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Abstract. We propose a novel approach to boosting weighted linear 

discriminant analysis (LDA) as a weak classifier. Combining Adaboost with 

LDA allows selecting the most relevant features for classification at each 

boosting iteration, thus benefiting from feature correlation. The advantages of 

this approach include the use of a smaller number of weak learners to achieve a 

low error rate, improved classification performance due to the robustness and 

stable nature of LDA, and computational efficiency. The performance of the 

proposed method was evaluated on artificial data and additionally on two 

popular independent data sets: the Iris Data Set and the Breast Cancer 

Wisconsin Diagnostic Data Set, both publicly available. Experimental results 

showed the superior accuracy of the proposed method over LDA and AdaBoost 

combined with other types of weak classifiers. The weighted LDA algorithm 

was proven to be equivalent to the traditional LDA in the case of uniform 

weight distributions. 

Keywords: Adaboost, breast cancer, classification, weighted linear 

discriminant analysis.  

1   Introduction 

Adaboost [4] is one of the most popular meta/ensemble learning algorithms that build 

an accurate (strong) classifier from a group of inaccurate (weak) classifiers. In its 

classic formulation, the weak classifier of Adaboost is defined by a simple function 

that performs basic binary thresholding on a single feature extracted from each 

training sample. Hence, each weak classifier is trained to minimize a weighted error 

on a single feature. Positive-valued weights are introduced to each training sample 

and adapted during the course of training in order to focus on samples that are 

difficult to classify. At each iteration, Adaboost selects the feature that minimizes the 

weighted error. In this respect, Adaboost is essentially a feature selection algorithm. 

Finally, the strong classifier of Adaboost combines in a linear fashion multiple weak 

classifiers selected according to the sample weights, resulting in a joint single 

decision rule. Adaboost has been successfully applied to various medical and non-



medical applications such as lung tumor detection [1], Alzheimer’s disease detection 

[8], pedestrian detection [12] to name a few.  

Alternatively, Linear Discriminant Analysis (LDA) [2] is one of the classic 

statistical pattern classification techniques. The goal in LDA is to find an optimal 

subspace from a feature vector space, which maximizes the ratio of ‘between-class 

scatter’ to ‘within-class scatter’ [2]. As a result, LDA benefits from feature 

combinations that produce the highest separation between classes.  

This paper presents a new approach to combine the Adaboost and LDA algorithms 

to improve classification performance by exploiting the LDA classifiers as weak 

classifiers of Adaboost. By combining these two algorithms, Adaboost can select the 

best feature combination at each boosting iteration instead of a single feature, 

therefore taking advantage of feature correlations. The classic LDA theory, does not 

include sample weights for the boosting framework. In order to adopt LDA as weak 

learner of Adaboost, we introduce sample weights in the LDA formulation.  

Several previous studies relate to our work. An outlier-class resistant approach to 

estimate the within-class covariance matrix in LDA for linear dimensionality 

reduction was presented by Tang et al. [10]. Although this work explored sample 

weights in their LDA formulation, they did not investigate its application in the 

boosting context of our interest. The adaptation of other classification models to 

Adaboost has recently been explored [6,11], however there are only very few reports 

that investigated LDA in this context, despite the popular usage of discriminant 

analysis [7,9]. An interesting approach was proposed by Liu et al. [7] who adapted 

LDA to incorporate sample weights in an application related to indoor/outdoor digital 

image classification. While the authors introduced a weighted LDA - Adaboost 

combination, their approach was not equivalent to a traditional LDA in the case of 

uniform weight distributions and did not guarantee that the initial classifier represents 

an adequate starting point. Skurichina and Duin [9] also investigated boosting LDA 

classifiers; however their scheme did not aim to combine the two algorithms by 

introducing weights in LDA formulation.  

To evaluate the effectiveness of the proposed approach, we apply the method first 

to artificial data and then to two independent data sets and compare our method with 

AdaBoost combined with other types of weak classifiers. The experimental results 

reflect the superior accuracy of the proposed method over LDA and AdaBoost. 

2   Data and Methods 

For the evaluation of our method, we use two publicly available data sets, the Iris 

Data Set [3] and Breast Cancer Wisconsin Diagnostic Data Set (BCWDDS) [13], both 

from the University of California Irvine Machine Learning Repository [14]. The iris 

data contain 150 instances with 4 attributes, which are grouped in 3 classes 

corresponding to a type of iris plant. One class is linearly separable from the other 

two; the latter are not linearly separable from each other; we employed the 100 cases 

that are not linearly separable in our experiments. More precisely, a pair of labels for 

versicolor and virginica are used for our binary classification task. The BCWDDS 

data are 569 instanced from benign (357) and malignant (212) cases each with 32 



attributes. Features were computed from a digitized image of a fine needle aspirate of 

a breast mass. They describe characteristics of the cell nuclei present in the image. 

Examples of cell nucleus features include size, texture and shape descriptors. 

Additionally, a two dimensional artificial/simulated data set was used to validate 

the algorithm in a very low feature space (Fig. 1). The artificial data set consists of 

500 samples evenly divided between two classes. Samples from one class are 

clustered on a central point and are completely surrounded by samples of the second 

class. The data of the two classes are clearly not linearly separable. 

2.1   Adaboost  

Adaboost [4] is an ensemble learner where the joint decision rule of multiple weak 

classifiers forms an overall strong classifier. Adaboost assigns an initial uniform 

weight W1(i)=1/n to each training sample xi, where n is the number of training 

samples. At iteration k, Adaboost finds the classifier hk trained using samples xi that 

minimizes the weighted error Ek according to Wk(i). The weights are updated by 
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where, yi are the ground truth labels, and Zk is a normalization factor. Weights for 

correctly classified samples are increased and weights for incorrectly classified 

samples are decreased. This allows Adaboost to focus on the informative and difficult 

training samples. The resulting classifier of the Adaboost algorithm becomes  
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where ht is the t-th weak classifier hypothesis, and H(x) is the strong classifier 

hypothesis. Adaboost is typically combined with a simple threshold classifier that 

minimizes the weighted error on a single feature. In other words, at iteration k, 

Adaboost selects the feature which minimizes the weighted error. Wi(k+1) is 

increased when xi is classified correctly by hk, and decreased otherwise. In this 

respect, Adaboost is essentially a feature selection algorithm. 

2.2   Linear Discriminant Analysis  

Linear Discriminant Analysis (LDA) [2] is designed to maximize the ratio of 

‘between-class scatter’ to ‘within-class scatter’. Between-class scatter measures the 

variance of the projections for each individual class. Within-class measures the 

variance of the projections from all data samples. LDA employs feature combinations 

that produce the highest separation between classes. The traditional LDA 

implementation does not take into consideration weights. Supposing that we are given 



N training samples that are partitioned into K classes, S1, …, Sc, …, SK. Then the 

traditional LDA formulae for between-class scatter SB and within-class scatter SW are 
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where Nc is the number of cases in class c.  The LDA criterion function can be written  
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LDA finds the vector w where the J(w) is maximized. This vector is used to apply 

a linear transformation to the data, i.e. projecting the data onto the vector w by y=w
T
x. 

After this transformation, the separation between classes is maximized. In order to 

have a complete classifier, a threshold w0 is necessary.  For a binary classifier, a 

typical choice of threshold is to compute the projections of the class means, µc, and 

then compute the mean of these two projections. A training sample can now be 

classified as positive if w
T
xi > w0, and negative otherwise. 

2.3   Weighted LDA  

To use LDA with Adaboost, the LDA formulae must take into account weights. By 

combining Adaboost with LDA, Adaboost can select the best feature combination at 

each boosting iteration instead of a single feature. The LDA scatter matrices become  
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where P(i) is the weight assigned to each i-th training sample, as in the Adaboost 

algorithm. Instead of selecting the single feature that minimizes the classification 

error, with weighted LDA (wLDA) the best feature combination of features can be 

selected at each iteration, therefore taking advantage of feature correlation. In the case 

of uniform weight distribution, namely P(i) = 1/N , the wLDA formulae become 

equivalent to the traditional LDA formulae.  



2.4   Classification via Adaboost with Weighted LDA 

Recall that the traditional Adaboost implementation searches across simple threshold 

classifiers trained on a single feature. To combine Adaboost with wLDA, we train a 

wLDA classifier with all possible combinations of two and three features at each 

iteration. The feature combination that minimizes the weighted error is then selected. 

The sample weights are updated at each iteration according to equation (1). Note that 

the threshold w0 also incorporates the weights, since it is computed using the 

projection of the weighted class means µ’c. 

A set of features were available for each instance in a data set. These features and 

ground truth labels were used to train the classifiers. We compare our proposed 

classification method combining Adaboost with the weighted LDA (AB+wLDA) 

against two related boosting methods: the original Adaboost with simple threshold 

weak classifiers (AB+ST) and another adaptation of Adaboost with weighted LDA 

(AB+wLDA_Liu) proposed by Liu [7]. AB+ST uses the weak classifier based on the 

simple threshold that minimizes the weighted error on a single feature. 

AB+wLDA_Liu offers a solution for boosting wLDA that does not incorporate 

sample weights in SB, resulting in unbalanced scatter matrices that do not converge to 

the original LDA when using the uniform weights. Several classification performance 

metrics were used including test/training error at each boosting iteration and Leave K 

Out Cross Validation (LKOCV) [5]. For the iris and BCWDDS data, the LKOCV fold 

size was k = 30 and 210, respectively, and averaged over four test.  

Initial tests are performed on the artificial data set to compare the ability of the 

discussed classifiers to distinguish instances from data with a low feature space. 

Results on the iris and BCWDDS data compare the same classifiers on instances with 

higher feature space. 

3   Results 

A comparative example of classification from artificial data can be seen in Fig. 1. 

When Adaboost is combined with a simple threshold weak learner (AB+ST), 

Adaboost selects the single feature that minimizes the weighted error at each iteration, 

which can be seen as the vertical and horizontal lines in Fig. 1. On the other hand, 

LDA uses feature combinations instead of single features, thus taking advantage of 

feature correlations to separate between classes. In both training and test error (Fig. 

1), the results for AB+ST and AB+wLDA are similar. In this low feature space 

AB+wLDA_Liu is equivalent to random guessing.  

The wLDA implementation was further tested on the two non-linearly separable 

classes of the iris data set and results are presented in Fig. 2. The iris data have a 

higher feature space (size 4), and we tested AB+wLDA by searching for the best three 

feature combination. AB+wLDA outperforms AB+ST and AB+wLDA_Liu in this 

higher feature space as seen in the cross-validation in the bottom of Fig. 2. With 

AB+ST, the test error increases slightly as the number of boosting iterations 

increases, which indicates that AB+ST is over-fitting the data.  



For the BCWDDS data, the results using AB+wLDA are comparable to 

AB+wLDA_Liu in both training and testing sets, as shown in Fig. 3. Moreover, 

AB+ST performed close to the other two methods at tests, as seen in the cross 

validation at the bottom of Fig. 3, but underperformed on the training set. The 

BCWDDS data have a feature vector of size 32.  

 

Fig. 1. Comparison of classification techniques on artificial data. The top row shows the 

classification results. The bottom row presents the average accuracy (cross-validation) and 

training and test errors for each trial run. Light colors in the data represent one class centered 

on a point; dark colors embody the second class surrounding the first class. Squares represent 

training samples and circles show test samples. Each line represents the decision boundary of a 

learned weak classifier.  

 

Fig. 2. Experimental results on the iris data. From left to right: the training and test errors for 

each trial run of LKOCV, and the average accuracy (cross-validation). 

For AB+wLDA and AB+wLDA_Liu, the best possible combination of three 

features is selected at each iteration. While in the iris data AB+wLDA and AB+ST 

had the lowest training error, on BCWDDS data AB+wLDA and AB+wLDA_Liu 



performed with much lower training error. The difference on performance this data is 

likely related to the difference in features space. 

 

Fig. 3. Experimental results on the BCWDDS data. From left to right: the training and test 

errors for each trial run of LKOCV, and the average accuracy. 

4   Discussion and Conclusion  

This paper proposes a novel method to boosting weighted LDA as weak classifiers 

that combines the strength and robustness of AdaBoost with LDA. The experimental 

results demonstrated the advantage of our method over the original Adaboost and a 

similarly weighted LDA-based Adaboost with unbalanced scatter matrices, proposed 

previously by Liu [7]. Our method outperformed both baseline methods using the iris 

data set while performing comparably with other classifiers when tested on the 

BCWDDS data set.  

The weighted LDA algorithm presented here was proven to be equivalent to the 

traditional LDA in the case of uniform weight distributions. This observation is 

important because AdaBoost initializes sample weights uniformly and it is critical to 

have a true LDA classifier as the initial starting point. By fully incorporating weights 

into all aspects of the LDA formulation, AB+wLDA was effective in producing an 

ensemble of rules that can achieve high accuracy, even in low feature space data, such 

as seen in Fig. 1. 

Combining Adaboost with LDA allows selecting the most relevant features for 

classification at each boosting iteration, thus benefiting from feature correlation. The 

advantages of this approach include the use of a smaller number of weak learners to 

achieve a low error rate, improved classification performance due to the robustness 

and stable nature of LDA, and computational efficiency.  

AB+wLDA_Liu failed to produce a good ensemble of rules on the artificial data, 

while AB+ST and AB+wLDA performed well and achieved good separation. This 

data set had a small feature space, so AB+ST achieved lower training/test error faster 

than AB+wLDA. AB+wLDA. The results on the Iris Data Set (non-medical) and the 

Breast Cancer Wisconsin Diagnostic Data Set (medical), both with higher feature 

space, showed that the combination of Adaboost and weighted linear discriminant 

analysis outperforms the other classifiers in all the performance metrics used. This 



confirms the hypothesis that AB+wLDA can achieve low classification error with 

fewer number of rules, resulting in a more compact and efficient classification model.  

The classification method combining Adaboost and weighted LDA is stable on 

data with low and high feature space and can be similarly applied to other medical 

(and non-medical) data sets, making it a valuable tool for clinical diagnosis. For 

future work, the classification method will be extended for multi-class problems and 

evaluated on additional data sets in comparison with other classifiers, such as support 

vector machines. 
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