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Abstract

Purpose: This paper proposes a novel application of computer-aided diagnosis (CAD) to an

every-day clinical dental challenge: the non-invasive differential diagnosis of periapical lesions be-

tween periapical cysts or granulomas. A histological biopsy is the most reliable method currently

available for this differential diagnosis, however this invasive procedure prevents the lesions from

healing non-invasively despite a report that they may heal without surgical treatment. A CAD

using cone-beam computed tomography (CBCT) offers an alternative non-invasive diagnostic tool

which helps to avoid potentially unnecessary surgery and to investigate the unknown healing pro-

cess and rate for the lesions.

Methods: The proposed semi-automatic solution combines graph-based random walks segmen-

tation with machine learning-based boosted classifiers and offers a robust clinical tool with minimal

user interaction. As part of this CAD framework, we provide two novel technical contributions: 1)

probabilistic extension of the random walks segmentation with likelihood ratio test and 2) LDA-

AdaBoost: a new integration of weighted linear discriminant analysis to AdaBoost.

Results: A dataset of 28 CBCT scans is used to validate the approach and compare it with

other popular segmentation and classification methods. The results show the effectiveness of the

proposed method with 94.1% correct classification rate and an improvement of the performance

by comparison with the Simon’s state-of-the-art method by 17.6%. We also compare classifica-

tion performances with two independent ground-truth sets from the histopathology and CBCT

diagnoses provided by endodontic experts.

Conclusion: Our experimental results show that the proposed CAD system behaves in clearer

agreement with the CBCT ground-truth than with histopathology, supporting the Simon’s conjec-

ture that CBCT diagnosis can be as accurate as histopathology for differentiating the periapical

lesions.

Keywords: Computer-aided diagnosis, Dental imaging, Periapical lesion, Non-invasive diagnosis, Cone-beam

computed tomography
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I. INTRODUCTION AND PURPOSE

Periapical lesions1 are some of the important and common oral pathologies in endodontics

- a field of dentistry that deals with tooth’s pulp, root and its surrounding tissues by em-

ploying treatment techniques such as dental root canal therapy and maxillofacial surgery2.

Periapical lesions come in two main types: periapical cysts or granulomas1. Periapical5

cysts are inflammatory debris-filled closed cavities at the apices of teeth, lined by epithelia

that contain liquid or semisolid. On the other hand, periapical granulomas are masses of

chronically inflamed granulation tissue resulting from irritation following pulp disease or

endodontic treatment. The incidence of these two types is comparable but varies largely in

reports, ranging between 6 and 55% and between 9.3 and 87.1% for cysts and granuloma,10

respectively3.

Diagnostic differentiation of periapical lesions into these two types plays a crucial role in

endodontic practices. Standard treatment for periapical lesions consists of the elimination

of the infectious agents by root canal treatment, allowing healing of the lesion2. When

treatment fails with a persisting lesion, even when asymptomatic, the endodontist should15

consider either retreatment of the canal, periapical surgery or extraction of the affected

tooth2. A histological biopsy study of the periapical lesion can be used to confirm the

diagnosis of periapical cyst and distinguish it from granuloma: a non-cystic inflammatory

lesion1. This histological diagnosis is the most reliable method of differential diagnosis

currently available3. Since this procedure is invasive, the chance for the granuloma to heal20

non-invasively is lost despite a report that a granuloma may heal without surgical treatment

if given the opportunity4. As a result the patient is subjected to potentially unnecessary

surgery and associated complications, including infection and discomfort. Furthermore,the

healing process and rate for granulomas remain largely unknown due to the lack of non-

invasive diagnostic tools. It is known that the chronic periapical granulomas can precede25

the cysts1. Although the statistical probability of cyst occurrence may be higher among

larger lesions5, a definite relationship between lesion size and cystic condition has not been

supported by histology.

Computed tomography (CT) has been suggested as a non-invasive method to make a dif-

ferential diagnosis between these lesion types3,6,7, while other common diagnostic methods30

in dentistry, such as conventional radiographs8, periapical radiographs9 and Papanicolaou

3



smears10 have been shown ineffective for the differential diagnosis. Routine use of CT is, how-

ever, associated with high radiation risks11. Cone-beam computed tomography (CBCT)12

is a recent 3D medical imaging technology that offers CT scans with much lower radia-

tion dosage than the conventional CT scanners13. In their pioneering work, Simon et al.1435

demonstrated high correlation between CBCT-based predictions and histological ground-

truths, suggesting the CBCT’s potential to be an effective and safe non-invasive differential

diagnostic tool for periapical lesions. However, the proposed diagnostic procedure is techni-

cally unreliable and unrepeatable due to its simplistic and heavily interactive design. The

method requires an endodontic expert to manually search the minimum intensity voxel cor-40

responding to the cystic cavity among the whole lesion14, which is time consuming and prone

to human error. Furthermore, the simple thresholding technique used in their method may

be unreliable because the CBCT image’s grayscale values can be spatially inhomogeneous

and do not correspond 1:1 to Hounsfield units15.

A. Proposed Approach45

Addressing these shortcomings, this paper proposes a framework for computer-aided di-

agnosis (CAD) of the periapical lesions, which improves the accuracy and repeatability of the

above-described state-of-the-art method by Simon et al.14. The CAD framework provides a

semi-automatic procedure that takes as inputs a CBCT scan and three user-specified click

points, indicating a volume of interest (VOI), and outputs the differential diagnosis between50

cyst and granuloma. This design greatly improves the usability of the Simon’s method by re-

ducing the amount of user interaction required per lesion. The proposed framework consists

of three successive steps 1) graph-theoretic 3D lesion segmentation, 2) statistical intensity

feature extraction, and 3) machine learning-based lesion classification. The segmentation of

the CBCT periapical lesions is necessary for the diagnosis and also technically challenging55

because the low-dose CBCT images tend to be noisy and the interface between the lesion

and the other soft tissues are often extremely vague. Our segmentation method follows

the popular graph theoretic approach that has recently been applied to various applications

successfully.16 Then the automatic extraction of statistical intensity features from the seg-

mented area helps to increase the diagnostic accuracy by incorporating more information60

than what is used in the Simon’s method14 and by avoiding mis-detection of the minimum
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intensity voxel due to human error. The machine-learning approach adapted in the lesion

classification step plays another crucial role in improving the overall accuracy. Our approach

learns a generic pattern classifier from examples to infer more reliable and flexible decision

rules. For this classification step, we introduce the LDA-AdaBoost method that combines65

the AdaBoost classifier17 with linear discriminant analysis (LDA)18 used as weak learner.

The proposed system is evaluated on the clinical CBCT dataset that includes the cases used

in Simon et al.14, allowing the direct comparison of results.

B. Contributions

To the best of our knowledge, this is the first semi-automatic CAD approach applied to70

the differential diagnosis of periapical lesions in CBCT data. Similar CAD framework has

been widely and successfully applied in many clinical areas such as lung disease19, breast

cancer20, colon polyp21, liver lesion22 to name a few, providing physicians with a valuable

tool. However, the field of dentistry has not yet fully benefited from the advancements of

medical image analysis, especially with the new 3D imaging technologies, despite the com-75

monality of dental procedures. The probabilistic extension of the random walks algorithm23

with likelihood ratio test is another novel technical contribution of this work. We adapt a

probabilistic data-driven decision rule with the likelihood ratio test24 to increase the flexibil-

ity of the original random walks method, which was based on hard decision, and propose two

ways to model the likelihood function that maximizes the lesion classification performance.80

In general, segmentation is an ill-posed problem so that an optimal algorithm should be

designed under some domain-specific constraints. In our case, we design our solution to

maximize the final diagnostic accuracy of the overall CAD system, creating a feedback loop

between segmentation and classification. We also propose an LDA-AdaBoost algorithm for

the classification step as an additional contribution in our paper. We first introduce sam-85

ple weights in the standard linear discriminant analysis (LDA)18 then adapt this weighted

LDA as AdaBoost’s weak learner. Although AdaBoost17 has been combined with various

algorithms as weak learners, the combination with LDA18 has scarcely been studied in liter-

ature. Exploiting LDA as AdaBoost’s weak learner helps to reduce the number of learners

so that the final strong classifier has a better generalization performance than the standard90

AdaBoost. The proposed LDA-AdaBoost algorithm is applied to our dental CAD problem,
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resulting in an accuracy of 94.1% or 17.6% improvement over Simon et al.14. Finally, we

analyze the proposed CAD system with two independent ground-truth sets from biopsy and

CBCT diagnoses. The results show that our system improves accuracy for both cases and

behaves more in agreement with the CBCT diagnosis. This result supports a conjecture95

proposed in Simon et al.14 that CBCT diagnosis can be as accurate as histopathology for

differentiating the periapical lesions.

C. Related Work

Early adaptations of image analysis to dentistry have mainly focused on 3D geometric

model reconstruction of teeth and jaws25–28 following the CAD/CAM approach29 toward100

the applications of preoperative planning30 and image-guided surgery31. More relevant to

our study are early CAD systems on 2D radiographs for dental caries32,33 and bone mineral

density to detect osteoporosis34,35. On periapical lesions, Mol and van der Stelt reported one

of the early studies on periapical bone defects, detecting the lesions semi-automatically and

characterizing their size via texture analysis36–38. More recently, Li et al.39 and Lee et al.40105

introduced semi-automatic CAD methods for segmentation of periapical/bifurcation lesions

by level-set method and for detection of bone remodeling at treated sites by logistic regres-

sion, respectively. However, these studies neither address the differential diagnosis between

granulomas and cysts nor deal with 3D CT data. Our target problem, differential diagnosis

of periapical lesions in 3D CBCT scans, has attracted increasing interest in the endodontic110

community41, since the report by Cotti et al. demonstrated the potential of CT technology

for this task42. The effectiveness of CBCT diagnosis for differentiating granulomas and cysts

was first proposed by Simon et al.14,43. Aggarwal and Singla44 also reported the differential

diagnosis of periapical lesions using CT and showed its effectiveness toward nonsurgical le-

sion management. These clinical studies, however, only addressed manual procedures with115

expert’s visual inspection, which may not be reproducible and are labor-intensive. More-

over, these studies did not aim to automate the procedures or to improve their accuracy

by incorporating advanced image processing and machine learning methodologies. As a

result, surgical biopsy and histopathological evaluation remain the standard procedures of

the analysis of periapical lesions45, despite the advent of CBCT as a common option for120

diagnosis46,47, preoperative surgery/implant planning and postoperative assessment48–50.
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There are a number of previous studies that are related to the technical methodologies

proposed in this paper. Ding et al.51 proposed a technique related to our likelihood ratio

test-based extension of the random walks segmentation in their recursive segmentation and

classification method. However, their work cannot be directly applied to our framework,125

since their classification step is designed to support segmentation, instead of the diagnostic

classification task targeted in our CAD design. This design allows to tune our segmentation

to improve overall performance of our CAD system.

Several previous studies are also related to the LDA-AdaBoost work. An outlier-class

resistant approach to estimate the within-class covariance matrix in LDA for linear dimen-130

sionality reduction was presented by Tang et al.52. Although this work explored sample

weights in their LDA formulation, they did not investigate its application to the boosting

context of our interest. The adaptation of other classification models to AdaBoost has re-

cently been explored53,54, however there are only very few reports that investigated LDA

with AdaBoost despite the LDA’s popularity55,56. Skurichina and Duin56 also investigated135

boosting LDA classifiers, however their scheme did not aim to combine the two algorithms

by introducing weights in LDA formulation. An interesting approach was proposed by Liu

et al.55 who adapted LDA to incorporate sample weights in an application related to in-

door/outdoor digital image classification. Their approach, combining a weighted LDA and

AdaBoost, differs from the proposed method in that 1) the Liu’s weighted LDA55 does not140

reduce to a classic LDA in the case of uniform weight distributions and 2) only pairs of

features were used to train a LDA weak learner. The proposed method offers a form of the

weighted LDA which reduces to the classic form when used with uniform weights and also

includes feature triples to model more complex decision boundaries efficiently.

This paper extends our pilot studies57–60 by updating the list of literature we surveyed,145

employing a larger size of dataset in our experiments, and expanding our discussion on the

results.
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II. MATERIAL AND METHODS

A. Lesion Segmentation

As the first step of our CAD framework, the segmentation of periapical lesions is formu-150

lated as a binary segmentation problem. We adapt a graph representation of 3D discrete

data. We represent each 3D CT scan with N voxels as an undirected connected weighted

graph G = (V,E,W ) where V is a set of vertices/nodes v ∈ V, |V | = N , E is a set of edges

e ∈ E ⊆ V ×V , and W is a set of weights w(e) ∀e ∈ E. Each voxel i in the 3D image forms

a node vi. An edge eij between nodes vi and vj is included in E when the two voxels i and155

j are neighbors. wij denotes the weight on an edge eij , representing the contrast between

intensities of the two nodes i and j.

A binary segmentation algorithm partitions the graph G into two disjoint subgraphs A

and B by cutting edges connecting the two non-overlapping sets. As a result, all nodes

within A and B are assigned with binary values 1 and 0 to annotate the target lesion (1)160

and the other (0) regions, respectively. Our semi-automatic segmentation algorithm allows

the users to select the target lesion and have some control of the segmentation quality with

minimum user-interaction, as explained below.

1. Random Walks Segmentation: Review

The semi-automatic multi-label random walks algorithm proposed by Grady23 is adapted165

and briefly reviewed bellow. The random walks algorithm requires a number of seed points

to be specified by users for both foreground and background regions (or for each region

corresponding to multi-labels) in an input image. The algorithm then efficiently computes

the probability that a random walker starting from each unseeded pixel reaches one of the

fore/back-ground seeds first. Then the final segmentation is given by assigning to each170

unseeded pixel the label with maximal probability. Grady showed that this random walker

probability calculation is equivalent to the solution of a combinatorial Dirichlet problem of

a sparse, symmetric, positive-definite system of equations

LUx
s = −BTms, (1)
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where, without the loss of generality, nodes in V are ordered as unseeded VU and seeded

V s
M nodes with labels s = (1, .., K) in successive blocks. Then, for each label s, xs denotes175

the unknown of this system: a vector of probabilities xs
i that a random walker starting from

an unseeded vi ∈ VU first reaches one of the seeds with label s. ms denotes the probability

vector for the seeded nodes. In our binary segmentation, ms is a vector of ones for foreground

and zeros for background seeds with length |VM |. L denotes the combinatorial Laplacian

matrix defined as180

Lij =























di if i = j

−wij if vi and vj are neighbors

0 otherwise,

(2)

where di denotes the degree of vi defined by di =
∑

wij for all edges eij incident on vi. The

weights wij are computed from image by wij = e−β(gi−gj)2 , where gi represents the intensity

of pixel i and β is the only free parameter in the algorithm. LU and B in (1) represent

submatrices/blocks of L due to the induced ordering of x according to the seeding labels.

LU corresponds to a block among all unseeded nodes vi, vi ∈ VU , while B represents the185

cross-connection between seeded and unseeded nodes where vi ∈ VU and vj ∈ VM . Having

computed the random walker probability map x
(1)
i , the following pixel-wise decision rule

yields the final segmentation mask pi.

pi =











1 if x
(1)
i ≥ 0.5

0 otherwise.
(3)

2. Initialization of Random Walks Segmentation for 3D Data

A 3D adaptation of the Grady’s original 2D implementation is straightforward. The 6-190

connected neighborhood in the 3D domain is used to construct the combinatorial Laplacian

matrix L. The linear system in (1) can be solved by LU decomposition in polynomial time

for small images. However, the size of the typical 3D CT images precludes this approach

due to large memory requirements. Therefore, we apply the iterative biconjugate gradient

stabilized method61 to solve the combinatorial Dirichlet problem in (1).195

A challenge for the 3D adaptation is the increasing difficulty in seeding the regions of

interest for 3D images. In order to maintain the overall usability of the semi-automatic

CAD system, it is imperative that this segmentation initialization requires only minimal and
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FIG. 1: Example seed points for 3D random walks segmentation. The inner sphere of seed points

designates a region inside the lesion while the outer sphere of seed points designates a region outside

the lesion.

intuitive user-interaction. We designed an initialization tool that specifies two concentric

spheres lying inside and outside of the target lesion’s boundary. Three parameters must200

be specified to place these spheres: the center of the spheres, an inner radius and an outer

radius. The inner radius specifies a sphere small enough to be completely contained within

the lesion. Likewise, the outer radius specifies a sphere large enough to entirely enclose the

lesion. The tool offers a simple GUI to choose these parameters via three mouse clicks. Once

the two spheres are placed, voxels that lie on the inner and outer sphere are labeled with 1205

and 0, respectively. An example is provided in Fig.1.

3. Random Walks Segmentation by Likelihood Ratio Test

Our overall dental CAD problem treats the segmentation step as a pre-process followed by

the classification step as a post-process. In this context, a small inclusion of the non-target

structures at the segmentation step can cause an overall mis-diagnosis while a conservative210

segmentation missing some peripheral area may not influence the classification outcomes.

Hence more conservative segmentation may be preferred. A logical approach is to estimate

this problem-specific bias from data in order to achieve the best post-processing result by

incorporating classification criteria as a part of the segmentation process.

To realize this, we first extend the maximal-probability decision rule of the original215

random walks segmentation in (3) by using likelihood ratio test (LRT) formalism24 with

a threshold parameter k introduced to control the trade-off between under- and over-

segmentations,

p′i =











1 (in) if p(i|in)/p(i|out) > k

0 (out) otherwise,
(4)
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(a) (b) (c) (d) (e) (f)

FIG. 2: LRT-extended random walks segmentation with varying threshold values. (a) k = 0.05,

(b) k = 0.50, (c) k = 1.00, (d) k = 1.50, (e) k = 2.00, (f) k = 2.50. The original random walks

segmentation by Grady23 is given by (c).

where p′i is a resulting binary-valued segmentation mask and p(i|in) and p(i|out) denote

the spatial likelihood functions, indicating the probability that the voxel is inside or outside220

the lesion, respectively. These probabilities are computed directly by the random walks

algorithm: x
(1)
i = p(i|in) and x

(0)
i = p(i|out) = 1 − p(i|in). The threshold parameter k

flexibly controls the segmentation results in the standard LRT sense. The 3D segmentation

becomes more conservative as k increases, as exemplified in Fig.2. The original random

walks segmentation is equivalent to the case with k = 1.0.225

We propose two data-driven algorithms for optimizing the k value via the results of

trained LDA classifiers18: the maximization of total accuracy of multiple LDA classifiers

(maximum total accuracy) and the maximization of Bayesian posterior distribution using

the classifier’s cross validation results (Bayesian cross validation).

4. Maximum Total Accuracy Criterion (MTA)230

The first approach, MTA, derives the optimal threshold by maximizing the total accu-

racy of multiple LDA classifiers trained for varying feature combinations. Suppose a set of

supervised training dataset with M cases, each consisting of a list of N features and a corre-

sponding ground-truth label. We then consider K arbitrary subsets of the N features. For

each of the K feature combinations, the leave-one-out cross-validation (LOOCV) of LDA235

classifier is performed for M ′ < M test cases chosen randomly from the training set.

Total accuracy is defined as the total number of accurately classified test cases among

K ×M ′ cases. The best decision threshold is then given by the k value that maximizes the

total accuracy measure. This approach seeks the segmentation threshold that maximizes
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classification performance on average over various feature combinations.240

5. Bayesian Cross Validation Criterion (BCV)

The second approach, BCV, seeks to maximize the posterior probability of correct classi-

fication by a single LDA classifier with the best performing feature combination determined

by a pilot study. LOOCV with M ′ randomly chosen test cases is performed to compute

three performance statistics for each k value: 1) Accuracy f1(k) = TP + TN / (TP + FP245

+ TN + FN), 2) Sensitivity f2(k) = TP / (TP + FP ), and 3) 1-Specificity f3(k) = TN

/ (TN + FN). TP , FP , TN , and FN denote the number of true positive, false positive,

true negative, and false negative cases, respectively. A conditional distribution p(fi|k) of

the CAD performance given the decision parameter k is estimated by normalizing the per-

formance statistics fi(k). We model the prior of the parameter k by a Gaussian distribution250

p(k) = 1
σ(

√
2π)

e−(
(k−µ)2

2σ2 ). The prior is centered at µ = 1.0 as this is the baseline random

walks segmentation. The width σ is manually set broadly to σ = 1 so that we focus more

on the data term. The BCV criterion is defined as a maximum a posteriori (MAP) estima-

tion with the posterior p(k|fi) with three choices of the performance statistics {f1, f2, f3}:

k∗ = argmaxkp(k|fi) = argmaxkp(fi|k)p(k). This approach seeks the decision threshold that255

yields the best possible classification performance among various system settings.

6. Feature Extraction

For each segmented lesion, a set of intensity statistics are extracted as a feature vector

for the next classification step. In Simon et al.14, only the minimum intensity value at the

center of the lesion was used for classification. In this study, we consider a set of eight260

features computed from the lesion’s intensity distribution: maximum, minimum, mean,

median, standard deviation, skewness, kurtosis, and entropy. Skewness and kurtosis are the

third and fourth-order standard central moments, respectively. Entropy follows the standard

Shannon’s information entropy formulation by treating the normalized intensity distribution

as a probability mass function. Our features are then organized as a vector of 8 coefficients265

without attribute-wise normalization.
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B. Lesion Classification

The final step of our dental CAD framework is to classify lesions using the features ex-

tracted in the previous step. We train and compare a number of binary supervised classifiers

that map an input feature set to either cyst or granuloma. To adapt the standard terminol-270

ogy for binary classifiers, we treat the cysts as positives and the granulomas as negatives,

without the loss of generality.

1. Linear Discriminant Analysis and AdaBoost: Review

Linear discriminant analysis (LDA) is a standard supervised machine learning algorithm

for a linear classifier with dimensionality reduction. In the binary classification case, the275

basis vector w is used to project the N -dimensional feature vector x into a 1D feature point

y by a linear transformation y = wTx. The classification of a novel case is given by the

label q of the class mean µq closest to the input’s projection, which amounts to the following

decision rule with threshold parameter w0,

q =











1 (positive) if wTxi > w0 = 0.5 ∗ (wTµ0 +wTµ1)

0 (negative) otherwise.
(5)

LDA estimates the basis vector w that separates feature sets of different classes as far from280

each other as possible by maximizing the cost J(w) = wTSBw

wTSWw
, where SB and SW denote

between-class and within-class scatter matrices, respectively18. This study exploits LDA for

learning the segmentation decision threshold as described in Sec. IIA 3, as well as a part of

the LDA-AdaBoost method as will be described in Sec. II B 3.

AdaBoost17 is an ensemble learner which combines a set of classifiers of low accuracy285

(weak) in order to derive a high-accuracy (strong) classifier. The resulting classifier of the

AdaBoost algorithm is given by

H(x) = sign

(

T
∑

t=1

αtht(x)

)

, (6)

where ht(x) : x → {−1, 1} is the t-th weak classifier, αt is the weighted error rate of ht,

and H(x) is the strong classifier. AdaBoost assigns weights W (i) to the training samples

{(xi, li)|i = 1, ..,M}, which are initially set uniformly. At each boosting iteration t =290

1, .., T for learning {(ht, αt,Wt(i))}, the best performing weak classifier ht that minimizes the
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aggregate error ǫj with respect to the sample weights is detected: ht(x) = argminhj∈Hǫj =
∑M

i=1Wt(i)|li 6=hj(xi). The resulting ht and corresponding error ǫt are then used to estimate

αt and update Wt → Wt+1: αt =
1
2
ln 1−ǫt

ǫt
and Wt+1(i) =

Wt(i) exp(−αtliht(xi))
Zt

, where Zt is a

normalization factor to assure that
∑

iWt+1(i) = 1. This procedure is repeated and more295

weak learners are added until either the specified maximum number of rules are added or

low training error is reached.

2. Weighted LDA

In the standard LDA formulation18, there is no notion of sample weights. To this end, we

first extend the between- and within-class scatter matrices with sample weights as follows,300

S ′
B =

∑

c

(

∑

i∈C
W (i)

)

(µ′
c − x′)(µ′

c − x′)T (7)

S ′
W =

∑

c

∑

i∈C
W (i)(xi − µ′

c)(xi − µ′
c)

T (8)

µ′
c =

1
∑

i∈C W (i)

∑

i∈c
W (i)xi (9)

x′ =
∑

i

W (i)xi, (10)

where W (i) is the weight assigned to each i-th training sample with
∑

i W (i) = 1 as was

introduced for the AdaBoost algorithm in the previous section. An LDA algorithm defined

over the maximization of the new cost J ′(w) =
wTS′

B
w

wTS′

W
w is referred to as weighted LDA

(wLDA). When the weights are uniformly distributed, wLDA becomes equivalent to the

standard LDA such that J ′(w) = J(w), S ′
B = 1

M
SB, and S ′

W = 1
M
SW . For wLDA, we305

estimate the decision threshold w0 by minimizing the weighted Bayes error
∑

iW (i)|li 6=q via

an exhaustive search, yielding the Bayes optimal classifier.

3. LDA-AdaBoost

LDA is a relatively strong and stable learner, and it is generally believed that boosting is

not well suited to use such a learner62. However, LDA can factor in between-feature correla-310

tions, while AdaBoost has shown effectiveness to accurately classify non-linearly separable

data sets. We hypothesize that by combining the strengths of AdaBoost and LDA, it may

14



FIG. 3: Example of dental periapical lesions. Sagittal, coronal, and axial view of a granuloma (top)

and a cyst (bottom) are displayed. Visually, they are hard to differentiate and include extensive

weak boundaries.

be possible to produce an efficient and robust classifier that is superior to AdaBoost paired

with the standard linear weak classifier.

wLDA is combined with the AdaBoost algorithm as its weak classifier hj in the place of315

the standard linear classifier trained on each single feature by minimizing the Bayes error.

We refer this single feature linear classifier as simple threshold classifier or ST. A set of wLDA

classifiers with various feature combinations are used as the hypothesis space of AdaBoost.

In this study, we consider all two-, three- and eight-feature combinations, while only two-

feature combinations were previously considered in Liu et al.55. At each boosting iteration320

t, a set of wLDAs {hj} are trained with the current weights Wt(i) by using the methods

described in Sec IIB 2. The sample weights Wt(i) are then updated by using the procedure

described in Sec IIB 1. This process is iterated until the pre-determined minimum error is

reached. The resulting strong classifier H(x) will take the same form as in (6). Note that,

as the sample weights are adapted, the resulting wLDA classifiers will also adapt over the325

iterations, yielding different basis and threshold values.

III. RESULTS

A. CBCT Data

A dataset of 28 anonymous 3D dental CBCT scans are available for our study in the

DICOM format. This study was approved by the institutional review board at University of330

Southern California where the data were collected. The CBCT images were captured using
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

FIG. 4: 3D segmentation results of typical example for granuloma. Original image (a-c), normalized

cut (d-f), graph cut (g-i), and random walks (j-l). The second through the third eigen vectors are

used for the normalized cut. The thick boundary lines on (d-f) are artifacts from the Gaussian

Sub-sampling method.

the NewTom 3G scanner, QR Srl, Verona, Italy. The NewTom 3G acquires 360 images

at 1-degree intervals in 36 seconds, with reconstructed image resolution of 512*512 pixels

and 12 bits per pixel (4,096 grayscale). The pixel size was 0.25mm x 0.25mm. The axial

slice thickness was 0.2mm. A VOI of 100 cubic voxels is cropped for each lesion to run335

our experiments efficiently. Fig.3 shows an example of each type of lesion. Each lesion was

diagnosed as either a cyst or granuloma by endodontic experts using the CBCT data as

recommended in Simon et al.14. There were 14 cyst and 14 granuloma cases in the dataset

based on CBCT evaluation. The size of lesions was equal to or greater than 1 cm in diameter.

Our dataset includes the 17 cases (11 cyst and 6 granuloma cases) used in the study of Simon340

et al.14. These cases also underwent a histological biopsy, providing an alternative set of

ground-truth labels for these 17 cases.

Between the two ground-truth sets for the 17 cases used in Simon et al.14, there were four

discordant, or split, cases which were categorized aFig4s cysts by the endodontists and as

granulomas (apical periodontitis) by oral pathologists. Simon et al. argued the correctness345

of their endodontic labels based on careful interpretation of the histopathological notes

which pointed to misdiagnoses due to their small size and fluid cavities which have lost their

epithelium14.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

FIG. 5: 3D segmentation results of typical example for cyst. Original image (a-c), normalized cut

(d-f), graph cut (g-i), and random walks (j-l). The second through the sixth eigen vectors are used

for the normalized cut.

B. Lesion Segmentation

First, we assess the effectiveness of the classic Random Walks segmentation23 for our350

data, in comparison with two other well-known graph-based algorithms: normalized cut63

and graph cut64. The default value of β = 90 is used for the random walks. For the

normalized cut, a lower resolution version of images using the Gaussian pyramid is used to

handle its high memory requirement, and we manually chose eigen modes to be included in

order to achieve the best segmentation for each case. For the graph cut, we employ the α355

expansion moves and initialize it by the results of K-means clustering of the voxel intensity.

The same human inputs, indicating the inside and outside of a lesion used to initialize

the Random Walkers algorithm, are used to initialize the two cluster centers for this K-

mean clustering. We observed that the variation in the initial cluster has minimal impact

on the final segmentation. For the proposed Random Walks algorithm, our pilot study360

showed its insensitivity against varying initialization of the lesion center and that novice

operators could quickly become adequate in performing this semi-automatic segmentation

without errors after minimal training. Grady et al.65 also reported a systematic sensitivity

validation study with 5 cases over 1000 random trials, claiming that seed perturbations

within the target object produced changes in the segmentation under 5%, which indicates365

the insensitivity to initialization in more general settings.
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Figs. 4 and 5 show illustrative examples of segmentation results by the three methods for

granuloma and cyst cases, respectively. They demonstrate that the random walks algorithm

clearly outperforms other segmentation methods on our data. The random walks algorithm

(Figs. 4-5(j-l)) succeeds in delineating the weak lesion boundary and extracting a complete370

and closed lesion without much over-segmentation. We also observed that variance in the

spherical radii did not have a large impact on the segmentation result. Normalize cut

(Figs. 4-5(d-f)) failed to delineate weak boundaries. In some cases, the cuts occur outside

the lesion boundary (e.g., Fig. 5). Without a cut along the boundary of the lesion, a complete

and closed lesion segmentation is not possible by the normalized cut without additional user375

input. Graph cut (Figs. 4-5(g-i)) tends to result in over-segmentation. Like the normalized

cut, weak lesion boundaries are not always segmented by this method. These examples

shown here were representative for all available cases.

In general, however, the normalized and graph cut algorithms tend to delineate inten-

sity edge better than the random walks algorithm. Segmented boundary by random walks380

sometimes cut through the high-intensity bone area near the boundary despite its superior

performance in completing the weak boundaries. This poses a problem in terms of an overall

CAD system’s performance as discussed in Sec.IIA 3.

Table I compares the time-complexity of the three segmentation algorithms compared

above. The execution times presented here were obtained on a Pentium Core Duo 1.83385

GHz. The algorithms were implemented in C/C++ (MEX) in MATLAB (Mathworks Inc.,

Natick, MA). Although the normalized cut algorithm uses the Lanczos method66 for solving

the eigen-value system, the running time of creating the sparse affinity matrix is quadratic.

Both the graph cut and random walks algorithms have a near linear increase in the running

time with larger image sizes. Random walks has higher complexity than graph cut especially390

for larger inputs, however the difference in accuracy outweighed our choice toward random

walks.

Next, our proposed segmentation method with the LRT extension described in Sec. IIA 3

is evaluated. Fig. 6(a) illustrates the MTA criterion for our dataset. The total accuracy over

LDA classifiers with every possible two, three, and eight feature combinations (K = 85) is395

computed for discrete k values of the LRT-threshold in the range [0.05, 2.50] in increments

of 0.05 via LOOCV with all available test cases (M ′ = M = 28). The maximum is observed

at k = 1.5 by an exhaustive search. Fig. 6(b,c) shows the BCV criterion for our dataset.
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TABLE I: Computational complexity of Random walks, Graph cut, and Normalized cut segmen-

tation.

# of Voxels Normalized Cut Graph Cut Random Walks

253 38 sec < 1 sec 2 sec

503 2494 sec 1 sec 30 sec

753 Memory limit reached 6 sec 80 sec

1003 Memory limit reached 12 sec 277 sec
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FIG. 6: Estimation of LRT threshold k. (a) MTA criterion: the total accuracy over varying

threshold k ∈ [0.05, 2.50] in increments of 0.05. (b) Prior and likelihood distributions over varying

threshold k. Gaussian prior centered at k = 1 is scaled and translated for visual enhancement. (c)

BCV criterion: posterior distributions over varying threshold k.

Fig. 6(b) demonstrates the likelihood and prior distributions and Fig. 6(c) demonstrates the

posterior distribution over varying k. We model the likelihood distribution by the LOOCV400

accuracy measure f1(k) with the best performing LDA classifier with the minimum and

entropy intensity features (See Sec. IIIC for experimental results validating this choice).

The maximum is observed at k = 0.9.

Overall, for all of the 28 cases, both MTA and BCV approaches result in an appropriate

segmentation, confirmed by visual inspection. Fig.7 shows two illustrative cases with three k405

values: 0.9 by BCV (a,d), 1.0 by the original random walk (b,e), and 1.5 by MTA (c,f). We

observe that the threshold identified by MTA resulted in conservative segmentations that

are preferred in our CAD application context. For example, the BCV’s result in Fig.7(a)
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(a) (b) (c)

(d) (e) (f)

FIG. 7: Two illustrative cases for comparing MTA and BCV criteria. (a,d): k = 0.9 estimated by

BCV, (b,e): k = 1.00 with the original random walks algorithm, (c,f): k = 1.5 estimated by MTA.
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FIG. 8: Analysis of ground-truth data. (a) ROC curves generated with the two GT sets. (b)

Comparison of LOOCV accuracy for each of the four split cases and the overall average over

the split cases. Note the classification accuracy is significantly higher when using the endodontic

diagnosis as ground-truth, as suggested in Simon et al.14.

incorrectly includes a large amount of dense bone tissue at the bottom of the lesion, which

is correctly removed by MTA with a higher threshold value as shown in Fig.7(c). Note410

however that a lower threshold can sometimes yield more accurate segmentation as shown

in Fig.7(d). MTA yielded a less accurate result in this case shown in Fig.7(f), however

it still identified the majority of the lesion while simultaneously abstaining from including

non-target dense tissues.
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FIG. 9: Analysis of feature space. (a) LOOCV accuracy of Bayes optimal classifiers trained for

each single feature. (b) 2D scatter plot with the LDA decision line for the best feature pair. (c)

3D scatter plot with the LDA decision plane for the best feature triple. Black boxes: cysts, white

boxes: granulomas.

C. Lesion Classification415

First, we analyze the classification ground-truth (GT) of our data by comparing the

CBCT endodontic and histopathological labels. In the 17-case subset, there were four split

cases which were categorized as cysts by the endodontists and as granulomas (apical pe-

riodontitis) by oral pathologists. In order to investigate these split cases, we trained our

CAD system for the 17-case subset with the two GT sets and compared their performance.420

Fig. 8(a) compares ROC curves for the two GT sets, averaging the LOOCV statistics of the

ten best performing two- and three- feature combinations among the eight features at vary-

ing threshold values. And Fig. 8(b) shows the LOOCV accuracy measures for the four split

cases averaged over all two- and three-feature combinations. LOOCV is performed with the

standard LDA classifier for its simplicity. The system with the endodontic GTs clearly per-425

formed better than that with the histopathological GT. Area-under-the-ROC-curves (AUCs)

are 0.98 and 0.83, and sensitivities of 100.0% and 69.0% with false positve rates of 9.1%

and 15.7% at the maximum accuracies of 94.1% and 78.9% are observed for the endodontic

set and the histopathological set, respectively. For the four split cases, the endodontic GT

also yielded largely higher accuracy than the histopathological GTs as shown in Fig. 8(b),430

lending further support to the claim that the endodontic diagnosis is more consistent, as

argued in Simon et al.14. We use the endodontic GT set for the rest of experiments.
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TABLE II: The proposed LDA-AdaBoost method compared with LDA, standard AdaBoost, and

LDA-AdaBoost with wLDA proposed by Liu et al.55. Left: accuracy averaged over 7-fold cross

validation with 28 cases. Right: p-value of Wilcoxon signed ranks test against LDA.

Classifiers Average Accuracy (%) ± (%) p-value (vs LDA)

LDA 75.0 ± 25.0 N/A

AdaBoost 75.0 ± 38.2 1.000

LDA-AdaBoost (Liu et al.55) 78.6 ± 17.3 0.564

LDA-AdaBoost (Proposed) 85.7 ± 13.4 0.083

Next, we evaluate the set of eight intensity features. Fig. 9(a) compares the LOOCV

accuracy of the Bayes optimal linear classifiers trained for each single feature. The results

revealed that the minimum intensity and entropy features performed best at 88.2% and435

82.4%, respctively. This agrees with the choice of intensity features used in the Simon’s

method14. The 8D feature space is then explored by training LDA classifiers with all per-

mutations of two (28 pairs), three (56 triples), and eight (1 8-tuple) features and comparing

their LOOCV accuracy. The best accuracy of 88.2% was recorded by a number of feature

pairs and triples. Figs. 9(b-c) shows the scatter plots with LDA decision boundary for the440

best performing pair (entropy and median) and triple (entropy, median, and standard de-

viation), respectively. Note that the feature pairs and triples that do not match with the

greedy-selected top two or three features in Fig. 9(a) may still represent the best performing

feature subsets. However the single feature classifier with the minimum intensity feature

performed as good as any of the best performing LDA classifiers with feature combina-445

tions, which suggests that the LDA classifier itself does not improve the minimum intensity

strategy of Simon et al.14.

Lastly, we evaluate the performance of the proposed LDA-AdaBoost with the complete

data set of 28 cases. A 7-fold cross validation is performed using all the feature combinations

considered in this study for the proposed system, as well as three other baseline methods: 1)450

LDA, 2) standard AdaBoost, and 3) LDA-AdaBoost with the wLDA formulation proposed

in Liu et al.55. Table II summarizes the results. On average, the proposed method performed

substantially better, however no statistically significant differences were observed among any
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FIG. 10: Illustrative example of LDA-AdaBoost vs LDA. Circle with an arrow: a test granuloma

case; Black boxes: cysts; White boxes: granulomas. (a) LDA, (b) LDA-AdaBoost.

classifier pairs by non-parametric Wilcoxon signed rank test: p = 0.083 and p = 0.157 for

our LDA-AdaBoost vs LDA and for our LDA-AdaBoost vs Liu et al.’s approach55, respec-455

tively. Additionally, we performed feature selection by choosing the best performing feature

combination among the 85 tested combinations. The highest cross validation accuracy of

94.1% was recorded by the proposed LDA-AdaBoost using the feature pair of median and

minimum intensity. Fig. 10 illustrates how the proposed LDA-AdaBoost improves classifi-

cation accuracy over LDA. By adding a few more wLDA weak classifiers, LDA-AdaBoost is460

able to correctly classify the test case which was missed by LDA.

IV. CONCLUSIONS

This paper presents a dental CAD system for non-invasive differential diagnosis of periapi-

cal lesion, which integrates graph-based random walks segmentation and machine learning-

based boosted classification algorithms. We proposed two novel approaches: LRT-based465

extension of the random walks method and LDA-AdaBoost that adapts AdaBoost with

weighted LDA classifier used as weak learner.

The results of our experimental studies demonstrate the effectiveness of the proposed

method with 94.1% when we use the endodontic diagnosis as the ground-truth. Due to the

per-scan adaptive shifting of radiation to minimize radiation dosage to patients, the intensity470

mapping is inconsistent across CBCT scans. Moreover, the morphology of the periapical

lesions can vary. Simple threshold segmentation and classification is therefore not a viable

option. As can be seen in Fig.3, it is non-trivial to segment or classify these lesions even to

the trained eyes. The interface between these periapical lesions and adjacent soft tissues is
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often vague, making the parts of lesion contours to be ill-defined. Random walks has been475

shown to be suitable for delineating this type of objects23, supporting our methodological

choice. Overall, the semi-automatic approach presented in this paper may prove to be more

accurate, reproducible, and less prone to human error. The best performance at 94.1% by the

proposed LDA-AdaBoost classifier improves those at 88.2% by the Bayes optimal classifier

on single features shown in Fig.9(a) by 5.9%. This baseline Bayes classifier represents the480

best-case extension of the Simon’s method that relies on manual sampling of voxels within

a lesion. Therefore the 5.9% performance increase by LDA-AdaBoost demonstrates its

advantage beyond the virtue of our segmentation step.

Furthermore, the results of our ground-truth analysis reveals our dental CAD system

agrees more with the CBCT diagnosis than the histopathological diagnosis. In 13 out485

of the 17 cases used in the Simon’s study14, the CBCT and histopathological diagnoses

(ground-truth) coincide, but in the remaining four cases their diagnoses differ. Suppose

the endodontic diagnosis is our gold standard, then the histopathological diagnosis is cor-

rect on 13 out of 17 cases with 76.5% accuracy, and vice versa. In this case, our method

trained with the CBCT ground-truth yielding 94.1% best accuracy can be interpreted as an490

17.6% improvement from the histopathology expert’s diagnosis. On the other hand, taking

the histopathology as our gold standard, our method trained with the biopsy ground-truth

yielding 78.9% accuracy is still slightly better than that of the endodontic experts, demon-

strating the advantage of our approach for improving accuracy while not requiring intensive

manual labor by experts.495

Simon et al.14 argued that the CBCT diagnosis can be more accurate than the histopathol-

ogy for differentiating periapical lesions. Some cystic lesions may consist of small and/or

fragmented epithelial areas that can also be destructed naturally14. Therefore, a small num-

ber of sections made commonly for the histological slides may miss epithelium or other

evidence of cystic organization, causing the cysts to be misdiagnosed as granulomas14. A500

recent clinical study with 36 cases by Guo et al.43 has also reported that the CBCT images

can be used to provide moderately accurate differential diagnosis. The results of our study

offer another support for their argument in that the CBCT-based diagnosis for periapical

lesions is more accurate, safer and less invasive than histopathology.

Nair67 argued that a type of radicular cysts containing epithelium-lined cavities that are505

open to the root canals may also heal after conventional root canal therapy, while those
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containing cavities completely enclosed in epithelial lining may not. This argument, if true,

implies that a non-invasive diagnosis provides clinical impact higher than those argued in

this paper only involving the granulomas’ potential to heal without surgery. An interesting

problem will then be to differentiate the two cyst types non-invasively. Investigating the510

effectiveness of the CAD approach to this problem remains our future work.

Usability of the proposed CAD framework depends largely on its computational-

complexity. The proposed framework would not be effective within dentists’ clinical workflow

if it required prohibitively long execution time even when it is highly accurate. In our CAD

design, most of the run-time computation is accounted for the segmentation step, thus in-515

creasing its efficiency is crucial. Our choice of random walks segmentation is motivated by

making the best trade-off between the segmentation step’s efficiency and accuracy. The

proposed LRT-based extension of the random walks incurs additional training-time compu-

tation which could take longer than the run-time of the segmentation, however they can be

executed off-line and much less frequently, providing less impact to the overall workflow.520

Beyond the specific focus of the CAD problem, the proposed LRT-extension of random

walks and LDA-AdaBoost algorithms can be applicable to a wide range of clinical tasks

related to general CAD. The proposed CAD design with the LRT-extension of random walks

segmentation introduces a learning process to the segmentation step through a feedback from

the classification step. Due to its generic design, the proposed algorithm is also applicable525

to any soft segmentation method that employs a probability/confidence mask, followed by

a post classification process.

In order to transfer the proposed technology to clinical practice and to avoid overfitting

in the resulting classifier, we will collect more data and consider other popular machine

learning methods, such as naive Bayesian classifier, support vector machine, and random530

forest classifier, for further testing in our future work. Designing a problem-specific features

could also boost our classifier’s performance. To this end, our future work will incorporate

distance-based features to better analyze the voxels surrounding the tip of the periapical

root and also some geometric features, such as locations relative to tooth’s apex, shape

circularity, and well-definedness of boundary, explored in a recent clinical study by Guo535

et al.43.
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