missing data hamper the principal component

analysis (PCA) used to learn the shape subspace model. As described earlier, PCA

involves a sample covariance matrix. Because the uncertainties interfere with the

estimation of the covariance, the resulting principal components can be biased or

can fail to correctly capture the pose variations. On processing facial images, most

of the previous studies did not address the missing data problem. Even studies

addressing head pose variation ignored the problem either by using a data set with

a limited pose range or by treating it as a minor technical problem.

6.4.2 Sample Manipulation-Based Approaches

There are a number of previous studies addressing the missing data problem in the

�eld of statistics. Strategies for solving this problem can be categorized into two

approaches. One approach manipulates the data set such that it becomes complete

and can be subjected to the statistical analyses such as PCA (e.g., Little and Ru-

bin [120] and Belanche Bu�noz [12]). The manipulation includes deleting unwanted

samples and �lling in missing vector components. The other approach estimates

the covariance matrix directly from the available data. This approach utilizes prob-

abilistic tools based on the maximum likelihood estimation (e.g., Little and
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Rubin [120], Ghahramani and Jordan [74], Arbuckle [6], Tresp and Hofmann [191],

and Wothke [216]). This section introduces a number of techniques from the former

approach based on sample manipulation.

The simplestmethod is not to use sample vectors with missing vector components

for the model training by deleting training samples with any uncertainty. This

strategy is called the list-wise deletion in the statistics literature. By throwing

away the samples with missing data, this technique assures a �xed dimensionality

of the data set so that a common method for computing a sample covariance can be

applied. However, it is obviously suboptimal since it discards samples which may

include properly measured vector components carrying valid information.

Another approach is to �ll in each missing vector component by a certain con-

crete value which is estimated from the available data. This approach also assures

the completeness of the data, which enables the PCA. Moreover, it utilizes all the

valid measurements in the data set. Techniques using this approach are called im-

putation in the statistics literature. There are two imputation methods which di�er

in their way of estimating the missing data. The mean imputation method �lls

in each missing vector component by the mean value computed from the available

data for the component. Note that a value of each missing component becomes zero

when a mean imputated data set is centered. The regression imputation method

�lls in each missing component by an estimated value regressed from other available
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vector components of the same vector. A regression function for each vector dimen-

sion with more than one missing data needs to be learned prior to the imputation

process.

A problem of these method is due to the estimation error of the unknowns. The

mean imputation treats the missing vector components to be silent by forcing them

to be at the mean so that they are ignored for the covariance computation similar

to another deletion method called pair-wise deletion. However, this treatment in-

troduces an arti�cial bias which is not related to the true value of the missing vector

component and causes an underestimation of the data covariance. The regression

imputation depends on the accuracy of the regression function. When the function

is accurately learned, it is expected to improve the mean imputation method. How-

ever, the regression functions may be hard to learn, depending on the missing data

patterns. Their errors, due to a poor function �tting, impose unpredictable noise

into the unknowns, which may result in poorly estimated covariances.

6.4.3 Extending the PWLM system for the Missing Data

Problem

In this section, we describe an extension of the piecewise linear model (PWLM)

system described in this chapter to handle the self-occlusion of the facial landmarks.

209



6.4.3.1 De�nition of Landmark Visibility Information

In order to handle the missing data problem, visibility information of landmarks

for each sample needs to be known prior to any type of our system's processing.

Therefore, this visibility information is assumed to be a part of training and test

samples and to be visually measured. It is readily possible to acquire such visibility

information since a landmark �nder system based on a tracking can detect landmarks

as missing when it processes a sample.

We introduce a new notation which represents the visibility information as part

of the training and test samples. Let an N -component binary-valued vector ~om

represent the landmark visibility information of a facial image sample ~vm,

~om = (om1 ; ::; o
m
n ; ::; o

m
N); where o

m
n =

8>>><
>>>:

1 if landmark n is visible

0 if landmark n is occluded

(6.12)

We call the ~om an occlusion vector of a sample m.

For the training samples of the PWLM system, each local model LMk is now

trained with a set of triples,

f(~v1; ~�1; ~o1); ::; (~vm; ~�m; ~om); ::; (~vMk; ~�Mk ; ~oMk)g; (6.13)

where Mk is the number of training triples for a local model LMk. We also extend

the test samples from pairs to triples in the same manner.
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6.4.3.2 Missing Data Structure of Shape and Texture Vectors

Upon the self-occlusion of some landmarks in a facial image sample ~vm, the corre-

sponding components of the occlusion vector ~om are set to zero. When the image

sample is subjected to the operators Dx and Dj in (3.10) for decomposing the shape

and texture vectors, as described in section 3.3.1, the occlusion vector provides

information of which shape and texture vector components are uncertain due to

self-occlusion but it does not provide any information of what value can be assigned

to the components.

Therefore, the components of the shape vector ~xm that correspond to the missing

landmarks are considered as unknown. For example, a hypothetical shape vector of

three 2D landmarks (1; 0; 2; 0; 1; 2) becomes (1; 0; 2; 0; ?; ?) when the third landmark

is missing. Moreover, Gabor jets which serve as the local texture vectors in our

model cannot be computed without explicit landmark locations. Therefore, a local

texture vector ~jm;n for a missing landmark n becomes unavailable, too. Since the

texture vector is localized at each landmark, the existence of missing landmarks

poses only missing samples not missing vector components of a sample.

6.4.3.3 Shape and Texture Decomposition with Missing Data

Next, we describe how to apply the methods for handling the missing data described

in section 6.4.2. The list-wise deletion method does not require any modi�cation of

the structure of the PWLM system. A set of training occlusion vectors are �rst
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checked if there are samples with any missing shape vector components. The train-

ing triples with missing shape vector components found by this process are then

discarded prior to the model training.

The two imputation methods can be adapted to our PWLM system by introduc-

ing a �ltering operator which imputes or �lls in the missing shape vector components.

For a complete vector case, an image sample ~vm is �rst subjected to the shape de-

composition operator Dx, resulting in a 2N -component shape vector ~xm as shown

in the equation (3.10). When there is landmark self-occlusion, we assume that this

operator provides a shape vector ~xm whose missing vector components according

to the corresponding occlusion vector ~om get assigned arbitrary values. Therefore,

this operation results in a set of shape vectors with a �xed dimensionality but with

uncertain values in the missing components.

Next, the shape vector ~xm is subjected to an imputation �lter �() for �lling in

the missing vector components,

~x0m = �(~xm; ~om;~am) =

8>>><
>>>:

x0mn = xmn if ombn
2
c = 1

x0mn = amn if ombn
2
c = 0

; (6.14)

where the 2N -component vector ~x0m denotes a resulting imputated shape vector and

amn denotes a missing component estimate for a landmark bn
2
c of a sample m. 1

1Note that the index n in the equation (6.14) covers the 2N -components shape vector. Therefore
b
n

2
c correctly indicates a landmark in N -component occlusion vector.
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For the mean imputation, the missing component estimate amn is given by a mean

of all the available vector components from the Mk numbers of the training samples

for each local model LMk,

amn = u0n =
1

PM
k

m=1 o
m
bn
2
c

M
kX

m=1

xmn � o
m
bn
2
c: (6.15)

For the regression imputation, the amn is estimated by a function which regresses

a missing vector component xmn from the rest of the vector components fxm�n g in the

same sample,

amn = x̂mn = �n(fx
m
�n g): (6.16)

The following de�nes a linear regression function for a vector dimension �n which

includes at least one missing vector component,

xm�n = ��n(fxm�n g) =
P

n2f�ngw
�n
n � x

m
n ; where

�n 2 fnjn 2 f1; ::; 2Ng;9mombn
2
c = 0g;

�n 2 fnjn 2 f1; ::; 2Ng; n 6= �ng:

(6.17)

For all the vector dimensions with missing components f�ng, we prepare a set of

the regression functions f��ng by learning the regression coe�cients f~w�ng from all the

pairs f(xm�n ; fx
m
�n g)g available from the training samples for a local model LMk. When

more than one missing component are presented in any single shape vector, however,

this formulation of the regression function in (6.17) becomes problematic because it
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introduces uncertainties to the right-hand-side of the equation. This problem can

be solved by �nding a subset of f�ng, in which all the samples are complete without

any missing vector components,

fnjn 2 f�ng;8mombn
2
c = 1g;

and use the subset, instead of the f�ng, to train the regression functions. After

applying the �ltering operator (6.14), both training and test shape vectors can be

treated as complete 2N -component vectors without uncertainties. Therefore, the

rest of our models' procedures related to the shape vectors remain the same.

A case for texture vector is less harmful than the case for shape. This is because

the texture vectors are local while the shape vectors are global. While it makes

the components of shape vectors uncertain, the landmark self-occlusion makes the

entire local texture vectors uncertain so that the length of texture vectors remains a

constant. Therefore, a texture model at a landmark can be correctly learned simply

by training it with all the available local training texture vectors at the landmark,

disregarding the unavailable vectors due to the self-occlusion. The procedure to

acquire the texture models by PCA needs only a slight modi�cation to allow the

di�erent number of training samples at di�erent landmarks. When a very large

range of head rotations is considered, however, some landmarks can be invisible

throughout the entire training samples for a local model. Such a case can be handled

by allowing the local model not to construct texture models at the entirely missing
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landmarks. The rest of procedures of our models related to the texture information

remain the same.

6.5 Discussion

In this chapter, we propose the piecewise linear model (PWLM) system which ex-

tends the LPCMAP model in order to mitigate its pose range limitation. The sys-

tem interpolates a set of local linear models by a weighted averaging of local models'

outputs such as locally estimated poses and synthesized shapes and textures. For

computing the weights for each local model, we utilize a normalized Gaussian func-

tion in 3D angle space. An iterative gradient-descent algorithm is also introduced

for realizing a pose estimation process by our PWLM system without ground-truth

pose information.

In chapters 4 and 5, we showed that our usage of linear systems in the LPCMAP

model gives the bene�t of good generalization, enabling a model to learn a transfor-

mation from a small number of samples which smoothly cover the parameter space.

However, the same design choice strictly limits the range of head poses in which

our linear model can perform accurately. This is an unbearable restriction to our

system since it violates our design philosophy: data-drivenness and exibility, dis-

cussed in the introduction. The PWLM system, extending the LPCMAP model,

o�ers a systematic solution to this problem while maintaining the linearity of our

system so that the aforementioned bene�t of a linear system still remains valid. The
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feasibility of this extension will be empirically investigated by a series of numerical

experiments in the next chapter.

The missing data problem due to the self-occlusion is an innate consequence of 3D

head pose variation. The performance of the sample manipulation-based approaches

described in this chapter can, however, be unstable, depending on the frequency and

pattern of the missing shape vector components in training samples. In general, they

perform well when the number of missing components is small and the components

are missing at random. In our case it is assumed that the number of missing shape

vector components is relatively small. This is because the LPCMAP model used as

a local model of the PWLM system is responsible only within a small pose range in

which most samples share the similar landmark visibility con�guration. Therefore,

within a local model, the number of missing components are kept small with respect

to the total number of the shape vector components. Our interest also focuses on

analyzing a face, not a complete 3D head. Since the back of a head possesses less

information than the frontal face, we may naturally con�ne the 3D pose range so

that the face is fairly visible.

Note that our choice of representing the facial shape by using a distribution

of sparse landmarks instead of dense pixel correspondences helps to maintain the

number of missing shape vector components. This makes sample manipulation-based

methods applicable which can handle only a small number of missing components.

If a dense correspondence �eld is used as the single-view representation such as the
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systems by Vetter and Beymer, the number of missing components will be much

larger than one based on a sparse point-distribution for the same pose range. The

simple imputation methods may not be able to handle the missing data problem in

those systems.

There are other methods for statistically analyzing data with missing compo-

nents. For example, Little and Rubin demonstrated an EM algorithm based on a

maximum likelihood which estimates sample moments from data sets with miss-

ing components more accurately than the imputation methods when the number

of missing components are larger. Their study provides a theoretical framework

which gives us useful insights. However an implementation of the algorithm is often

complicated and its estimation process is time-consuming. In our study, we favor

the sample manipulation-based method because of its simplicity. When the number

of self-occluded landmarks is small, these sample manipulation-based methods will

allow PCA to correctly extract the 3D rotation modes in the shape vectors with

missing components. The validation of these methods will be sought by numerical

experiments described in the next chapter.
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Chapter 7

Numerical Evaluation of the Piecewise Linear

Model System

In this chapter, we empirically evaluate the performance of the piecewise linear

model (PWLM) system described in chapter 6. The PWLM system is extended

from the LPCMAP model using the piecewise linear model approach in order to

cover a wider range of pose variations than can be covered by the single LPCMAP

model described in chapter 3. We conducted a series of numerical experiments with

two di�erent types of data set for assessing the feasibility of this system. This

chapter describes the results of these experiments.

7.1 Numerical Experiments with Arti�cial Data

In this section, we present results of numerical experiments of the PWLM system

with arti�cially created simple data. By using simple and controlled data we seek
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Figure 7.1: Distributions of 3D Pose Variations for PWLM Training Samples

an experimental proof of the correctness of our PWLM approach and investigate the

optimal setting of a PWLM system for maximizing its performance.

7.1.1 Data Set

We generated sets of arti�cial shape representations consisting of 2D projections

of 25 landmarks pasted onto a rotating 3D unit sphere, using the same method

described in section 4.1.1. Seven di�erent sets of training samples are created for

7 model centers which deviate �40 degrees from the origin along one rotation axis.

Figure 7.1 displays 3D pose distributions of these 7 training sample sets with the 7

centers, (0,0,0),(�40,0,0),(0,�40,0), and (0,0,�40). Note that, instead of the sphere

with dots, facial images whose poses correspond to these 7 model centers are shown

in the �gure in order to intuitively describe the pose distribution. Each sample set
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Figure 7.2: 3D Pose Distributions for PWLM Training and Test Samples in 2D

includes 403 samples which are rotated around its model center within �15 degrees

from the center for each axis. The �gure only shows samples rotated along one axis

at a time, although samples rotated along more than one axis are also included in

each set. We construct 7 local LPCMAP models with these 7 training sample sets.

We also generated a set of test samples whose 3D poses are not presented in the

above training samples. Figure 7.2 displays the 2D projection of 3D pose distribu-

tions of the 804 test samples. In this �gure, both training (thick lines) and test (thin

lines) samples in the 3D angle space are projected onto the x-y plane. Note that

some test samples are outside of the 7 local clusters of the training sets while the

other are within one of these clusters. Therefore, these test samples include various

topological relations in the space between inputs and local linear models. The pose
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distribution of the test samples ranges between �50 degrees from the origin of the

3D angle space for each axis.

For both the training and test samples, 3D rotation angles of each sample are

given by the rotation angles of the unit sphere. The self-occlusion of landmarks

is arti�cially simulated by introducing an occluding plane, z = c (c: constant,

kck � 1), which is parallel to the image plane of a view with the initial frontal

pose. A landmark whose corresponding 3D point on the unit sphere is below the

occluding plane is considered as occluded.

7.1.2 Experimental Results

This section presents results of our numerical experiments with the arti�cial shape

representations described in the previous section. We investigate the correctness

of our PWLM system, the optimal �k of our weight function, the feasibility of the

missing data handling, and the feasibility of the pose estimation process by the

gradient-descent algorithm in this section.

7.1.2.1 Evaluation of the PWLM System

In this section, we evaluate the accuracy and generalization capability of pose esti-

mation and shape synthesis processes of the PWLM system using settings similar to

those of the previous experiments, section 4.1. The accuracy and generalization tests

used in this section are the same as the ones used in section 4.2; the accuracy test
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Figure 7.3: Accuracy and Generalization Tests of Pose Estimation by the PWLM
System with Toy Data

uses the training samples as test samples while the generalization test uses separate

test samples described in the previous section. For the accuracy test, in order to

show the correctness of our system, we used the type C (2nd-order) trigonometric

functional transformation K which gave perfect accuracy in our previous experiments

as shown in �gure 4.1 For the generalization test, we used the type B (1st-order)

trigonometric functional transformation which was shown to give the best balance

between the LPCMAP model's accuracy and generalization capability to unknown

poses. For both tests, we compared two data-precision settings: oat and integer

accuracy of the shape representations (described HIGH and LOW in section 4.1,

respectively). The former gives the most accurate information possible for the cor-

rectness evaluation, while the latter enables evaluations in more realistic scenarios.

All landmarks are considered to be visible by setting the occluding plane parameter

c to -1.
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Figure 7.3 shows results of the accuracy and generalization tests for the pose

estimation process of the PWLM system. In both plots of this �gure, average angular

errors in degrees between the test and estimated poses are plotted against 50 di�erent

sizes of the shape model. For the accuracy test, the average errors of an PWLM

system with a type C transformation K and oat accuracy became zero degrees

when more than 5 shape PCs are included in the shape model. This result indicates

the correctness of our PWLM system. For the generalization test, the more realistic

case with type B K and integer accuracy resulted in about 0.5 degrees average errors

when more than 8 shape PCs are included. This result is very satisfactory supporting

a high precision of our system even for this most di�cult test case with unknown

poses. The accuracy of our PWLM system is signi�cantly improved relative to the

similar test for the single LPCMAP model, shown in �gure 4.6. This result also

shows our system's generalization capability to unknown poses. In the results of

both tests, the di�erence of the errors between the oat and integer cases was very

small. This indicates the robustness of our system against small measurement errors

in landmark locations. The errors reached their minimum with 5 to 8 shape PCs.

This agrees with our similar �nding from the experiments of the single LPCMAP

model in section 4.1.

Figure 7.4 shows results of the accuracy and generalization tests for the shape

synthesis process of the PWLM system. Similar to �gure 7.3, average landmark

position errors in pixels between the test and synthesized shape representations are
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Figure 7.4: Accuracy and Generalization Tests of Shape Synthesis by the PWLM
System with Toy Data

plotted against the 50 di�erent shape model sizes in this �gure. For the accuracy test,

the average errors of an PWLM system with a type C K and oat accuracy became

very close to zero pixels when more than 6 shape PCs are included. This result also

supports the correctness of our PWLM system. For the generalization test, the more

realistic case, which is the same for the pose estimation process, resulted in about 1.1

average error in pixels when more than 6 shape PCs are included. As discussed in

section 4.1, this is still acceptably accurate because the landmark locations estimated

in the facial image only possess the pixel-level precision. Moreover, the average errors

in this �gure are also improved relative to the similar test for the single LPCMAP

model, shown in �gure 4.3. This modest improvement is perhaps due to the fact

that samples in this test contain a much wider range of pose variation (�55 degrees)

than those used in section 4.1 (�30 degrees). The results also showed that the

di�erence of the pixel errors between the oat and integer cases was very small.
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This again indicates our system's robustness against a small measurement errors in

the landmark locations.

7.1.2.2 Evaluation of the Weight Function

Next, we evaluate di�erent sizes of the Gaussian of our weight function. As men-

tioned earlier, the weight function (6.4) makes the localization of the linear models

possible. The range of which each local model is responsible for in the 3D angle

space is controlled by a Gaussian-width parameter �k in this function. The experi-

mental results in chapter 4 showed that the e�ective range of our single LPCMAP

model is about �15 degrees. Obviously, our aim here is to �nd a right value of �k

which aligns the width of the Gaussian to the e�ective pose range of our local linear

models. In section 6.2, we have proposed the �k as a function of the sample standard

deviation shown in (6.5). In this formulation, the �k is parameterized by a positive

scalar factor p. We evaluate our system's errors with di�erent p values in order to

�nd the optimal �k. In this section, we conduct only the generalization tests and all

landmarks are again considered visible.

Figure 7.5 shows results of the generalization test for pose estimation and shape

synthesis processes of our PWLM system with the type B transformation K, integer

accuracy, and 8 shape PCs. The average angular and position errors in the �gure

are plotted against the di�erent values of p. For the pose estimation and the shape

synthesis, the minimum error was reached when �k was slightly larger than the
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Figure 7.5: Di�erent Sigma of the Weight Function for Pose Estimation and Shape
Synthesis

sample standard deviation (p = 1:2) and when �k was slightly smaller than the

sample standard deviation (p = 0:9), respectively.

These results suggest that the optimal balance between the accuracy and gener-

alization capability of our PWLM system is achieved when we set �k by the sample

standard deviation itself (p = 1). The errors with a large p increase rapidly for

both cases. This agrees with our �ndings about the accuracy of the single LPCMAP

model discussed in section 4.3. The error curves in both �gures are smooth. This

suggests that a slight variation of the �k value does not greatly inuence the system's

accuracy.

7.1.2.3 Evaluation of the Landmark Self-Occlusion Handling

Next, we numerically evaluate the performance of the PWLM system when some

landmarks in the training and test samples are occluded. For this evaluation, the
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Figure 7.6: Comparison of the Three Methods for Handling the Occlusion

trigonometric functional transformation K was �xed to the type B and only integer

accuracy was used. According to the result in the previous section, �k was set by

the sample standard deviation of the 3D angle vectors for each local model LMk by

setting p in the equation (6.5) to 1. We conducted only the generalization tests.

First, we compare the three sample manipulation-based methods for handling

the occlusion of landmarks, introduced in section 6.4. Figure 7.6 compares the pose

generalization errors of the pose estimation and shape synthesis processes of the

PWLM system in di�erent conditions of the landmark occlusion. Average angular

and position errors are plotted against the percentages of the occluded landmarks in

the training samples. As described in section 7.1.1, the frequency of the occlusion

is parameterized by a constant parameter c which is a depth of the occluding plane

z = c. These occluding plane parameters are also shown in the �gure for some

data points. The up-triangles, crosses, and down-triangles denote the errors by
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the system with the list-wise deletion, mean imputation, and regression imputation

methods, respectively. A shape model with the �rst 20 PCs are used in each case.

For the pose estimation process, the errors by the list-wise deletion and mean im-

putation behaved similarly in that they were not greatly inuenced by an increase

of the occlusion occurrences, while the errors by the regression imputation were

largely worsened as the occurrence percentage increased. For the shape synthesis

process, the errors by the mean imputation were nearly constant against the various

occlusion occurrences. The errors by the regression imputation also behaved well

but distinctively worse than those by the mean imputation, while the errors by the

list-wise deletion were rapidly aggravated as the occurrence percentage increased.

The results show that the mean imputation method performed best for both pose

estimation and shape synthesis processes. The error increase of this method was

relatively slow against an increase of the occlusion occurrences, which is a favorable

characteristic concerning handling of missing data. This graceful decrease of the

accuracy was observed when the percentage of occluded landmarks was less than

roughly 20%. The regression imputation method did not perform well for the pose

estimation process. This is perhaps due to a suboptimal �tting of the linear regres-

sion functions as discussed in section 6.4.2. On the other hand, the list-wise deletion

method performed poorly for the shape synthesis process. Since the method pes-

simistically discards samples with any missing vector components which are often
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Figure 7.7: E�ects of the Occlusion in Accumulated Shape Variances

samples with a large 3D rotation, the PWLM system with this method naturally

fails to capture the full pose variation, which perhaps leads to this poor performance.

Next, we investigate the extent to which the missing data inuences the perfor-

mance of the shape subspace model of our system. In chapter 4, we demonstrated

that a relatively small number of shape PCs are enough to cover most of the data

variance caused by 3D head pose variation, as shown in �gure 4.12. A shape subspace

model spanned by only 3 PCs cannot cover the complete range of pose variations be-

cause the curve-linear shape variation along each of the 3 rotation dimensions is only

rendered by a larger number of shape PCs. Nonetheless, the �rst 8 PCs, including

ones that code intuitively interpretable variations such as scaling and stretching, are

able to describe the complete range of pose variations without ambiguities. However,

missing data due to the occlusion of landmarks cause di�culty in the construction
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of the shape subspace model by PCA, as described in section 6.4. The arti�cial

biases introduced by the sample manipulation-based method for missing data may

provide a negative inuence to the linear separation process of the 3D pose variation

by PCA.

Figure 7.7 shows how the accumulated variance of a shape subspace model is

inuenced by the presence of the occlusion of landmarks. The �gure plots the

percentages of the accumulated variances against the 50 di�erent shape model sizes

for 4 di�erent conditions of the occlusion, z = -1, 0.1, 0.2, and 0.3. These values of

the occluding plane parameter c correspond to 0% (no occlusion), 5.2%, 8.1%, and

11.7% of landmarks missing from the total training samples, respectively. The shape

model which results in the least accumulative variance among the 7 local models of

the PWLM system is used for this analysis. The missing vector components are �lled

in by the mean imputation method according to the result of the previous section.

When occlusion was not considered (denoted by a plot with star marks), the �rst

8 shape PCs covered 99.6% of the total variance presented in the training samples.

This result agrees with our previous �ndings in chapter 4. When some landmarks

were occluded, however, more than 8 PCs were needed to cover the same amount

of data variance. The �rst 19, 21, and 24 PCs were needed to cover the variance

when 5%, 8%, and 12% of the landmarks were occluded, respectively. These results

indicate that the handling of the missing data problem by the mean imputation

method does introduce arti�cial biases in the data statistics. These arti�cial biases
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Figure 7.8: Shape Processing Accuracies with and without the Occlusion

are then coded in the additional PCs, increasing the number of PCs required to

cover the full pose variations.

Lastly, we investigate how the above arti�cial biases introduced by our missing

data handling inuence the accuracy of the PWLM system. Figure 7.8 compares the

pose generalization errors of the pose estimation and shape synthesis processes of the

PWLM system with and without the occlusion of landmarks. Average angular and

position errors are plotted against the 50 di�erent shape model sizes. In the �gure,

the down-triangles denote the errors by the PWLM system whose missing data is

handled by the mean imputation method. The occluding plane parameter c is set

to 0.1, resulting in 5% of landmarks missing. This occlusion percentage is similar

to that of the training samples derived from the ATR 3D face database described

in chapter 5. On the other hand, the broken lines denote the errors without any

occlusion by setting the occluding plane parameter c to -1.0. For the pose estimation,

the minimum error of 0.5 degrees was reached for the no occlusion case when the
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�rst 8 PCs were included to the shape model. When the occlusion was imposed,

the system with the �rst 8 PCs resulted in 0.7 degrees error. The errors with the

occlusion continued to decrease slightly by adding more shape PCs to the model.

The minimum error of 0.6 degrees was reached when roughly 20 shape PCs were

included, which agrees with our �ndings in the previous section. For the shape

synthesis, the �rst 6 shape PCs resulted in the minimum error of 1.1 pixels, both

with and without occlusion. By adding further PCs, the errors with the occlusion

increased slightly to 1.2 pixels. For both processes, the error di�erences with and

without occlusion were very small. This supports the feasibility of our missing data

handling by the mean imputation method. For optimal accuracy, however, the �rst

20 PCs rather than 8 were required.

7.1.2.4 Evaluation of the Pose Estimation by Gradient-Descent

In the previous three evaluations, we used the pose estimation process de�ned in

(6.2) with the ground-truth 3D angle vectors. In section 6.3, we have argued that

this process is infeasible because the right-hand-side of the weight function includes

the estimated 3D angles which should not be available as input. Section 6.3 has intro-

duced a gradient-descent algorithm which overcomes this shortcoming. The purpose

of this section is to numerically evaluate the feasibility of this gradient-descent pose

estimation and shape synthesis. For this purpose, we conducted only generalization

tests. According to the results in the previous sections, the trigonometric functional

transformation K was �xed to the type B and only integer accuracy was used for
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Figure 7.9: Pose Estimation and Shape Synthesis Accuracy by Gradient Descent
PWLM

this evaluation. �k was also made equal to the sample standard deviation of the 3D

angle vectors for each local model LMk by setting p in the equation (6.5) to 1. The

occluding plane parameter c was set to 0.1, resulting in 5% missing components in

the training sample vectors. The mean imputation method (equations (6.14) and

(6.15)) described in section 6.4.3.3 was used for handling the missing components.

We iterated the gradient-descent loop 500 times and set the learning rate � to 0.01

throughout the following experiments.

The left plot of �gure 7.9 shows results of the generalization tests for the two

di�erent pose estimation processes of our PWLM system. The average angular errors

for the di�erent shape model sizes are plotted by a dotted line for the one-shot system

in (6.2) and by a solid line with triangles for the gradient-descent iterative system.

The errors for the one-shot and gradient-descent systems were 0.7 and 0.8 degrees

with the �rst 8 shape PCs, and 0.6 and 0.7 degrees with the �rst 20 PCs, respectively.
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This result shows that the accuracy of our PWLM system is slightly decreased in

the gradient-descent system. However, the average error was still acceptable which

is much lower than 1 degree, and the error di�erence between the two systems was

at most 0.1 degrees.

The right plot of �gure 7.9 shows results of the generalization tests for the two

shape synthesis processes of our PWLM system. Because the gradient-descent pose

estimation process simultaneously estimates the angle and shape vectors at each

iteration step, the algorithm can also be seen as an iterative shape synthesis pro-

cess. Although the original shape synthesis process de�ned in (6.3) is valid without

modi�cation, it gives an alternative way to synthesize a shape from 3D head angles.

In this plot, the average position errors for the di�erent shape model sizes are also

plotted by a dotted line for the one-shot system in (6.3) and by a solid line with

triangles for the gradient-descent system. The errors for the one-shot and gradient-

descent systems were 1.1 and 1.0 pixels with the �rst 6 shape PCs, and 1.2 and 1.1

pixels with the �rst 20 PCs, respectively. Note that the accuracy of the gradient-

descent system is slightly better than the one-shot system. These results, which

show only a small error di�erence between the two systems, support the feasibility

of the gradient-descent algorithm of our PWLM system, even with missing shape

vector components due to the occlusion of landmarks.
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7.2 Numerical Experiments with 3D Cyberware

Scanner Data

In this section, we evaluate the PWLM system with the samples derived from the

3D facial data used in section 5.3. Our aim is to numerically test the performance of

our system with more realistic data and with more individuals. For comparison, we

used all the training samples for local models to construct also a single LPCMAP

model and compare its performance with the PWLM system for di�erent tasks.

7.2.1 Data Set

In these experiments, we use 2D samples generated from 3D facial models randomly

picked from the ATR-Database of which examples are shown in �gure 5.7. The

same pose distributions used in the previous section (see �gures 7.1 and 7.2 for the

sketches of the distributions) are also used to create 7 sets of the training samples

for the 7 di�erent model centers and a set of test samples, for the 20 individuals.

Therefore, for each individual, there are 2821 training and 804 test samples. Each

training set includes 403 samples whose poses are within a range of �15 degrees

around each model center. The test samples cover a pose range of �50 degrees

around the origin of the 3D angle space. For each sample, the 3D head angles and

the 20 facial landmarks de�ned in �gure 4.9 are directly derived from the explicit
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rotation of the 3D facial models by manner described in section 4.2.1. The self-

occlusion information is also derived from the rendering system and stored in the

occlusion vectors described in section 6.4.3.1.

7.2.2 Systems

We built a PWLM system which consists of 7 local models with the training sam-

ples described in the previous section. 20 PWLM systems are trained separately for

the 20 di�erent individuals. For comparison, we construct a single LPCMAP system

which is trained with all the 2821 training samples available for a single person. This

system, therefore, lets a single model globally capture the wide range of the pose
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variations between �55 degrees along each axis, while the PWLM system allocates 7

local models to cover the same pose range. In order to prove the e�ectiveness of our

PWLM system for solving the pose range limitation problem discussed in section 4.3,

we need to show that the PWLM system largely improves the performance of this

LPCMAP system when tested by samples with large pose variations. Hereafter, we

refer to this single LPCMAP system as GLOBAL system. Figure 7.10 illustrates

the PWLM and GLOBAL systems schematically.

For both the PWLM and GLOBAL systems, the type B transformationK is used.

For the PWLM system, �k is set equal to the sample standard deviation according to

our previous results with arti�cial data. In order to consider more realistic scenarios,

the pose processing part of the PWLM system utilizes gradient-descent instead of

the simple one-shot process in (6.2). In the gradient-descent, � is set to 0.01 and

500 iterations are performed for each test sample.

In the training data set used in this section, 5 to 10% of the total number of land-

marks were self-occluded in each local training set. According to the previous results

with arti�cial data, we use the mean imputation method described in section 6.4 for

handling missing data due to self-occlusion. Using this data, we compared the three

missing data handling methods the same way as illustrated in �gure 7.6. Also in this

pilot study the mean imputation method performed best, con�rming our �nding in

section 7.1.2.3.
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Figure 7.11: Pose Estimation Errors of the PWLM System

7.2.3 Analysis and Synthesis Performance

In this section, we numerically evaluate the analysis and synthesis processes of the

PWLM system. We compare the performance of the PWLM and GLOBAL systems

by the accuracy and generalization tests in the same manner as in the previous

chapters. The same tests for the PWLM and GLOBAL systems are conducted for

the 20 individuals. The errors and similarities for each test are averaged over these

20 people.

7.2.3.1 Pose Analysis

Figure 7.11 shows results of the accuracy and generalization tests for the analysis

process of our systems. Average angular errors of pose estimates by the PWLM

and GLOBAL systems for 6 di�erent sizes of the shape model (1,8,16,24,32,40) are

plotted by up-triangles and down-triangles, respectively. For the accuracy test, the

average errors with the 8 shape PCs for the PWLM and GLOBAL systems were 0.8
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and 3.0 degrees, respectively. Standard deviation of the errors and the worst error

were 0.6 and 5.6 degrees for the PWLM system and 2.4 and 18.9 degrees for the

GLOBAL system. For the generalization test, the errors for the same systems were

0.9 and 2.4 degrees. The standard deviation and the worst error were 0.6 and 4.5

degrees for the PWLM system and 1.4 and 10.2 degrees for the GLOBAL system.

The results for both tests show that the PWLM system largely decreases the average

error of the GLOBAL system, indicating that the PWLM system greatly improves

the pose estimation accuracy. The average errors of the PWLM system were very

similar between the accuracy and generalization tests. This result suggests that the

PWLM system successfully maintains good generalization capability to unknown

poses. In comparison to the similar test with arti�cial data shown in �gure 7.9, the

errors of the PWLM system was slightly increased with more realistic facial data.

This slight decrease in accuracy is due to the inhomogeneous depth variations at

di�erent landmarks which are intrinsic properties of faces. That the increase of the

error is small indicates that these variational factors in the realistic data do not

greatly inuence the performance of our systems. For the GLOBAL system, the

average errors for the generalization test were lower than that for the accuracy test.

This is perhaps due to the fact that the training samples include a wider range of pose

variations (�55 degrees) than the test samples (�50 degrees). This again indicates

that the LPCMAP model is very sensitive to the pose range in samples. The results
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Figure 7.12: Shape Synthesis Errors of the PWLM System

also show that our systems with the �rst 8 PCs do not reach the minimum error.

This is due to the missing data problem described in section 7.1.

7.2.3.2 Shape Synthesis

Figure 7.12 shows results of the accuracy and generalization tests for the shape

synthesis process of our systems. Average position errors of synthesized shapes in

pixels are plotted for the 6 di�erent sizes of the PWLM and GLOBAL systems. The

average errors of both systems in both tests reached their minimum with the �rst 8

shape PCs. For the accuracy test, the average errors with the 8 PCs were 0.8 and

2.2 pixels for the PWLM and GLOBAL systems, respectively. Standard deviation

of the errors and the worst error were 0.4 and 3.0 pixels for the PWLM system and

1.2 and 7.6 pixels for the GLOBAL system. For the generalization test, the errors

were 0.9 and 2.4 pixels for the two systems, respectively. The standard deviation

and the worst error were 0.4 and 2.7 pixels for the PWLM system and 0.7 and 5.6
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Figure 7.13: Texture Synthesis Similarities of the PWLM System

pixels for the GLOBAL system. Again, the PWLM system greatly improved the

accuracy over the GLOBAL system. The di�erence of errors by the PWLM system

between the accuracy and generalization tests were again small, indicating good

generalization capability of the PWLM system to unknown poses. In comparison

to a similar test with arti�cial data shown in �gure 7.9, the errors of the PWLM

system with the more realistic facial data was equivalent to those with arti�cial data.

This result again indicates that the aforementioned variational factors in the realistic

data do not greatly inuence the performance of our systems. The error decrease

of the GLOBAL system in the generalization tests observed for our pose analysis

experiments was not found in these experiments. The inuence of the missing data

problem was not observed in this case.
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7.2.3.3 Texture Synthesis

Figure 7.13 shows results of the accuracy and generalization tests for the texture

synthesis process of our systems. Average jet similarities of synthesized texture by

the PWLM and GLOBAL systems are plotted by up-triangles and down-triangles,

respectively. These average similarities are computed for 9 di�erent sizes of the

texture model (1,10,20,30,40,50,60,70,80) for each case. These similarities reached

their maximum with the �rst 20 texture PCs. For the accuracy test, the average

similarity value with the 20 PCs was 0.955 and 0.91 for the PWLM and GLOBAL

systems, respectively. Standard deviation of the similarities and the worst similarity

value were 0.03 and 0.81 for the PWLM system and 0.04 and 0.73 for the GLOBAL

system. For the generalization test, the similarity value was 0.945 and 0.88 for the

PWLM and GLOBAL systems, respectively. The standard deviation and the worst

similarity value were 0.03 and 0.82 for the PWLM system and 0.03 and 0.77 for the

GLOBAL system. See �gure 4.24 for a reference of the similarity value range. Again,

the PWLM system greatly improved the accuracy of the GLOBAL system especially

for the generalization tests, suggesting the e�ectiveness of the system. The similarity

di�erence between the accuracy and generalization tests of the PWLM system was

again small, indicating good generalization of the PWLM system to unknown poses.
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Figure 7.14: An Example of Sample Synthesis by PWLM System

7.2.4 Synthesized Samples

In this section, we qualitatively evaluate reconstructed images or model views of

synthesized samples by the PWLM system. The same data and system settings in

the previous error analysis are also used in this section. In order to reconstruct

model views from synthesized samples, we used the same reconstruction method

used in section 4.2.4.

Figure 7.14 illustrates the analysis-synthesis chain of our PWLM system. A test

sample shown in the top-left corner of the �gure is �rst subjected to the analysis

process of the system, resulting in a 3D pose estimate denoted by a black dot.

This estimate is then used as an input of the sample (shape and texture) synthesis

processes by 7 local models whose centers are denoted by circles. Model views of
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Figure 7.15: Synthesized Training Samples by PWLM System

these 7 locally synthesized samples are shown close to each model center in the �gure.

These samples are then subjected to a weighted averaging process with weights based

on the distance of the estimated test pose and each model center. Numbers shown

next to the local model views denote the weights. This weighted averaging results

in a �nal synthesized sample shown in the bottom-left corner of the �gure. Note

that the local model views become more distorted as their model centers become

farther from the input pose. This is because of the pose range limitation of local

linear models. However, these largely distorted local samples do not greatly inuence

quality of the �nal sample because their contribution is strongly inhibited by very

low weight values.

Figure 7.15 displays model views of the 7 synthesized training samples by our

PWLM system. The �rst and second rows of the �gure show model views of the

training samples used as tests and their corresponding synthesized samples, respec-

tively. A sample of the left most column is with a frontal pose which corresponds

to the origin of the 3D angle space. The rest of samples in this �gure are with

head poses which are rotated �45 degrees along only one axis. As mentioned in
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Figure 7.16: Synthesized Test Samples by PWLM and GLOBAL Systems (Large
Angle)

section 4.2.4, the model view is not a perfect reconstruction of the original image

because of the information loss by the coarse landmark and frequency samplings.

However, this �gure shows that the model views of the synthesized samples by our

PWLM system are almost identical to their corresponding test samples, indicating

the accuracy of the PWLM system. Note also that the PWLM system accurately

covers a much wider pose range (�45 degrees) than that single LPCMAP model can

deal with. For comparison, see �gure 4.25 in section 4.2.4.

Figures 7.16 and 7.17 compare model views of the synthesized test samples by the

PWLM and GLOBAL systems. The middle row of the two �gures show test samples

used as inputs to the analysis-synthesis chain process of both systems. The top and

bottom rows of the �gures show model views of their corresponding synthesized

samples by the PWLM and GLOBAL systems, respectively.
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Figure 7.17: Synthesized Test Samples by PWLM and GLOBAL Systems (Far from
Center)

Figure 7.16 includes test samples in which one of their 3D pose angles is �45

degrees while the rest of the angles are also non-zero. Thus, these test samples

use 3D head poses which are not included in the training samples and are largely

rotated along one axis. The model views by the PWLM system are almost identical

to their corresponding reconstructed images of the test samples. This indicates that

the PWLM system maintains its generalization capability to unknown poses even

with the very wide pose range. There are no clear di�erence between the model

views by the PWLM and GLOBAL systems. Our visual perception is insensitive

to the di�erence which is, however, clearly shown in the average error di�erence of

�gures 7.12 and 7.13. Figure 7.17, on the other hand, includes test samples in which

two of their 3D pose angles have large values. Thus, these test samples use head

poses which are very far from any of the poses given as training samples. The �gure

shows that model views by the PWLM system are fairly accurate in comparison to
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their corresponding test samples. It also shows that model views by the GLOBAL

system are slightly more distorted than those by the PWLM systems. These results

suggest that the PWLM system improves the generalization capability to unknown

poses from the GLOBAL system, indicating again the e�ectiveness of the PWLM

system in comparison to the GLOBAL system based on a single LPCMAP model.

7.2.5 Facial Identi�cation Performance

Lastly, we compared the PWLM and GLOBAL systems for the task of facial identi�-

cation. We test two facial identi�cation systems with a gallery of 20 known persons.

Both systems are based on the basic concept of the LPCMAP recognition system de-

scribed in chapter 5. The only di�erence is that each known person is represented by

either a PWLM or GLOBAL (single LPCMAP) system trained for the person. We

call an identi�cation system based on the PWLM system a PWLM recognition

system and one based on the GLOBAL system a GLOBAL recognition system.

The same parameters used in the previous experiments in this chapter are also used

for building these two recognition systems. Namely, the type B transformation K

is used and the shape and texture models include 8 shape and 21 texture PCs in

both systems. For the PWLM recognition system, the 7 local models are created

for the 7 model centers shown in �gure 7.1. The �k for each local model is set equal

to the sample standard deviation. The pose processing part of the PWLM system
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Mapping Type PWLM Sys (%) GLOBAL Sys (%) Improv. (�%)

SH-PO-SH-TX 98.7 91.6 +7.1

PO-SH-TX 99.3 92.4 +6.9

Table 7.1: Percentages of Correct Identi�cations by PWLM and GLOBAL Systems

utilizes the gradient-descent algorithm. In the gradient-descent, � is set to 0.01 and

500 iterations are performed for each test sample.

Table 7.1 compares the percentages of correct identi�cations by the PWLM and

GLOBAL recognition systems. We tested two di�erent con�gurations of our systems,

SH-PO-SH-TX and PO-SH-TX, whose results are shown in the �rst and second

rows of the table, respectively. The SH-PO-SH-TX con�guration of our systems

corresponds to the most general recognition setting where head poses of arbitrary

test samples are not previously known so that our systems need to estimate them.

It utilizes the analysis-synthesis chain of the PWLM or LPCMAP systems in order

to synthesizes a model view whose head pose is aligned to a test sample. This

chain process consisting of shape-pose-shape-texture mappings (SH-PO-SH-TX) is

applied to the 20 individual systems stored in the known-persons gallery, resulting

in a pose-aligned model view for each known person. The PO-SH-TX con�guration

corresponds to a case where the head pose of every test sample is already known.

It utilizes the shape and texture synthesis or animation process of our systems in

order to align the head poses of 20 model views to each test sample. The process

consists of pose-shape-texture mappings (PO-SH-TX). For both con�gurations of

the two recognition systems, PWLM and GLOBAL systems for each known person
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Mapping Type PWLM Sys (%) GLOBAL Sys (%) Improv. (�%)

SH-PO-SH-TX 96.2 81.7 +14.5

PO-SH-TX 97.9 82.2 +15.7

Table 7.2: Percentages of Correct Identi�cations by PWLM and GLOBAL Systems

with Di�cult Test Set

are trained with 2821 samples described in section 7.2.1. Both recognition systems

are tested with the same 16080 samples (804 samples x 20 individuals) also described

in the section. Note that these samples include a much wider range of pose variations

(�55 degrees for training and�50 degrees for test samples) in comparison to the data

set used in chapter 5. Therefore, results of these experiments should depict more

clearly how well our face recognition system performs under pose variation. The

results show that the PWLM recognition system improves the correct-identi�cation

rate of the GLOBAL system by 7% in each system con�guration. The performance of

the PWLM system was almost perfect, indicating its e�ectiveness. The performance

increase by the PWLM system was fairly large although the correct-identi�cation

rate by the GLOBAL system was already fairly high.

In order to bring out the di�erence even better, we next prepared more di�cult

test samples. For this purpose, we use a subset of the 804 test samples for each indi-

vidual such that a number of samples with easy head poses are removed. As shown

in �gure 7.2, there are two types of test samples. Samples of one type are spread out

along the long vertical and horizontal thin lines in the �gure, while samples of the

other type lie along the lines forming diagonal crosses. The samples of the �rst type
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should be more accurately processed than the second type samples because they are

relatively closer to one of the 7 model centers. Moreover, �rst-type samples are either

within a cluster of training samples or between 2 clusters. Second-type samples are,

however, between more than 3 clusters, which makes the interpolation of the PWLM

system more di�cult potentially. According to these observations, we prepared a

set of 5280 test samples which consists of the 264 second-type samples for 20 known

persons. The system con�guration remains the same from the experiments shown

in the previous table. Table 7.2 presents the correct-identi�cation rates with the

di�cult test samples. It shows that the PWLM recognition system greatly improves

the identi�cation performance of the GLOBAL system. The correct-identi�cation

rates of the PWLM system were as high as those with the easy test samples shown in

table 7.1, while the rates of the GLOBAL system are sharply reduced. The improve-

ment of the correct-identi�cation rate by the PWLM system was about 15%, which

is very large. Also these results illustrate the e�ectiveness of the PWLM system.

7.3 Discussion

This chapter presented the results of numerical experiments for evaluating the per-

formance of the PWLM system with two di�erent types of data set. Our experi-

mental results with arti�cial shape data empirically proved the correctness of the

proposed system and supported the feasibility of missing data handling by the mean

imputation method and of the gradient-descent pose estimation process. They also
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suggested that the Gaussian width for computing the local model's weights should

be set equal to the standard deviation of the training 3D angle vectors. A very

small di�erence of average errors between the accuracy and generalization tests sup-

ported a good generalization capability of the analysis and synthesis processes of the

PWLM system to unknown poses.

The di�erence in terms of average errors between the tests with arti�cial and

more realistic data was also very small. This indicates a robustness of our system

against variational factors speci�c to faces. This result relates to the system's robust-

ness against measurement errors. As discussed in chapter 2, automatically �nding

locations of facial landmarks is a very di�cult task and is not usually su�ciently

accurate. Low precision of the landmark locations often leads to poor accuracy in

pose processing of a landmark-based system. Since our system is also based on facial

landmark locations, the above robustness shown by the experiments is favorable and

helps to avoid a potential performance decrease by such measurement errors.

The experimental results with the Cyberware-scanned faces showed that the

PWLM system largely improves the performance of the LPCMAP model in all as-

pects of pose processings: pose estimation, sample synthesis, and facial identi�cation.

This indicates that the PWLM system e�ectively solves the pose range limitation

problem of the LPCMAP model discussed in section 4.3.
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The identi�cation performance of the PWLM recognition system was very high

even with faces that are largely rotated. As already mentioned in chapter 5, the ab-

solute values of the high correct-identi�cation rates, however, need to be interpreted

cautiously because the number of known persons used in our experiments was twenty

which is relatively small and our facial samples derived from 3D Cyberware-scanned

data contain artifacts (i.e., constant incident light distribution, reexes and shad-

ows) that arti�cially distinguish them. These two factors may superuously increase

correct-identi�cation rates. However, the improvement based on the relative identi-

�cation performance between the PWLM and GLOBAL recognition systems should

not be strongly inuenced by the size of the known person gallery nor the artifacts

in our data. Moreover, the data artifacts inuence only texture information so that

they do not concern our system's pose-invariant nature which is based on shape

information. Therefore, our experimental results still suggest the feasibility of the

proposed face recognition system with the PWLM system used as a known-persons

gallery entry.

Despite the fact that the performance may have been arti�cially increased, the

correct-identi�cation rates do not reach 100%. This is because of the innate di�culty

in achieving pose-invariance for face recognition. The FERET competition (Phillips

et al. [157, 155]) has proven this point by showing that the best system in the tests

could only result in 60% correct-identi�cation rate with a much easier pose variation,

roughly �25 degrees along only one depth-rotation axis.
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Chapter 8

Interpersonal Generalization of the Pose

Estimation Process

In this chapter, we further extend the pose estimation process of the piecewise linear

model (PWLM) system, described in chapter 6, in order to generalize it over shape

variations of di�erent individuals (interpersonal generalization). Section 8.1

introduces our motivation for this interpersonal generalization of the pose estima-

tion. In section 8.2, we propose two di�erent approaches for achieving interpersonal

generalization in our framework. The rest of the sections numerically evaluate the

proposed methods with various experimental settings.
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8.1 Why is Interpersonal Generalization

Desirable?

In chapters 5 and 7 we have evaluated our LPCMAP and PWLM systems for their

generalization capability to unknown poses in the 3D angle space. In order to con-

centrate on investigating this generalization capability, each LPCMAP and PWLM

model was learned for a speci�c individual by using training samples only from that

speci�c person. Interpersonal generalization is another type of model property, in

which a model is generalized over variations due to di�erent appearances of indi-

viduals so that it performs equally well for arbitrary individuals without explicit

knowledge of them. Our studies in the previous chapters have not addressed this

issue.

In the previous chapters, we have uni�ed the analysis and synthesis processes of

human faces with pose variations in the single framework of the LPCMAP or PWLM

model. In the context of interpersonal generalization, however, these two processes

di�er in nature. The nature of the synthesis process does not involve interpersonal

generalization. Each single model based on a continuous-transformation is supposed

to be tuned to the speci�c and detailed appearance of a particular person. There-

fore, interpersonal generalization is not necessary for our synthesis process. On the

other hand, the analysis process of our systems can bene�t from interpersonal gen-

eralization. Although the pose analysis process tuned to a speci�c person might be
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a sensible way to achieve the best possible accuracy, it is more natural for the pose

analysis process to be generalized over interpersonal variations.

Our common knowledge of human's visual perception supports this argument.

There is no doubt that our brain performs the pose estimation of human faces since

such information is extremely important for our social communication (Perrett et

al. [150]). This ability is not compromised by a lack of identity information; we

are fully capable of perceiving the head directions of unknown persons. Without

interpersonal generalization, we could not achieve this ability.

Interpersonal generalization is also needed for automating the visual learning

process of our systems. The LPCMAP and PWLM models proposed in this dis-

sertation perform supervised learning of mappings between the vector spaces of

single-view representations and physical parameters of 3D head angles. This form

of learning requires explicit knowledge of the angle parameters for each training

sample as ground-truth. In our previous experiments, such ground-truth is either

measured by an external physical device or obtained a priori by creating an arti�cial

data set. These methods for obtaining the physical parameters prevent the learning

process from being fully automated and self-contained. Pose estimation or analysis

with interpersonal generalization can be used to replace the external device by pro-

viding the head pose information of arbitrary faces. One might compare the pose

derived from an external device to the head orientation information derived from

our motor-feedback. In human learning, this feedback provides the ground-truth
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pose information by associating information on self-movement to the resulting view

variations. Although this argument provides a rationale for the use of an external

device, it is still preferable to use a vision-based system so that we can build a purely

visual on-line learning system requiring only a stream of 2D images from a single

camera.

A number of previous studies have addressed the issue of the interpersonal gen-

eralization for processing pose information. We have already reviewed these studies

in section 2.2. For example, the linear class theory by Poggio provided a solution to

this problem. However, these previous studies were severely restricted because they

are based on the discrete-transformation and raw-image-based pictorial single-view

representations.

Our goal in this chapter is to present a solution to this problem of interpersonal

generalization in the pose estimation process which also overcomes the shortcomings

of these previous studies. By using our LPCMAP and PWLM models, we provide

a solution with the continuous-transformation which improves the pose estimation

accuracy by continuously covering the 3D angle space. Our choice of the shape

representation for processing the pose information is also important in this respect.

Interpersonal variation a�ects a representation based on geometrical information

much less than one based on pictorial information. Given the high similarity of facial

shapes across di�erent individuals, our systems based on geometrical information for
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extracting pose are expected to improve the performance over these previous systems

based directly on pictorial information.

8.2 Two Approaches to Interpersonal

Generalization of Pose Estimation

Our LPCMAP and PWLM systems are designed to accurately represent pose vari-

ations of a single person. In this chapter, however, we aim to extend our systems to

also accommodate interpersonal variations while maintaining their ability to capture

pose variations. For realizing this extension, knowledge of the intrinsic relationship

between the two types of variation is needed. The two types of variation in our

shape representation are correlated, because the way the landmark con�guration

changes with rotation depends on the 3D structure of the individual face. On the

other hand, these variations could also be treated as approximately independent be-

cause the inuence of interpersonal variations on pose-dependent variations is small.

These observations lead to an important question:

Question: Could these two types of variation be treated as if they were indepen-

dent, or is it necessary to explicitly accommodate correlations in the model

structures?

In order to answer this question, we propose two di�erent approaches, which corre-

spond to the two situations illustrated in the question,
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The Single-Model Approach: a single model accounts for both pose and inter-

personal variation, and

The Multiple-Model Approach: the system consists of a set of models, each

speci�c to one person, and it interpolates between models in order to deal

with a given unknown person.

The single-model approach can be realized by training a single LPCMAP or

PWLM system by using samples with di�erent poses and identities. This realization

treats the two types of variation equally in that it does not distinguish one variation

from another. Moreover, there is no need for structural extension of our previous

systems to accommodate the interpersonal variations; we only need to prepare sam-

ples of multiple individuals for constructing a single model. A key assumption for

this approach is independence of the two types of variation, so that a subspace model

in a LPCMAP model can separate the two types of variation in di�erent sets of PCs.

When this assumption fails in that single PCs turn out to be sensitive to both types

of variation, the pose estimation accuracy of a system of this type is expected to

become worsened because of the confused inuence from interpersonal variations.

The multiple-model approach, on the other hand, can be realized by weighted

averaging of the pose estimates of a set of PWLM systems, each of which is trained

for a speci�c individual. This realization treats the two types of variation di�erently;

individual pose variations are solely captured by each single system while interper-

sonal variations are represented in separate systems. This approach introduces an
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explicit hierarchical structure in our system where the two types of variation are

captured on di�erent levels. Therefore, this approach requires a structural extension

of our PWLM system in order to accommodate interpersonal variations. The rela-

tionship between the variations is also a key for this approach. A multiple-model

system is expected to perform better than the single-model system when the corre-

lation between the two types of variation is not negligible and they are not linearly

separable. Similar to our PWLM approach described in chapter 6, the feasibility

of this approach depends on the choice of a weight function in order to capture

interpersonal variations correctly.

In the following sections, we will present implementations of these two ap-

proaches. We will investigate the points raised in this section by comparing these

implemented systems by a series of numerical experiments.

8.3 Numerical Experiments for the

LPCMAP System

In this section, we investigate the interpersonal generalization capability of a sys-

tem based on the single-model approach using the LPCMAP model. We conduct

numerical experiments with di�erent test conditions in order to evaluate this sys-

tem. Because a LPCMAP model is a local component of the PWLM system, the
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Figure 8.1: Sketches of Single-LPCMAP System

experimental results in this section should provide useful insights for extending the

PWLM system to this approach in the next section.

8.3.1 Single-LPCMAP System

In this section we rely on a single LPCMAP model, the type described in chap-

ter 3. We call a single LPCMAP model trained for multiple poses and persons a

single-LPCMAP system, illustrated in �gure 8.1. The system utilizes the type

B transformation K according to our experimental results in chapter 4.

8.3.2 Data Set and Test Conditions

We evaluate pose estimation with the same real face data set used in section 4.2. It

consists of 2D image samples derived from video sequences of continuously rotating
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faces. 3D head angles for each sample are also measured by a magnetic sensor, as

described in section 4.2.1. Examples of the 2D facial image samples and correspond-

ing 3D head angles are shown in �gures 4.7 and 4.8, respectively. The real facial

samples are used for assessing the system in the most realistic condition of sample

acquisition.

For each person, a total of 1600 sample images are recorded. For three quarters

(1200) of them, pose is rotated along only one 3D rotation axis at a time. We refer to

these samples as training samples. For the remaining quarter (400), pose is rotated

freely. These samples are called test samples. A single-LPCMAP system is trained

with the 3600 training samples from 3 individuals. This system is tested in three

conditions with di�erent test sets,

Multi-Personal Accuracy Test (Type 1) test samples are the same 3600 sam-

ples used for training,

Interpersonal Interpolation Test(Type 2) test samples are 1200 test samples

for the 3 individuals,

Interpersonal Extrapolation Test(Type 3) test samples are 1600 samples of

an individual which is not included in the training samples.

The multi-personal accuracy and interpersonal interpolation tests are the same

as the accuracy and (pose) generalization tests which have been used in the previous

chapters. They only di�er in that training and test samples are taken from several

persons.
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The multi-personal accuracy test evaluates the feasibility of the system. Poor

results of this test will indicate that the single-model approach is infeasible. It

means that the correlation between pose and interpersonal variations is large enough

to prevent the system from correctly capturing pose variations. On the other hand,

good results with low average errors are expected should the correlation be negligible.

The interpersonal interpolation test assesses the ability of generalizing over un-

known poses in the presence of interpersonal variations. Its results give insights

for whether pose generalization is inuenced by the correlation between pose and

interpersonal variations. It is interpreted as estimating head poses of known persons.

The interpersonal extrapolation test assesses the ability of generalizing over un-

known poses and persons simultaneously. Good results will indicate that the single-

model approach can generalize over interpersonal variation while maintaining its

pose generalization capability. This test is the most general condition, requiring

extrapolation of individuality for describing unknown persons.

8.3.3 Experimental Results

Figure 8.2 shows results of the 3 di�erent test conditions. Average angular errors of

estimated poses in the 3 conditions are plotted against the number of PCs included

in the shape model. Down-triangles, up-triangles, and crosses denote results of the

multi-personal accuracy, interpersonal interpolation, and interpersonal extrapolation

tests, respectively. This �gure shows that the best balance between accuracy and
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Figure 8.2: Pose Est. Errors by the Single-LPCMAP System for 3 Conditions

generalization are achieved when only the �rst 10 PCs are used. With the 10 PCs,

the average error for the 3 conditions were 2.0, 2,2, and 2.5 degrees, respectively.

The result of the multi-personal accuracy test indicates the feasibility of the

single-LPCMAP system. The average error with the 10 PCs was about 1 degree

lower than the best reported pose estimation error (3 degrees) in the literature. And

the error was only slightly higher (0.3 degrees) than the error of the single-personal

accuracy test shown in table 4.1. The result of the interpersonal interpolation test

also shows good pose generalization in the presence of the interpersonal variations.

Similar to the result of the multi-personal accuracy test, the error increase was very

small (0.35 degrees) when comparing this result with the single-personal accuracy

test shown in table 4.2. The result of the interpersonal extrapolation test supports

a fair interpersonal generalization capability of the system. The accuracy of the

system again exceeds the best pose estimation accuracy reported in the literature.
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Moreover, the average error di�erence between the 3 test conditions was also small

(roughly 0.3 degrees).

The increase and the absolute values of the errors were small enough to suggest

fair pose and interpersonal generalization capabilities of the single-LPCMAP system.

This seems to suggest feasibility of the single-model approach and speaks for relative

independence of the two types of variation. However, a de�nitive conclusion about

the correlation structure between the two types of variation cannot be drawn solely

from these results because the number of individuals used in these tests was not

su�cient and the error increase in each case is not zero or negligibly small.

Interesting insights can be drawn from the way the average errors vary with the

size of the shape model. For all 3 tests, the errors signi�cantly dropped when the

8-th PCs are included in the model. This agrees with our previous �nding for the

LPCMAP model trained for a speci�c individual, in which a shape model with the

�rst 8 PCs resulted in the best balance between accuracy and model size.

Unlike these previous results in chapter 4, however, the average errors of the

two generalization tests �rst decreased slowly when adding a few more PCs and

next increased (rapidly for the results of the interpersonal extrapolation test) by

including further PCs. The �rst error decrease indicates that more than the �rst 8

shape PCs coded statistical modes related to pose variations. However, the following

error increase suggests that the shape variations caused by the pose and interpersonal

variations seem to be coded separately in di�erent PCs and that the pose variations
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are mainly coded in PCs with large variance while the interpersonal variations are

coded in PCs with small variance. Therefore, truncating these PCs with small

variances results in better pose estimation accuracy. This observation supports the

single-model approach, in which the two types of variation were assumed to be

independent.

This result is again inconclusive because the �rst error decrease with more than

8 PCs implies a cross-talk between the two variation sources although its inuence

appears to be benign. The small number of individuals in these experiments also

requires a cautious interpretation of the above arguments. However, our results

indicate that our system is accurate and is able to generalize over pose and person

for practical purpose. We expect the pose estimation accuracy to improve further for

the interpersonal generalization cases when a su�ciently large number of individuals

are included in the training.

8.4 Numerical Experiments for the

PWLM system

In this section, we propose two systems for extending the PWLM approach to ac-

commodate interpersonal variations and compare their performance. The two exten-

sions, single-PWLM and multiple-PWLM systems, correspond to the single-model

and multiple-model approaches, described in section 8.2, respectively. By comparing
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Figure 8.3: Sketches of Single-PWLM and Multiple-PWLM Systems

the experimental results of these two systems, we investigate not only interpersonal

generalization but also the relationship between the pose and interpersonal varia-

tions discussed in section 8.2. In this section, we �rst describe the two systems. A

data set used for the numerical experiments and their test conditions is described

next. Lastly, the results of the experiments are reported and discussed.
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8.4.1 Single-PWLM and Multiple-PWLM Systems

Figure 8.3 illustrates the two systems which implement the single-model and

multiple-model approaches by extending the PWLM systems.

The single-PWLM system is based on the single-model approach. Therefore, this

extension does not involve a structural modi�cation of the PWLM system, but each

local LPCMAP model of the system is trained with multi-personal training samples

as shown in the �gure. Given a single-PWLM system, PM , which is trained with

pose and interpersonal variation, a 3D pose estimate of an arbitrary input shape ~x

from an arbitrary person is directly given by an output ~̂� of the gradient-descent

pose estimation process, equations (6.6) through (6.10), of the PM .

The multiple-PWLM system, on the other hand, is based on a set of the PWLM

systems, each of which is trained for a speci�c person, and it interpolates them in

order to account for interpersonal variations. Therefore, each single PWLM system

trained for a speci�c person, an individual system, is equivalent to the PWLM

system studied in chapter 6. The extension of the PWLM system for this multiple-

PWLM system, however, requires a method to realize the interpolation of the set of

individual systems. For this purpose, we propose to use a weighted averaging of 3D

head poses estimated by a set of the individual systems, similar to our treatment in

the plain PWLM system for piecing together a set of localized linear models.

267



Suppose a multiple-PWLM system consists of a number of K PWLM systems,

each of which is trained for one of the K di�erent persons,

fPM1; ::; PMk; ::; PMKg; (8.1)

where each PMk denotes an individual system.

The 3D head pose of an arbitrary input shape ~x of an arbitrary person is derived

by averaging K 3D poses, estimated by the set of the K individual systems, with

appropriate weights,

~~� =
KX
k=1

wk
~~�k (8.2)

where
~~� denotes the pose estimate by the multiple-PWLM system, wk is a weight

for the k-th individual system PMk, and
~~�k is a pose estimate of the input shape ~x

by the PMk.

A weight function for the multiple-PWLM system needs to be di�erent from our

previous function (6.4) in the plain PWLM system. For the plain PWLM system, our

task was to merge local models, which captures the pose variations around di�erent

points (model centers) in the 3D angle space. Therefore, the interpolation took place

in the 3D angle space by computing the weights as a function of the distance between

the input's head pose and each model center. However, a weight function for the

multiple-PWLM system should be characterized by facial shape variations instead of

the pose variations because the interpersonal variations appear in the facial shapes
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but not in their poses. Therefore, the interpolation for this system takes place in the

shape representation space by computing the weights as a function of the distance

between the input and estimated shape representations.

Let (
~~�k; ~~xk) denote a pair of 3D pose and facial shape estimated by the gradient-

descent algorithm of the k-th individual system PMk. We de�ne the weight function

for the multiple-PWLM system as a normalized Gaussian function but in the shape

representation space,

wk(~x) =
�k(~x� ~~xk)PK
k=1 �k(~x�

~~xk)
; where �k(~x) =

1
p
2��shk

exp(�
k~xk2

2(�shk )2
); (8.3)

and �shk controls the width of the Gaussian.

Given an input shape ~x, the multiple-PWLM system �rst results in K pose

estimates (
~~�1; ::;

~~�K) by the K individual systems. Using the plain PWLM sys-

tem's shape synthesis process (6.3), the system next results in K synthesized shapes

( ~~x1; ::; ~~xK) from these K estimated poses. 1 The weight function (8.3) for this system

is a function of distances between an input and the K synthesized shapes derived

from each individual system. Because the synthesis process of each individual sys-

tem captures intrinsic shape of the learned face with arbitrary poses, the distances

between the input and synthesized shapes, whose head poses are aligned, can ap-

proximate a similarity of the input face to a number of faces learned in the system.

Therefore, a function based on this shape distance can be used to determine an

1The gradient-descent pose estimation process actually performs these two steps simultaneously.
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amount of contribution from each individual system to the average output
~~� of the

multiple-PWLM system.

This function performs di�erently from the function (6.4) for the plain PWLM

system, although these functions resemble each other in their form. Amain di�erence

is the model knowledge used for computing the distances. The function (8.3) in the

multiple-PWLM system utilizes implicit model knowledge of each individual system

by using the synthesized outputs for comparison, while the function (6.4) in the

plain PWLM system utilizes explicit model knowledge of each local linear model

by using the model centers stored by a learning process. Therefore, the behavior

of the function (8.3) is inuenced by the accuracy of both the pose estimation and

shape synthesis of the individual systems. This inuence actually helps to make

a distribution of the input's similarities to the K individuals more distinct. An

identity mismatch between an input and individual system will lead to a poorly

synthesized shape due to the estimation error, resulting in lower similarity value

than an intrinsic facial similarity of the input. This error propagation ampli�es the

dissimilarities of the input to the mismatched individual systems, making the range

of the similarity values larger.

For both the single-PWLM and multiple-PWLM systems, the trigonometric func-

tional transformation K is set to type B (1st-order). The �k in (6.4) for each indi-

vidual system is set equal to the sample standard deviation of the training 3D angle
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vectors. For the gradient-descent of the individual systems, the learning rate � is

set to 0.01 and 500 iterations are performed.

8.4.2 Data Set and Test Conditions

In these experiments, we use the same 2D samples as in section 7.2, which is gener-

ated from the 3D facial models of the ATR-Database shown in �gure 5.7. Equivalent

to the experiments in chapter 6, 2821 training and 804 test samples are created for

the 20 di�erent individuals. The number of individuals is increased from our exper-

iments in the previous section, so that multi-personal statistics of our analysis will

become more meaningful. 7 sets of training samples for the 7 di�erent model centers

shown in �gure 7.1 and a set of test samples shown in �gure 7.2 are created for each

individual. Each training set consists of samples whose poses are within a range of

�15 degrees around model centers. Therefore, the training samples as a total cover

a pose range of �55 degrees around the origin of the 3D angle space. On the other

hand, the test set consists of samples within a pose range of �50 degrees around the

origin. For each sample, the 3D head angles and the 20 facial landmarks de�ned in

�gure 4.9 are directly derived from the explicit rotation of the 3D facial models. We

use two test conditions, interpersonal interpolation and interpersonal extrapolation

tests, described in section 8.3.2.

For the interpolation (known persons) test, each system is trained with all the

56420 training samples. A single-PWLM system is trained with all the samples while
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each individual system of a multiple-PWLM system is trained with 2821 samples

for a speci�c person. These two systems are then tested with the same 16080 test

samples from the 20 individuals. For the extrapolation (unknown persons) test, each

system is trained with 53599 training samples of 19 individuals, excluding training

samples referring to the person in the test set, so that the system does not contain

knowledge of testing faces. The two systems are trained in the same way as the

interpolation test and tested with the same 16080 test samples.

8.4.3 Experimental Results

8.4.3.1 Evaluations of the Shape Distance-Based Weight Function

This section presents results of numerical experiments which evaluate the feasibility

of the shape distance-based weight function (8.3) for achieving interpersonal gener-

alization.

This function is de�ned as a normalized Gaussian inverse distance function in

the shape representation. The size of each Gaussian, controlled by a parameter

�shk , represents the range within which an individual system contributes to the av-

erage output of the multiple-PWLM system. The larger the size of a Gaussian, the

more neighboring systems (in terms of shape vector distance) inuence the aver-

age output. Note also that weighted averaging with this function approximates the

nearest-neighbor (or winner-takes-all) approach as the size of a Gaussian becomes

very small.
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Figure 8.4: Di�erent Sigma Values in the Shape Distance-based Weight Function

First, we study the inuence of the �shk value on the behavior of the shape

distance-based weight function. For simplicity, we do not vary the parameter value

for di�erent individual models therefore we refer to the parameter by �sh. Note that

the parameter is not associated with the sample standard deviation, unlike the case

in equation (6.4). Figure 8.4 shows the pose estimation accuracy of the multiple-

PWLM system with various �sh values in the two test conditions. Average angular

errors are plotted against di�erent sigma values ranging from 1 to 20. Results for the

interpolation and extrapolation tests are shown by plots with up-triangles and down-

triangles, respectively. For the extrapolation test, the best accuracy of 2.3 degrees

error was achieved when the �sh is set to 7. On the other hand, for the interpolation

test, the best accuracy of 1.1 degrees error was achieved when the �sh is set to 1 or 2.

The results show that the multi-PWLM system behaves quite di�erently for the two

conditions depending on �sh. Smaller �sh gives better accuracy of the system in the
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Figure 8.5: Constant and Shape Distance-based Weight Functions

interpolation condition, while larger �sh gives better accuracy in the extrapolation

condition. By increasing �sh beyond the optimal value, the average errors slowly

increase for both conditions. The optimal �sh for the interpolation condition resulted

in very high accuracy, while the optimal accuracy for the extrapolation condition

was not too high. These results indicate that we cannot �nd a single value for the

�sh which gives the best performance of the system in both conditions.

Next, we compare the performance of the multiple-PWLM system using either

a constant or the shape distance-based weight function, in order to evaluate the

e�ectiveness of the latter. A constant function assigns a constant value to each

individual system without using any similarity information between an input and

each learned individual. Interpolation with this function is equivalent to computing

an arithmetic mean of pose estimates of all the individual systems. Therefore, a

system with this weight function provides an unbiased base-line performance. In
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order to show the feasibility of the shape distance-based weight function, we need

to show that a system with this function improves the base-line performance.

Figure 8.5 shows results of the interpolation and extrapolation tests, compar-

ing systems with the two functions. In both tests, average angular errors of the

multiple-PWLM system are plotted against 6 di�erent sizes of the shape model.

Up- and down-triangles correspond to the errors with the shape distance-based and

constant weight function, respectively. The results for the two tests indicate that

the pose estimation accuracy of our multiple-PWLM system is improved by using

the shape distance-based function from the base-line, indicating the e�ectiveness of

the function. With 8 shape PCs and �sh set to 7, the average error was 2.0 and 2.3

degrees for the interpolation and extrapolation tests, respectively. Standard devia-

tion of the errors and the worst error were 0.8 and 5.1 degrees for the interpolation

test and 0.9 and 5.5 degrees for the extrapolation test.

The improvement of the pose estimation accuracy was more obvious in the in-

terpolation test than the extrapolation test. Moreover, for the interpolation test, a

much larger improvement (more than 1 degree) of the average errors from the base-

line was observed when �sh was set to the optimal value 1. In this condition with 8

shape PCs, the average error, the standard deviation, and the worst error were 1.1,

1.0, and 6.4 degrees, respectively. These results indicate that the weight function is

more e�ective in the interpolation condition than the extrapolation condition.
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Figure 8.6: Interpolation Test of Single-PWLM and Multiple-PWLM Systems

8.4.3.2 Comparisons of the Single-PWLM and

Multiple-PWLM Systems

Finally, we compare the pose estimation accuracy of the single-PWLM and multiple-

PWLM systems, with both interpolation and extrapolation tests. Figures 8.6 and 8.7

show results of these tests. As a reference, both �gures include pose estimation errors

averaged over the 20 plain PWLM systems trained as individual systems for the 20

di�erent persons, using the same data. Down-triangles denote the average angular

errors of the single-PWLM system and up-triangles denote those of the multiple-

PWLM system with �sh set to 7. The reference average errors of the individual

systems are denoted by a solid line without markers. Note that the �sh value of

7 is found to be optimal for the extrapolation condition while the interpolation

condition provides di�erent optimal value. Therefore, results of interpolation tests

of the multiple-PWLM system are also provided with the �sh set to the optimal 1
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Figure 8.7: Extrapolation Test of Single-PWLM and Multiple-PWLM Systems

for the interpolation condition. The average errors of this case in the interpolation

condition is denoted by crosses. These errors of each case are plotted against 6

di�erent sizes of the shape model.

When �sh is set optimally for the extrapolation condition, the average errors of

the single-PWLM and multiple-PWLM systems were very similar for both interpo-

lation and extrapolation tests. With the �rst 8 shape PCs, the errors of the two

systems were the same: 2.0 and 2.3 degrees for the interpolation and extrapolation

tests. For the interpolation test, standard deviation of the errors and the worst

error were 0.9 and 5.5 degrees for the single-PWLM system and 0.8 and 5.1 degrees

for the multiple-PWLM system. For the extrapolation test, the standard deviation

and the worst error were 0.9 and 5.9 degrees for the single-PWLM system and 0.9

and 5.5 degrees for the multiple-PWLM system. With more PCs included in the

systems, the single-PWLM system performed better in the interpolation test and
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the multiple-PWLM system performed better in the extrapolation test. For both

tests, the average errors of the two systems are roughly 1 to 1.5 degrees larger than

the reference average errors with the 20 plain PWLM systems. When �sh is set op-

timally for the interpolation condition as shown in �gure 8.5, the multiple-PWLM

system clearly outperformed the single-PWLM system, improving the average errors

by roughly 1 degree. Moreover, the error di�erence between the multiple-PWLM

and reference systems became very small (roughly 0.2 degrees).

These results suggest that the single-PWLM and multiple-PWLM systems per-

form equally in the extrapolation condition while the multiple-PWLM system out-

performs the single-PWLM system in the interpolation condition. Moreover, the

multiple-PWLM system in the interpolation condition is very accurate when �sh is

set correctly, indicating the e�ectiveness of the multiple-PWLM system. However

this e�ectiveness is limited only to the interpolation condition; the best accuracy

of the two systems in the extrapolation condition does not reach as high as the

multiple-PWLM system in the interpolation condition. The implications of these

results will be discussed in the next section.
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8.5 Discussion

In this chapter, we have proposed two methods, single-PWLM and multiple-PWLM

systems, for extending the pose estimation process in our linear framework to gen-

eralize over interpersonal variations. The single-PWLM system is based on train-

ing the plain PWLM system described in the previous chapter by multi-personal

samples without modi�cations of the model structure. On the other hand, the

multiple-PWLM system interpolates a number of the plain PWLM systems trained

as individual systems for di�erent persons. The interpolation is realized by weighted

averaging of pose estimates by the individual systems with weights computed as a

function of shape vector distance between inputs and each learned person.

Our experimental results indicate that both systems are fairly accurate, indi-

cating the feasibility of our linear approach to generalize over for di�erent persons.

Even in the extrapolation condition (or pose estimation of unknown persons) which

is the most general and di�cult, the average accuracy of roughly 2 degrees error

by our systems beats the best reported pose estimation accuracy (3 degrees) in the

literature. The usage of the arti�cially rotated 3D facial models in our experiments

should not compromise this result since our pose estimation process is based on

shape information which is free from arti�cial e�ects due to the texture mapping

used for creating the samples. In a pure vision scenario, the landmark locations

and head angle measurements will naturally include some errors while the data used

in our experiments were free from such errors. However, we expect that the pose

279



estimation accuracy of our systems will not greatly decrease with such measurement

errors because of its robustness against them due to our linear system design, as

suggested by our experimental results in chapter 7.

The nature of the correlation between the pose and interpersonal variations,

discussed in section 8.2, was another important issue we investigated in this chapter.

In one case, the correlation is negligible such that we can assume independence of the

two types of variation and, thereby, statistical analysis in our system can separate

the two types of variation from mixed samples. In the other, the correlation is too

large to be negligible so that extending our systems (designed to handle the pose

variations) to accommodate the interpersonal variations in a di�erent level helps to

improve its accuracy. In order to evaluate these two possibilities, we have proposed

the two generalization approaches, single- and multiple-model approaches, which are

implemented as the single- and multiple-PWLM systems, respectively.

Our numerical experiments in section 8.4 probed this issue by comparing the

pose estimation accuracy of the two systems. The results in the extrapolation con-

dition, which corresponds to pose estimation of unknown persons, indicated that

the correlation seems to be negligible, since the performance of the single-PWLM

system was not deteriorated in comparison with the multiple-PWLM system.

However, this interpretation should be treated with caution because the single-

PWLM system does not outperform the multiple-PWLM system, which would have

strongly supported the independence of the two types of variation. Instead, the
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two systems performed equally and their performance was acceptable if not too

accurate. This is perhaps due to either an insu�cient number of individuals used to

form the multiple-PWLM system, or is due to poor behavior of the shape distance-

based weight function. Too few individuals in the model may lead to poor accuracy

of cross-person pose estimation because it is more likely that a system does not

include knowledge of faces whose shape is similar to the test sample. This lack of

matching shape in the model knowledge can also a�ect the behavior of our weight

function due to shape synthesis errors of the system, possibly decreasing the accuracy

especially in the extrapolation condition. The experimental results do not provide a

conclusive evidence as to which reason (or both) is responsible. Therefore, this issue

still remains unresolved as one of our future topics.

The experimental results in the interpolation condition, which corresponds to

pose estimation of known persons, showed that the multiple-PWLM system outper-

forms the single-PWLM system. This indicates the e�ectiveness of the multiple-

PWLM system with the shape distance-based weight function when the system

does not know the identity of test faces but its model knowledge always includes the

knowledge of tested individuals.

Note also that the optimal accuracy of the system in this condition was achieved

when �sh is set to a very small value. As we discussed earlier, the behavior of a system

with such a small �sh becomes similar to winner-takes-all. This winner-takes-all

method with a number of individual systems can be interpreted as a perceptual
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paradigm, which assumes that an identity of a given input is known prior to head

pose estimation, the approach used for the reference base-line accuracy in �gures 8.6

and 8.7. Therefore, the performance of the multiple-PWLM system with the small

�sh needs to agree with the reference accuracy if our weight function is correct and

e�ective so that each individual PWLM system e�ectively estimates the 3D head

pose for one learned person. Our experimental results showed that this was indeed

the case. These results, however, do not provide good insight into the correlation

structure of the two types of variation because this reference condition imposes more

constraints on the interpersonal variations than the pose variations, preventing an

unbiased comparison with the results in the extrapolation condition.
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Chapter 9

Conclusion

This chapter presents the concluding remarks of this dissertation. We �rst summa-

rize the contributions of our studies. Next, we discuss the �ndings of our studies

comparing them with psychological and biological studies which addressed similar

issues. Lastly, as our future work, we describe the issues which are related to our

studies but not addressed or solved in this dissertation.

9.1 Summary of Contributions

This dissertation presented a novel method for processing 2D facial images with 3D

pose variation, which is compact, generalizable, data-driven, exible, and param-

eterized explicitly by pose angles. The explicit parameterization in terms of pose

makes it possible to realize the two complimentary processes, analysis (pose estima-

tion) and synthesis (shape and texture synthesis), within a single framework. The

PWLM system uses the piecewise linear model approach and consists of a number
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of localized linear models (LPCMAP models), each of which describes the pose vari-

ation within a region of the viewing sphere. These local models are interpolated in

order to cover a wide and continuous range of poses. Because of its data-driven and

exible nature, our simple and general method possesses a least possible variation-

speci�city, which facilitates an extension of the method to other types of variation

than pose.

9.1.1 Systematic Advantages

The proposed method is capable of accurately processing a wide range of arbitrary

3D head poses, which were inaccessible to the previously published methods as they

considered only speci�c rotation dimensions or a limited pose range. It simultane-

ously improves accuracy and extends pose range and number of the rotation axes,

instead of imposing a trade-o� between them. Using training samples with a pose

variation within �55 degree rotations along each 3D rotation dimension, we demon-

strated that our system achieved sub-degree and sub-pixel accuracy for the pose

estimation and shape synthesis processes, respectively.

The proposed method also generalizes well to unknown poses. This was demon-

strated by showing that the average errors with test views of unknown pose were

similar to the errors of test views of known pose. This characteristic enables our

system to learn continuous pose variations from a small number of training samples
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and to synthesize a novel view of a learned face. Related to this generalization capa-

bility, our system can also be seen as a method for compressing the facial knowledge

contained in the training samples. We showed that the size of our model/system was

compressed by a factor of 60, although further systematic evaluation is still needed.

The proposed method handles the missing data problem caused by self-occlusion

of facial landmarks by the mean imputation method. It is necessary for a system

dealing with pose variation to solve this problem because it occurs naturally and

frequently due to the nature of the variation, especially in a wide pose range. We

demonstrated that the simple sample manipulation-based method successfully sup-

pressed the missing data inuence, resulting in virtually uninuenced accuracy of

the analysis and synthesis processes within the �55 degrees pose range.

9.1.2 Linear Parametric Eigenspace

The proposed system consists of a combination of linear systems. The LPCMAP

model is based on the PC-based subspace model and linear mapping function, both of

which are linear, while the PWLM system pieces together a number of the LPCMAP

models used as spatially distributed local linear models.

This linear nature endows our system with a number of advantages which include

1) the ease of learning avoiding an expensive iterative process, 2) accurate gener-

alization accuracy avoiding over�tting, and 3) the re-usability to other problems

due to minimal reliance on problem-speci�c a priori knowledge. Unfortunately, the
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linearity assumption imposes pose range limitations, jeopardizing key criteria of our

method, data-drivenness and exibility. The PWLM system as an extension of the

LPCMAP model was proposed to solve this problem while keeping the virtues of

linearity. Our studies demonstrated that this extension e�ectively solves the prob-

lem.

We incorporated a non-linear process in our proposed system for transforming

the pose parameters from 3D head angles. This transformation is derived from the

explicit analytical knowledge of the Euclidean 3D rotation rather than an ad hoc

choice from various functions. However, it does not inuence a functional form of

the mapping function which are kept linear. We empirically showed that this process

helped to improve processing accuracy while not imposing the common pitfalls of

non-linear learning such as variation-speci�city, over�tting, time-consuming iterative

learning, and complicated model selection.

The proposed system explicitly parameterizes our system by learning a

continuous-transformation from sample statistics. The continuous-transformation,

which maps between two vector spaces of facial representation and 3D head an-

gles, is more appropriate for modeling continuous pose variation than the discrete-

transformation, which maps between the facial representations for merely two �xed

poses. The continuous-transformation, which covers the pose range continuously

and smoothly, is a natural basis for high accuracy and powerful generalization to

unknown poses.
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The parametric eigenspace by Murase and Nayar is another solution of our prob-

lem using similar techniques. It non-linearly parameterizes pose- and illumination-

manifolds in a PC-based subspace, which however necessitates an extensive search

during pose estimation. Our method removes this shortcoming by treating the task

as a function approximation so that the head pose results directly from the learned

function without extensive search.

9.1.3 Experimental Emphases and Results

Our study emphasizes a thorough numerical analysis of our method. Especially,

the generalization capability of our system was investigated rigorously. We con-

ducted our numerical experiments with minimal constraints, namely with fully three-

dimensional rotations, a wide pose range, and �ne pose resolution, while none of the

previous studies presented experiments with these conditions. Therefore, the results

of these experiments provide better understanding of our problems which assists

in avoiding ad hoc solutions and o�ers insights toward more practical and realistic

applications.

Another aspect of our method is a separation of the shape and texture infor-

mation into di�erent representations. Our correlation and error analyses provided

evidence that the shape information represented by the point-distributions of facial

landmarks is more suitable for pose processing than the texture information, and

that the correlations between the shape and texture representations can be utilized
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to linearly synthesize the Gabor jet-based texture representation from the corre-

sponding shape representation.

9.1.4 Examples of Practical Applications

This dissertation demonstrated two applications of our method; pose-invariant facial

identi�cation and interpersonal pose estimation.

We proposed a novel face identi�cation method which is robust against a wide

rage of arbitrary 3D pose variation. In this method, each known person is represented

by a PWLM system, which aligns the 3D head pose of the known persons' model

views to an arbitrary pose of an input by the analysis-synthesis chain. This method

improves the multiple-view-based method (e.g., Beymer) by reducing the size of a

known-person database by using our compact representation model, and by reducing

the search space for the nearest-neighbor identi�cation process by using an input's

pose information. We demonstrated that our method achieved 95{99% correct-

identi�cation rate with a database of 20 known persons with �55 degrees pose

variation.

We proposed two pose estimation methods to generalize for di�erent people.

One method consists of a single PWLM system which is trained for both pose and

interpersonal variation, while the other describes an arbitrary person by a linear

combination of a set of PWLM systems, each of which is trained for pose variation

of a speci�c person. We demonstrated that both methods were fairly accurate for
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estimating head poses of unknown persons, achieving an average error of about 2

degrees, and that the latter method was very accurate for known persons, achieving

about 1 degree average error.

There are a number of characteristics of our method which potentially leads to

attractive applications.

The explicit parameterization of our compact system by 3D head angles provides

an appropriate basis for realizing low-bandwidth and content-based communication,

in which only the economical pose parameters, instead of a continuous video stream,

are transmitted via a communication channel by using the analysis and synthesis

processes of our system as an encoder and decoder, respectively. This type of visual

communication will only be useful if changes in facial shape caused by gesturing

are also parameterized and transmitted. This problem has been already solved by a

method which is closely related to ours (Hong [92]).

Our method realizes a data-driven system whose model knowledge uses minimal

a priori assumptions and can be learned from the statistics of uncontrolled samples.

Such a system makes economical sample collection for creating an experimental

database possible by requiring no subject cooperation and little operator assistance.

This advantage also helps to realize an automatic on-line learning system which

could be of practical and theoretical signi�cance.

Lastly, it is worth mentioning that the proposed method should be applicable

to di�erent classes of objects other than faces. Although we did not investigate our
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method's applicability to non-face objects, it does not impose any constraints which

limit its usage to only faces. This advantage extends our proposed method to a

much wider range of application scenarios.

9.2 Discussion:

Comparison to Biological Systems

Although our study did not explicitly include biological plausibility as a constraint

on system design, it is useful to compare our proposed computer vision system to its

biological counterpart in humans (or other primates), which is the best face recogni-

tion system known so far. For this purpose, this section presents a brief discussion

of our studies in comparison to related psychological and biological studies.

9.2.1 Systematic Viewpoints

The most obvious biological plausibility of our system is its usage of the orientation-

and scale-sensitive Gabor �lter responses as texture representation. The rationale

of this argument can be found elsewhere in the literature. For example, see Jones

and Palmer [103] and Daugman [50, 51] about their similarity to responses of V1

hyper-column cells, and see Biederman and Kalocsai [20], Hancock et al. [85], and

Bruce et al. [27] about the similarity of a face recognition system based on the Gabor

jet representation (Lades et al. [111], Wiskott et al. [214], and Okada et al. [141])
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to psychophysical results on human face perception. Recently, von der Malsburg

and Shams [207] explored the Gabor �lter response-based object representation as-

sociating the magnitudes of the complex-valued coe�cients to the responses of V1

complex cells, which are insensitive to the phase of spatial gratings. This Gabor

magnitude representation is also used in our facial identi�cation system described

in chapter 5.

Also the structure of our representation model has a certain degree of biological

plausibility because of its continuous-transformation and function approximation

features. These aspects enable us to interpret our model as a three-layer feed-

forward neural network which was originally inspired by the substrata of the brain's

information processing (Rumelhart and McClelland [170]). The learning process

of the PC-based subspace models can be realized by using a two-layer linear feed-

forward network (e.g., Oja [137], Xu [219]) or the same network with additional

lateral inhibitory connections of the output neurons (e.g., F�oldi�ak [68]) together

with an anti-Hebbian unsupervised learning rule which performs decorrelation of the

input variance. Furthermore, the linear mapping function between the model and

pose parameters together with the trigonometric functional transformation K can be

realized by using a two-layer feed-forward non-linear network trained by supervised

learning based on the delta rule. We did not, however, utilize these iterative learning

solutions of our problems, for the more accurate and stable analytical solutions were

available.
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9.2.2 Studies on Human Faces with Pose Variations

This section discusses psychophysical and neurophysiological studies closely related

to ours.

9.2.2.1 Psychophysical Studies

In past two decades, the psychology of human facial perception has been rigorously

investigated, resulting in a number of functional and computational models (e.g.,

Bruce et al. [26], Burton et al. [35], Biederman and Kalocsai [20]). These models

have facilitated our understanding of how faces are perceived in the brain.

Studies by Biederman and Kalocsai [104, 20, 21] have addressed issues of how

the face recognition performance of humans is inuenced by pose variation. Their

experimental results showed that the human performance of a 2-way matching task

in terms of both reaction time and error rates was signi�cantly reduced, when there

was pose di�erence (maximum 60 degrees along one depth-rotation axis) between

the two facial pictures. When humans have only one picture as training sample or

model of a person, human performance of face recognition becomes very sensitive to

pose variation. This compares well with the property of the LPCMAP model whose

valid pose range is limited.

A study by Troje and B�ultho� [192] is one of the recent studies which focused

on face recognition tasks involving changes in head pose. This study provided a
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thorough investigation of the inuences of pose variation on the recognition perfor-

mance of human subjects. They conducted separate studies for the inuences of the

pose variation in the training and test samples and for those in shape and texture

information, and statistically analyzed their cross-relations. Facial images used in

their experiments were generated from Cyberware-scanned 3D heads similar to our

study. They used faces with only shadings without their corresponding pigmenta-

tion as shape stimuli, while fully textured faces were used as texture stimuli. Their

experimental results indicated that face recognition performance (error rates) was

signi�cantly inuenced by pose variation in the training views, while the rate was

independent of pose variation in the test views. This result agrees with a postulation

of our PWLM-based face recognition system, which suggests that the recognition

performance depends on the amount of previous experiences of the known objects.

A recognition of a known person whose representation model is only trained with

a limited range of views becomes naturally di�cult because the model will fail to

synthesize an accurate model view of unknown poses, reducing the chance of correct

recognition. They also reported that the mean error rates with the shape stimuli

showed more dependency on pose variation than the texture stimuli, and that the

results with the shape stimuli were facilitated by symmetrical view pairs (the bi-

lateral symmetry e�ect). This result also supports our design choice of associating

pose variation only to the shape representation. However, we need to treat these in-

terpretations with care because their experiments used a very coarse pose resolution
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(9 poses along 1D depth-rotation) and the facial shape was treated in a di�erent

manner from our study.

9.2.2.2 Neurophysiological Studies

In the early 1970s, neurophysiological studies by Gross and his colleagues [82] re-

vealed that some cells in the inferior temporal (IT) cortex of macaque monkeys

selectively respond to a visual presentation of faces. Since this discovery, these so-

called face-cells were further investigated in the various cytoarchitectonic areas of

the IT cortex including, TE and STS (the superior temporal sulcus). These IT areas

are located at the end of the ventral stream of the cortical visual processing (V1,

V2, V4, TEO, and TE). Anatomically, STS receives forward projections from TE

but also gives backward projections to these areas. STS is also multimodal, while

the above �ve areas are dominated by visual inputs. An STS area, TPO, which

has a high density of the face-cells, is reported to have both forward and backward

projections with the parietal cortex. See reviews by Desimone [53] and Gross [81]

for detailed properties of face-cells in the various areas.

The face-cells in TE and STS exhibit di�erent response properties. The TE face-

cells show more sensitivity to the identity of faces, while the STS face-cells show

more sensitivity to the gaze direction, movement, and facial expression that are

often hypothesized as carrying the social attention information (e.g., Perrett et

al. [150]). Moreover, the majority of the STS face-cells are view-sensitive (sensitive

to a speci�c pose of faces), while the view-insensitive (responding to faces in
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general regardless of their pose) face-cells are more likely to be found in the TE

areas.

Perrett et al. [150] reported that the activities of these STS face-cells were modu-

lated by eye and head gaze directions, which implies the processing of pose informa-

tion may be carried out in this area. Their physiological results suggest that these

cells were statistically more selective to a number of speci�c characteristic views

instead of equally selective to arbitrary pose varying views. This �nding agrees with

the concept of our piecewise linear model approach which covers the viewing sphere

by a few number of linear models distributed sparsely in the pose space. They also

showed that the STS face-cells exhibited broad view tuning, in which the cells

respond to a wide pose range. This again agrees with the continuous nature of the

single LPCMAP model used as the local linear model of the PWLM system. How-

ever, these analogies need to be treated with caution because we have not established

a basis of comparing the cell response activities and our system's numerical weights

or errors.

For the face-cells in TE, Rolls [167] reported that the response properties of cells

which are sensitive to facial identity are modi�ed by exposure to novel faces. This

�nding suggests that these cells may play a role in the learning process of facial

information. In general, IT cells are known to exhibit properties of population

coding, which may be an analogy to our multivariate vector representation of faces.

The fact that the view-sensitive and view-insensitive face-cells coexist in the same IT
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region may support a theory that the view-insensitive cells are built by convergence

of the view-sensitive cells that code di�erent views of the same person. Although the

exact functional relationships between these two types of cell are not understood yet,

this hypothesis supports the computational property of our system, in which view-

independent representations of faces are built by associating the view-dependent 2D

training samples by a three-layer network.

Studies of prosopagnosia patients have provided another tool for investigating

the cortical nervous system related to facial processing. Prosopagnosia is the im-

pairment of face recognition abilities due to brain damage. A number of reports are

available in the psychology literature (e.g., Farah [66] and Young [222]). Heywood

and Cowey [91] reported that bilateral ablation of STS of a macaque monkey re-

sulted in an impairment of perceiving the gaze directions but did not exhibit the

prosopagnosiaic impairment of facial identi�cation ability of the monkey. These re-

sults con�rmed the earlier �ndings of the STS face-cell properties and provided a link

between the psychological studies of prosopagnosia patients and electrophysiological

studies.

The existence of the forward and backward projections between the STS and

parietal cortex is another interesting point. The parietal cortex interfaces the sensory

and motor nervous systems and is involved in the dorsal stream of visual processing,

which is strongly related to spatial awareness and attention. The pose information of
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objects is naturally relevant to spatial awareness and motor control, which justi�es

the connectivity between the two cortical regions.

A series of studies by Andersen and his colleagues (e.g., Andersen et al. [5], Snyder

et al. [183], and Reed and Siegel [166]) have revealed interesting characteristics of

the cells in the posterior parietal cortex such as the lateral intraparietal (LIP) and

the medial superior temporal (MST) areas. They found that the LIP cells are

retinotopically organized but their response activities are gain-modulated by the

eye and head positions. This modulation by the gaze directions, or gain �eld,

provides a mechanism for the coordinate frame transformation from retinal (eye-

centered) to spatial (head- and body-centered) coordinates. This �nding justi�es

our model's usage of an object-centered shape representation and the assumption of

the availability of the ground truth 3D head pose information during the learning

stage. Their multimodal studies of these LIP cells also indicated that auditory signals

are represented in eye-centered coordinates, suggesting that the visual gain �eld is

used as a common reference frame for spatial awareness and movement planning.

This result suggests the possibility that a common reference frame of 3D object

rotations may also exist. Such a common pose reference frame is useful for realizing

a multimodal sensorimotor interface and justi�es our model's usage of the global 3D

rotation angle space as a reference frame of the pose variation.
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These cortical systems for processing facial information revealed by neuroanatom-

ical and neurophysiological studies provide an interesting parallel to our computa-

tional studies. However, our understanding of the nervous system is still too in-

complete to allow a detailed comparison. A number of studies have reported that

various cortical areas that have monosynaptic connections with IT, such as STP

(the superior temporal polysensory area), the amygdala, the ventral putamen, and

the ventrolateral frontal lobe, were found to include face-cells [81]. These �ndings

indicate the existence of a complex array of structures for facial information pro-

cessing involving a number of multimodal cortical functionalities. However, their

intricate functional relationships are still not understood. Further investigations of

these cortical systems are required for developing not only a better understanding of

our cognitive processes but also a better computational theory of object recognition.

9.3 Future Work

In this section, we discuss a number of issues which were not addressed in this

dissertation, and are substance for future work.

9.3.1 Extension to Other Types of Variation

While this dissertation concentrated mainly on pose variation, our long-term goal

is to realize a representation model which accommodates all kinds of environmen-

tal and object variations presented in 2D object views. Therefore, our proposed
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system needs to be extended to other types of variation such as shape and illu-

mination. Fortunately, our system design with data-driven and exible criterion

provides an appropriate framework for this extension. The extension to the shape

deformations caused by various facial expressions should be tractable because the

expression variation is best characterized by the shape information similar to our

case. Challenges are due to the non-linearity and subtlety of the variation. Our

recent in-house study (Hong [92]) using more elaborate shape representation indeed

demonstrated the extendability of our method to facial expression. The extension

to illumination variations may also be possible because the scene radiance of objects

is described as a function of the 3D structure of the objects. Therefore, illumination

parameters such as the 3D location of point light sources can be associated with the

texture representation, while the texture is associated with the corresponding shape

representation, as shown in our study. We expect that an attempt to learn these

di�erent variations by a single system would likely be confronted by the curse of

dimensionality which makes the learning di�cult, and by intensive labor for collect-

ing enormous number of training samples. However, the nature of our system can

mitigate these problems because of its intrinsic capability for generalization which

mitigates the curse of dimensionality problem and its data-driven nature which re-

duces labor during sample collection. For realizing these extension, we must know

more about these variations. Unlike our case of pose, intrinsic properties of facial

expression and illumination variations in 2D images are not fully understood yet.
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Further understanding of these variations would be the natural next step towards

our aforementioned goal.

9.3.2 Non-Linear PCA

The performance of principal component analysis (PCA) as feature extractor is lim-

ited because it can only derive orthogonal linear component vectors. This was the

reason that our system needed 8 shape PCs to describe the variation of 3 degrees

of freedom, although we empirically show that the additional PCs do not compro-

mise the processing accuracy of our method. A feature extractor which could �nd

non-linear basis whose number of components corresponds to the innate degrees of

freedom of a given variation would provide a number of advantages including 1) the

reduction of the number of components (which mitigates the curse of dimensionality),

2) the facilitation of the linear mapping between the model and physical parameters

(which potentially leads to a better generalization), and 3) another solution to the

pose range limitation of the linear model which replaces our PWLM solution by a

single compact system. Despite these advantages, the currently available non-linear

feature extractors such as kernel PCA have a number of shortcomings as described

in chapter 2, which prevented us from using them for our system. Therefore, this

extension with a non-linear feature extractor remains for future work.
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9.3.3 Extrapolation of Our Representation Model

The PWLM system was proposed to cover a wide range of pose variation by inter-

polating a set of spatially distributed local linear models. When we further increase

the variation range and the number of dimensions, the system becomes less compact

requiring a large number of local models because of this interpolation nature. An

obvious solution is to seek an extrapolation capability in our method. However, our

current system is not capable of extrapolation because of the nature of our model

design and of the targeted variation. We are currently investigating a new method

based on a second-order transformation law for extrapolating a representation model

which maps the physical variations to the representation space. A mapping realized

by our linear model can be treated as �rst-order derivatives of our vector represen-

tation with respect to the physical parameters. Therefore, the transformation law

of this mapping can be described as second-order derivatives of them. In the case

of 3D pose variation, these second-order derivatives become constant with respect

to each local tangent coordinate frame. This property may be used to realize the

extrapolation of a learned model to an arbitrary point in the parameter space. We

plan to further investigate this method in the near future.

9.3.4 Towards On-Line Incremental Learning

In section 9.1 we have argued the advantages of our method which help to realize an

on-line incremental learning system. However, a number of di�cult problems still
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need to be solved to achieve this goal. One problem is an on-line clustering of a

video input stream into sets of training samples, each of which is used to construct

a local model. A solution of this clustering problem needs to possess an on-line

nature in order to learn from a continuous video stream. Moreover, the resource

allocation problem needs to be addressed for incrementally distributing the local

models in the most e�ective way within a 3D angle space. Another problem is

related to incremental learning. For automatically learning a known-person database

whose entry is represented by a PWLM system, each unknown person appearing

in the input stream needs to be detected and added into the database as a new

entry. Also for incrementally improving the learned models, a new appearance of

a known person can be consolidated to a PWLM system representing the known

person. This operation can be realized by either a simple addition of a new local

model to the corresponding PWLM system or an incremental learning of the PC-

based subspace models. The latter is a di�cult problem because the order of the

PCs are sensitive to a speci�c set of training samples so that the correspondences

of the PCs between two subspaces cannot be easily determined. The problem of

the knowledge transfer addresses issues of additively training a system while

conserving the knowledge acquired from previous learning. This problem also needs

to be solved for realizing the incremental learning of the subspace model.
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9.3.5 Towards Pose-Invariant Landmark Finding

The automation of our proposed system requires a reliable landmark �nding system

for preprocessing each training and test sample. For this purpose, our study in

section 4.2 demonstrated a successful automatic preprocess by using a tracking-based

on-line landmark �nder developed by Maurer and von der Malsburg. One of the

main constraints of this system, however, is that, for each tracking session, a frontal

view needs to be presented for initializing the landmark locations. Although this

can be tolerable for many application scenarios, it is highly desirable to remove this

constraint such that facial landmarks in any 3D pose can be reliably found using only

single view statistics without referencing previous views. For example, our proposed

pose-invariant face identi�cation system looses attractiveness when a frontal view of

each input face is always available. In such a situation as postulated by the usage

of the tracking-based landmark �nder, there would be much simpler well-known

solutions for identifying frontal views of faces. This observation motivates us to

investigate a method for realizing a pose-invariant landmark �nder. An iterative

application of the pose analysis and shape synthesis processes of our system may

provide a core of such a method. Note, however, that this is an ill-posed circular

problem because the landmark locations and 3D head poses depend on each other

in our formulation. A clever method of �nding an appropriate initial condition for

arbitrary head poses and/or of utilizing the co-dependency as a boot-strapping force

is required to solve this problem.

303



9.3.6 Further Investigation for the Learning Process

of Our Model

The following two questions related to the learning process of our system were not

investigated in this dissertation and should be answered in the near future. One

question is the minimum number of training samples required for learning an ac-

curate representation model. Assuming a homogeneous density of a data-cloud of

training samples in the 3D angle space, it is interesting to see how far the sample

distribution can be sparsi�ed while maintaining the pose processing accuracy. The

more sparsi�ed the sample distribution, the less training samples a model learns

from. Therefore, an answer to this question gives us further insights about our

system's ability to learn from a few number of samples and its data-compression

capability. Another more general question is the e�ectiveness of the learning process

against various distributions of training samples in the 3D angle space. In a purely

data-driven learning scenario, a training data-cloud in parameter space can have

arbitrary shape, size, and density. Although we studied the di�erent sizes of the

data-cloud, we did not thoroughly investigate how various shapes and distributions

of the data-cloud would inuence our system's performance. Designing numerical

experiments for investigating this question is di�cult because the number of all pos-

sible data-cloud shapes and densities is enormous. However, this question should

be answered to give insights for realizing an on-line learning system as mentioned

earlier.
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9.3.7 Relationship between the Pose and Interpersonal

Variations

Our investigation in chapter 8 did not provide a conclusive answer for the relation-

ship between pose and interpersonal variations. Our error analysis implied that

these two types of variation should be fairly independent because the single-PWLM

system, which treats the two types of variation equally, resulted in relatively good

accuracy. However, this question remains unresolved as a future topic because of

the inconclusiveness of our experimental results. The comparison of the single- and

multiple-PWLM systems for the interpersonal pose estimation indicated that the

former performed best for known faces while the latter won for unknown faces. This

result implies a need of separate mechanisms for processing familiar or unfamiliar

faces. Another issue is the modulatory relationship of pose and interpersonal vari-

ations. This issue addresses the question of which variation is processed before the

other. The pose-invariant facial identi�cation method proposed in this dissertation

assumes a perceptual paradigm in which the variational analysis, such as pose esti-

mation, takes place before the identi�cation process. However, a paradigm with a

reverse relationship of the variations has been used in successful object recognition

systems such as the parametric eigenspace system by Murase and Nayar and may be

equally valid. Which modulatory relationship is correct or whether both paradigms

should coexist remains another future topic.

305



9.3.8 The Missing Data Problem

Our handling of the missing shape vector components due to self-occlusion of land-

marks was based on a simple sample manipulation-based mean imputation method.

Although we empirically showed that our system with this method performed accu-

rately within the �55 degrees 3D pose range, this method is expected to be subopti-

mal when much larger pose variations are considered because arti�cial biases intro-

duced by these sample manipulation-based methods become non-negligible. There-

fore, we need to revisit this problem in order to apply our system to a speci�c scenario

which requires coverage of a much wider pose range while maintaining high accuracy.

We are currently considering a number of methods to solve this problem. As men-

tioned in chapter 7, the EM algorithm for solving a maximum likelihood estimation

problem has been claimed as a solution for the general missing data problem [120].

Another approach is to extend a linear neural network implementation of the PCA

based on the constrained gradient-descent approach (e.g., Oja [136, 137], Oja and

Karhunen [138], F�oldi�ak [68], Chauvin [37], Xu [219], Plumbley [159, 160], and Baldi

and Hornik [7]). We plan to further investigate this approach in the near future.
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