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Abstract

In this study, we introduce a new directional nonpara-
metric clustering algorithm for 3D medical structure topol-
ogy classification. This paper proposes directional mean
shift (DMS) which extends the well known mean shift-
based clustering, for handling directional statistics, toward
analyzing directional/circular-domain data with phase-
wraparound boundary conditions. Our overall approach
transforms the 3D topology classification problem into a
clustering analysis of a 2D image, following the work by
Bahlmann et al. [2] in the context of computer-aided diag-
nosis (CAD). The proposed DMS replaces the expectation-
maximization (EM) algorithm for Gaussian mixture model
(GMM) fitting used in the previous method addressing the
shortcomings of the Bahlmann’s method. Results from our
experiments demonstrate the effectiveness of DMS in con-
trast to the original EM-based approach in solving the clus-
tering problem with a 2D image unwrapped from a 3D
spherical data, leading to better accuracy in the topology
classification task.

1. Introduction
Cluster analysis [21] is widely used in medical image

analysis due to the necessity to economically model the sta-
tistical nature of the great amount of data held by medical
images. The analysis divides data into meaningful and/or
useful clusters/groups. Various clustering techniques have
played an important role for determining key features in
many high-level analysis tasks, such as segmentation and
registration. Mean shift (MS) [9, 3, 4] is a well known
adaptive step-size mode seeking algorithm for kernel den-
sity function, which has been widely adapted to various vi-
sion and pattern analysis problems. The advantage of MS-
based clustering is its ability to handle non-Gaussian shaped
clusters, as well as to analyze data with arbitrary number of
clusters.

In this paper, we propose directional mean shift (DMS):
an extension of the mean shift to directional statistics. Di-
rectional statistics [13] handles directional data defined over
a circular domain. Directional data is very common in vi-
sion applications where angle measurements (e.g., SIFT de-

scriptor [12]) and the hue component of color images are
examples of such data. Furthermore, they also result from
unfolding a 3D space/manifold into a 2D image representa-
tion, such as omni camera, cartographic, and radar images.
Any regular statistical analyses of such data, defined over
a linear vector space, become erroneous, failing to capture
the proximity of points at the two ends of the data domain.
Thus special treatments [8, 1] for handling statistics over
such data are required. Extending the mean shift toward
such directional data is, therefore, non-trivial and favorable
in widening its application scope.

Recently, the MS algorithm, originally defined over
Euclidean vector space, has been extended toward non-
Euclidean domains, such as Riemannian [22] and Grass-
man [20] manifolds. While these extended MS algorithms
provide a principled way to cluster data points within some
non-linear manifolds, they cannot be applied to data points
that are already embedded into a Euclidean vector space.
For example, these methods cannot correctly cluster loca-
tions on a 2D world map because, after a cartographic trans-
formation, we no longer have an access to the original 3D
coordinates required by these methods. The proposed DMS
is designed for such data sets where data points are defined
over a linear space but have an underlying and inaccessible
non-linear distribution. Angular distributions, such as Von
Mises, are also commonly used when angular variables are
present, but such distributions cannot be applied to domains
if they are defined by a combination of linear and non linear
dimensions [1] (e.g. HSV color space).

By exploiting the proposed DMS, this paper also ad-
dresses a medical image analysis task for classifying topo-
logical types of local 3D structures. A variety of local
anatomical and pathological structures are present in 3D
medical images (e.g, CT, MRI, etc). For example, in a chest
CT, there exist tubular-shaped vessels/airways, branches of
such tubular structures, blob-shaped nodules indicating tu-
mors, and attachments of such nodules to other structures.
The goal of the 3D topology classification is to determine
the type of a given local 3D structure and to provide useful
information to post processes such as chest CAD. For in-
stance, the differentiation of nodules from vessel-branches
can be used to reduce typical false positive cases of chest
CAD, leading to better overall nodule detection accuracy.



A challenge of structure type classification in dense 3D
images is due to the high variability of the said structure’s
orientation, co-articulation and size, as well as the inher-
ent difficulty in visualizing such data. Solutions that have
been previously proposed can be principally categorized
in two distinct approaches. The first approach fits a set
of flexible intensity models of specific structure type to
data directly [6, 5, 17, 15]. In a 3D domain, such an ap-
proach becomes inefficient due to the high structural vari-
ability that can in turn make the model parameter space ex-
ceedingly large. The second approach analyzes eigenval-
ues of the Hessian matrix as a way to characterize struc-
ture types [16, 7, 10]. Although the second approach has
been found successful in vasculature analysis in 3D volu-
metric data, its flaw rested in its inability to differentiate
branching cases, commonly found in medical data. Over-
all a comprehensive analysis of structure topology classifi-
cation is seldom reported, despite clinical significance and
potential. Bahlmann et al. [2] proposed a promising ap-
proach to solve the 3D topology classification problem by
transforming it into a clustering analysis within a 2D image
and performing an EM algorithm for fitting a GMM to the
data point set. This approach has two major defects. First,
it tends to over-estimate the number of clusters. Second, the
EM-based GMM fitting requires that the number of clusters
to be known a priori. One of the major contributions of this
work is to replace the EM-based GMM fitting by the pro-
posed DMS. The resulting extended classification algorithm
drastically improves the overall accuracy by overcoming the
two shortcomings of the previous method.

This paper is organized as follows. Sec. 2 and 3 review
the mean shift and directional statistics theories. The pro-
posed DMS algorithm is then described in Sec. 4. The con-
vergence proof of DMS is provided in the appendix. Sec. 5
describes our approach to 3D structure topology cluster-
ing using DMS. Finally Sec. 6 concludes this paper by dis-
cussing our experimental results and future work.

2. Mean Shift Theory: Overview

2.1. Kernel Density Estimation

Given n data points xi, i = 1, . . . , n in d-dimensional
Euclidean spaceRd, and a bounded kernelK(x), the kernel
density estimation of random variable x with kernel K(x)
and bandwidth h (smoothing parameter or window size) is
defined [19, 18] as

f̂(x) =
1

nhd

n∑
i=1

K

(
x− xi
h

)
(1)

where K(x) is usually chosen with properties∫ +∞
−∞ K(x) dx = 1 and

∫ +∞
−∞ xK(x) dx = 0.

Clearly, f̂(x) has the form of a density function in that
it is non-negative and its integral is 1. Further, f̂(x) is
smooth. The kernel density estimation(KDE) is the most
widely used method of nonparametric density estimation.

2.2. Mean Shift Procedure
Mean shift can be derived from the estimate for the gra-

dient of probability density functions following [9]. Such
density gradient naturally helps to seek the mode(s) of a
density function in the gradient-ascent sense. From (1) the
estimate of density gradient can be approximated by the gra-
dient of density estimator which gives

5̂fh,K(x) ≡ 5f̂(x) =
c

nhd

[
n∑
i=1

K

(
x− xi
h

)]
×[∑n

i=1 xiK
(
x−xi
h

)∑n
i=1K

(
x−xi
h

) − x

]
(2)

The second term
∑n
i=1 xiK( x−xi

h )∑n
i=1K( x−xi

h )
−x in the rhs of the above

formula defines the mean shift step. A convergent gradient-
ascent like iterative algorithm is then given by the sequence
of successive applications of (2) until convergence.

yj+1 =

∑n
i=1 xiK

(
yj−xi
h

)
∑n
i=1K

(
yj−xi
h

) , j = 1, 2, ... (3)

Under certain regularity conditions, we can show that gra-
dient is asymptotically unbiased and uniformly consis-
tent [3, 4].

3. Directional Statistics
Directional statistics is commonly defined on circular

observations z = eiθ on a unit radius circle or as a unit
vector x = (cos θ, sin θ)T [13]. All arithmetic that can be
performed on the circle will be modulo 2π so that the an-
gles θ and θ + 2π represent the same point on the circle
and that θ can be treated as in a range [0, 360]. For a given
directional data φ and ω the directional distance between
them can be defined as

1− cos(φ− ω) (4)

3.1. Directional Distance
While the definition given in (4) provides a correct dis-

tance for directional data θ in the range [0, 360], it fails
when the variable range becomes different from [0, 360].
For instance, if, for a certain application, the radius of sup-
port is defined on [-45,30] then (4) would not result in the
correct distance. This would also cause a problem when
working in multivariate domains where data from each di-
mension has a different radius of support. For example, a
cartographic transformation from a glove to a 2D map typi-
cally produces a directional image within a circular domain
whose support is given by [0, π] for latitude and [0, 2π] for
longitude. To overcome this problem we redefine the Eu-
clidean distance of any 2 real numbers φ and ω (φ < ω)



under an underlying directional domain with arbitrary do-
main support as

D(φ, ω) =
√
s2φ,ω (5)

where the directional difference vector sφ,ω is defined in a
wraparound fashion as

sφ,ω ={
sgn(φ− ω)× r − (φ− ω) , |φ− ω| > r

2

φ− ω otherwise
(6)

The domain support of directional data φ and ω is general-
ized as

φ, ω ∈ [rα, rβ ] (7)

where rβ and rα are respectively the maximum and mini-
mum values of the domain, and the radius r of data support
is defined as

r = rβ − rα (8)

We callD(φ, ω) the directional distance [11]. It universally
represents the shortest path between φ and ω on the direc-
tional space. Two points on a circle circumference divide
the circle into two arcs and directional distance is length of
the shorter arc.

Applying equation (6) to any linear space can be inter-
preted as applying geodesic distance to a corresponding un-
derlying circular domain with arbitrary domain support.

3.2. Directional Mean

The directional mean proposed in [13] for two given unit
vectors φ and ω, with corresponding angles θ1 and θ2, is
defined as

θ̄ = tan−1
(
S̄/C̄

)
(9)

where the Cartesian coordinates of the center of mass are
given as

C̄ =
1

2
(cos θ1 + cos θ2) , S̄ =

1

2
(sin θ1 + sin θ2) (10)

Similar to the discussion in 3.1, varying range of domain
is sometimes problematic for calculating the mean. There-
fore, we introduce another definition for directional mean
with arbitrary domain support as

Dmean(φ, ω) =
φ+sgn(rβ+rα−(φ+ω))∗r+ω

2 , |φ− ω| > r/2

φ+ω
2 otherwise

(11)

3.3. KDE with Directional Data
Combining all the aforementioned concepts of direc-

tional statistics, we can define a KDE function estimated
from directional data in circular domain. Introducing the
directional difference vector definition (6) into (1) results in

f̂(x) =
1

nhd

n∑
i=1

K
(sx,xi

h

)
(12)

Figure 1 compares kernel density estimation between con-
ventional Euclidean and the proposed directional difference
vector, demonstrating how directional statistics affects the
KDE result given the same input. The directional KDE
shown in figure 1(c) captures the periodic wraparound na-
ture of the data. The bivariate Gaussian kernel K(x) =
1
2π e
− 1

2x
Tx is applied to obtain results presented in figure 1.

Figure 1. (a) 2D input using a sample point set representation in
[−π, π] (b) KDE with conventional Euclidean distance measure
showing five modes (c) KDE with directional difference vector
exhibiting two correct modes

4. Directional Mean Shift
4.1. Deriving DMS

Exploiting the directional difference vector, any arbitrary
convex and bounded kernel K(x) can be defined by using
the profile kernel k

K(x) = ck,dk

(∥∥∥sx,xi
h

∥∥∥2) (13)

where x,xi ∈ [rα, rβ ], h is the bandwidth(window size),
and ck,d > 0 is a constant to make certain thatK is a density
function. From (12) and (13) we have

f̂h,K(x) =
ck,d
nhd

n∑
i=1

k

(∥∥∥sx,xi
h

∥∥∥2) (14)



The estimate of density gradient is given by the gradient of
density estimator,

5̂fh,K(x) ≡ 5f̂(x)

=
2ck,d
nhd+2

n∑
i=1

sx,xik
′
(∥∥∥sx,xi

h

∥∥∥2) . (15)

Given g(x) = −k′(x), we have

5f̂(x) =
2ck,d
nhd+2

n∑
i=1

(−sx,xi)g
(∥∥∥sx,xi

h

∥∥∥2) . (16)

Having (6), (16) branches into f̂1(x) and f̂2(x) which
correspond to the two possible definitions defined in (6).
Therefore

5f̂1(x) =
2ck,d
nhd+2

n∑
i=1

(xi − x± r)g
(∥∥∥sx,xi

h

∥∥∥2) ,
5f̂2(x) =

2ck,d
nhd+2

n∑
i=1

(x− xi)g

(∥∥∥sx,xi
h

∥∥∥2) .
(17)

Similar to (2),5f̂2(x) can be rewritten as

5f̂2(x) =
c

nhd

[
n∑
i=1

g
(sx,xi

h

)]
×[∑n

i=1 xig
( sx,xi

h

)∑n
i=1 g

( sx,xi
h

) − x

]
. (18)

Defining γi = xi ± r and some algebra yields

5f̂1(x) =
c

nhd

[
n∑
i=1

g
(sx,xi

h

)]
×[

x−
∑n
i=1 γig

( sx,xi
h

)∑n
i=1 g

( sx,xi
h

) ] . (19)

Since k(x) is bounded and convex, the term
c
nhd

[∑n
i=1 g

( sx,xi
h

)]
is strictly positive. To locate

the mode(s), the points where5f̂(x) = 0 should be found.
Hence, from (18) and (19) we respectively have

x =

∑n
i=1 xig

( sx,xi
h

)∑n
i=1 g

( sx,xi
h

) (20)

and

x =

∑n
i=1 γig

( sx,xi
h

)∑n
i=1 g

( sx,xi
h

) (21)

Merging γi and xi into one variable results in the overall
repositioning definition defined as

x′i =

{
x + sx,xi , |x− xi| > r/2
xi otherwise

(22)

Thus (20) and (21) can be integrated as

x =

∑n
i=1 x

′
ig
( sx,xi

h

)∑n
i=1 g

( sx,xi
h

) (23)

where the successive locations of the kernel are defined as

yj+1 =

∑n
i=1 x

′
ig

(∥∥∥ syj ,xih

∥∥∥2)
∑n
i=1 g

(∥∥∥ syj ,xih

∥∥∥2) , j = 1, 2, ... (24)

Determining yj+1 using (24) may result in yj+1 /∈ [rα, rβ ].
From (6), (22), and (24) we know yj+1 ∈ [rα− r

2 , rβ + r
2 ].

Therefore, after each iteration of calculating the successive
location, we reposition yj+1 by

y′j+1 =

{
yj+1 − r , yj+1 > rβ
r − yj+1 , yj+1 < rα
yj+1 otherwise

(25)

therefore (24) is rewritten as

y′j+1 =

∑n
i=1 x

′
ig

(∥∥∥ sy′j ,xih

∥∥∥2)
∑n
i=1 g

(∥∥∥ sy′j ,xih

∥∥∥2) , j = 1, 2, ... (26)

4.2. DMS Convergence

To show the correctness of DMS, we prove the follow-
ing theorem for the convergence of (26). A proof of this
theorem will be provided in the appendix.

Theorem 1. If the kernel K(x) is convex and bounded,
the sequence {f̂(y′j)}j=1,2,... is monotonically increasing
and {y′j}j=1,2,... and {f̂(y′j)}j=1,2,... converge.

4.3. Algorithm Overview

Let X denote the set of data points, {xi}i=1,...,n and th
the predefined distance threshold. The following describes
the DMS algorithm

DMS(X,th)
for all xi ∈ X

set current point cp to xi
loop

calculate scp,X (6)
determine repositioned data points, x′i (22)
calculate the new point mp by DMS (24)
reposition mp (25)
exit loop if scp,mp (6) is less than th
reset cp by mp

set cp as the convergence point x∗i



4.4. Example with HSV Color Segmentation
In order to demonstrate the effectiveness of the proposed

DMS algorithm, we apply it for color segmentation using
HSV color space. Figure 2 demonstrates the merit of our
method in a few illustrative examples.

All three components of HSV color space: hue, satura-
tion, and value do not share the same domain properties.
Saturation and value are defined in linear space with values
[0, 1] while hue is defined circularly on [0, 360]. This prop-
erty of the HSV color space, in many cases, prevents lin-
ear space segmentation algorithms from producing desired
HSV color segmentation results. For example, the standard
mean shift segmentation can fail to extract a foreground ob-
ject by falsely separating parts with similar colors that are
placed at the different sides of the origin of the circular hue
component. On the other hand, the proposed DMS correctly
groups pixels with similar colors across the color space ori-
gin, mitigating this shortcoming.

In the case of DMS-based HSV color segmentation,
f̂(x) would be a multivariate density function built upon
a combination of both linear and directional feature compo-
nents. Our directional mean shift can be readily extended to
this combined feature domain.

5. 3D Medical Structure Classification
As described briefly in introduction, Bahlmann et al. [2]

proposed a novel approach to solve the structure type clas-
sification problem by transforming the problem of classi-
fying 3D topology types into a clustering analysis within a
2D image. The following describes the main idea of this
algorithm [14]. Consider a 3D sphere that encompasses the
target 3D structure shown in a 3D scan such as CT or MRI.
Assume that any non-target regions have near-zero intensity
values and that any target’s part that protrudes the spherical
surface would create a compact region of high-intensity val-
ues. Notice that the number of such regions on the spher-
ical surface explicitly determines the type of 3D topology:
nodule (0), nodule attached to an other structure (1), vessel
(2), and vessel branch (≥3). The location and the size of
these regions change according to various articulation and
geometry of these structures. Thus counting the number of
high-intensity islands on the 3D spherical surface domain
yields the wanted classification.

The algorithm by [2] breaks down this process into two
parts. First, creating a set of 2D images by unfolding the
3D bounding spheres with linearly increasing radius val-
ues. The optimal radius value is then selected by calculat-
ing the local entropy minimum for this 2D image set. Sec-
ond, counting the number of high-intensity islands by fitting
Gaussian mixture models (GMMs) with various number of
components using the EM algorithm and then picking the
model that fits best to the data. Figure 3 illustrates this pro-
cess. After arbitrarily choosing an origin, the 3D manifold
is first unfolded into a 2D image using the following stan-
dard 3D spherical to Cartesian coordinate transformation

x = sin θ · cosφ · r , y = sin θ · sinφ · r , z = cos θ · r

(a) Original im-
age

(b) MS segmen-
tation (h=60)

(c) MS segmen-
tation (h=70)

(d) DMS seg-
mentation(h=13)

(e) Original im-
age

(f) MS Segmen-
tation(h=60)

(g) MS Segmen-
tation(h=70)

(h) DMS Seg-
mentation(h=70)

(i) Original image (j) MS Segmentation(h=60)

(k) MS Segmentation(h=70) (l) DMS Segmentation(h=70)

Figure 2. Image Segmentation with MS and DMS.

where x, y, and z represent the original 3D Cartesian co-
ordinates, r is the radial distance from each point to the
origin, θ is the zenith angle, and φ is the azimuth angle.
Each 2D unfolded image will then be a 2D directional data
in a domain (θ,φ). This directional image is then subjected
to an intensity thresholding and normalization. Consider-
ing it as a probability distribution, a set of points are drawn.
Bahlmann’s algorithm performs an EM algorithm to fit a
GMM on this point set. To handle the directional data, the
GMM and the corresponding EM algorithm was extended
using the similar idea to ours [1].

In this study, we propose a new directional non-
parametric clustering algorithm, replacing the EM-based
GMM fitting in [2] by the proposed DMS. A directional
clustering algorithm is derived by following the standard
method in [3] except to use the proposed DMS instead of the
original mean shift. Each sample point in the 2D unfolded
image is considered as a unit vector (θ,φ) represented in ra-
dians. The directional distance of any paired sample points
can then be modeled by the directional distance definition.
The resulting clustering algorithm does not require the com-



ponent number a priori and can robustly handle irregular-
shaped regions due to its non-parametric nature. Figure 3(c)
compares the result of the proposed and original methods
for the periodic wraparound attached lung nodule case.

(a) 3D VOI (b) Image (c) Clustering Results

Figure 3. Illustration of 3D structure topology classification. (a)
input 3D CT volume: lung nodule attached to a wall in three or-
thogonal viewing planes. (b) 2D unfolded image in the (θ, φ)-
domain after thresholding. (c) lhs: DMS result presented in color
markers, rhs: fitted GMM shown in dashed ellipses.

5.1. Experimental Results
We performed quantitative experiments in order to com-

pare the proposed DMS algorithm and the original EM al-
gorithm by [2]. For the bandwidth value we used values
ranging from 0.3 to 0.5 in radians. Typically, for smaller
cluster size which usually appears in vessel and vessel-
branch cases, we use values close to 0.3; for bigger cluster
size which is often generated by attached-nodule and nod-
ule cases, we use values close to 0.5. These kernel values
are derived from our pilot study with all data input. We use
a data set of 33 local volumetric regions whose size is 32
cubic voxel and taken manually from high-resolution lung
CT scans. There are 9 attached nodules, 10 vessels, and 14
vessel branches among the test set. Results by the algorithm
in [2] are created by using the software provided by the au-
thors. Our proposed directional clustering with the DMS
was implemented in MATLAB. For these data, our DMS-
based method resulted in no error while the original EM-
based method resulted in 87.8% success rate with 4 failure
cases. Two of the failures were branch cases that were clas-
sified as vessels by combining two islands as one Gaussian.
The other two failures were attached nodule cases classi-
fied as vessel cases. This was caused by periodicity in the
unfolded data, although our DMS-based method was suc-
cessful for integrating the multiple directional islands into
one island correctly.

Figure 4, 5 and 6 display 48 illustrative cases including
vessels, vessel-branches and wall-attached nodule for com-
paring the two algorithms. In each presented image, the left
column shows the results by our proposed DMS-based clus-
tering method. Estimated cluster centers are marked with
circles whose location corresponds to the DMS’s conver-
gence. The estimated number of clusters are shown at the
top of each figure and cluster membership is denoted by dif-
ferent symbols and colors. The right column shows the re-
sults by the original EM-based clustering method. Dashed
ellipses illustrate Gaussian mixture models fitted to the data
while the number of fitted Gaussians is shown at the top of
each figure. Figure 5(e) and (f) denote the two branch fail-

ure cases while figure 6(e) and (f) show the two attached
nodule failure cases by the original method. Note also that
the proposed method successfully clusters irregular-shaped
islands (e.g., (a) and (b) in Figure 4, (a), (b) and (c) in Fig-
ure 5) while the original method heavily over-estimates the
number of components. Also note that directional statistics
have been successfully handled with proposed method (e.g.,
(c) and (d) in Figure 4, (d) in Figure 5).

6. Conclusion
This paper proposes DMS, a new directional nonpara-

metric clustering algorithm used for 3D medical structure
topology classification. DMS generalizes the linear space
mean shift to directional data. We show its correctness
by providing a formal convergence proof and demonstrate
its usefulness by applying it to a clinically-relevant med-
ical image analysis application. Our experimental results
demonstrated its effectiveness with significant improvement
over the original EM algorithm in handling directional data.
Our algorithm suggested a significant 12.2% performance
improvement for solving the 3D topology type classifica-
tion problem.

In future work, we plan to perform further quantitative
performance evaluation of the proposed algorithm and con-
sider applying the proposed method to more vision prob-
lems with directional data, such as omni camera and carto-
graphic image analyses. Another standard way to define a
KDE function with directional data is with the Von Mises-
Fisher distribution [13]. It is of our theoretical interest to
derive an algorithm that is convergent to modes of such di-
rectional KDEs and compare/unify with the proposed DMS
method.

A. Proof of Theorem 1.
Proof. The directional difference vector (6) for x and xi is
defined as

sx,xi =

{
sgn(x− xi)× r − (x− xi) , |x− xi| > r

2
x− xi otherwise

(27)
Introducing sx,xi into (22), we obtain

x′i =

{
sgn(x− xi)× r + xi , |x− xi| > r

2
xi otherwise

(28)

The definition for repositioned data point locations in (28) is
a function of x and independent from sx,xi , therefore it can
be introduced into sx,xi without changing the properties of
it which gives sx,xi = x − x′i. Thus, the directional mean
shift equation (26) could be rewritten as

y′j+1 =

∑n
i=1 x

′
ig

(∥∥∥yj−x′i
h

∥∥∥2)
∑n
i=1 g

(∥∥∥yj−x′i
h

∥∥∥2) , j = 1, 2, ... (29)

Comaniciu and Meer [4, Theorem 1:(A.6),(A.7)] show
for an arbitrary kernel location yj 6= 0, the sequence



(a) Vessel A (b) Vessel B

(c) Vessel C (d) Vessel D

(e) Vessel E (f) Vessel F

(g) Vessel G (h) Vessel H

Figure 4. Illustration of DMS and EM clustering results on Vessel
cases. (a) and (b) Irregular-shaped clusters (c) and (d) Clusters
with directional statistics (e), (f), (g) and (h) Normal clusters.

{f̂(yj)}j=1,2,... is monotonically increasing and converges.
They also prove {yj}j=1,2,... is a Cauchy sequence and
therefore convergent. Considering the linear transformation
td(xi) = xi ± r, we conclude without loss of generality
that xi can be recentered on a new coordinate origin and

(a) Vessel-Branch A (b) Vessel-Branch B

(c) Vessel-Branch C (d) Vessel-Branch D

(e) Vessel-Branch E (f) Vessel-Branch F

(g) Vessel-Branch G (h) Vessel-Branch H

Figure 5. Illustration of DMS and EM clustering results on Vessel-
Branch cases. (a), (b) and (c) Irregular-shaped clusters (d) Clusters
with directional statistics (e), (f), (g) and (h) False prediction from
EM-clustering.

transformed by±r within radius of convergence of f̂ which
gives f̂(y′j+1) > f̂(y′j). In other words {f̂(y′j)}j=1,2,... is
monotonically increasing and therefore converges. In addi-
tion to this, similar to the proof in [4, Theorem 1(A.7)] it is
obvious that {y′j}j=1,2,... is also convergent.



(a) Attached-Nodule A (b) Attached-Nodule B

(c) Attached-Nodule C (d) Attached-Nodule D

(e) Attached-Nodule E (f) Attached-Nodule F

(g) Attached-Nodule G (h) Attached-Nodule H

Figure 6. Illustration of DMS and EM clustering results on
Attached-nodule cases. (a) and (b) Cluster size is relatively large
(c) and (d) Bicubic interpolation results in unproportional cluster
size along the edge (e), (f), (g) and (h) Normal clusters.
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