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This paper overviews one of the most important, interesting, and challenging problems in oncology, the problem of lung cancer
diagnosis. Developing an effective computer-aided diagnosis (CAD) system for lung cancer is of great clinical importance and can
increase the patient’s chance of survival. For this reason, CAD systems for lung cancer have been investigated in a huge number
of research studies. A typical CAD system for lung cancer diagnosis is composed of four main processing steps: segmentation of
the lung fields, detection of nodules inside the lung fields, segmentation of the detected nodules, and diagnosis of the nodules as
benign or malignant. This paper overviews the current state-of-the-art techniques that have been developed to implement each
of these CAD processing steps. For each technique, various aspects of technical issues, implemented methodologies, training and
testing databases, and validation methods, as well as achieved performances, are described. In addition, the paper addresses several
challenges that researchers face in each implementation step and outlines the strengths and drawbacks of the existing approaches
for lung cancer CAD systems.

1. Introduction

Lung cancer remains the leading cause of cancer-related
deaths in the US. In 2012, there were approximately 229,447
new cases of lung cancer and 159,124 related deaths [1]. Early
diagnosis can improve the effectiveness of treatment and
increase the patient’s chance of survival [2]. Positron emission
tomography (PET), computed tomography (CT), low-dose
computed tomography (LDCT), and contrast-enhanced com-
puted tomography (CE-CT) are the most common noninva-
sive imaging modalities for detecting and diagnosing lung
nodules. PET scans are used to discriminate between malig-
nant and benign lung nodules. Early detection of the nodules
can be based on CT and LDCT scans that allow for recon-
structing the anatomy of and detecting the anatomic changes

in the chest. The CE-CT allows for reconstructing the
anatomy of the chest and assessing the detected nodule’s
characteristics.

A wealth of known publications have investigated the
development of computer-aided diagnosis (CAD) systems for
lung cancer from a host of different image modalities. The
success of a particular CAD system can bemeasured in terms
of accuracy of diagnosis, speed, and automation level. The
goal of this paper is to overview different CAD systems for
lung cancer proposed in literature.

A schematic diagram of a typical CAD system for lung
cancer is shown in Figure 1. The segmentation of lung tissues
on chest images is a preprocessing step in developing the
CAD system in order to reduce the search space for lung nod-
ules. Next, detection and segmentation of lung nodules from
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Figure 1: Typical computer-aided diagnosis (CAD) system for lung cancer.The input of a CAD system is themedical images obtained using an
appropriate modality. A lung segmentation step is used to reduce the search space for lung nodules. Nodule detection is used to identify the
locations of lung nodules. The detected nodules are segmented. Then, a candidate set of features, such as volume, shape, and/or appearance
features, are extracted and used for diagnosis.

the available search space are mandatory steps. Lastly, the
classification of the detected nodules into benign and malig-
nant is the final step. Classification of the detected nodules
is a major component in CAD systems for detection and
diagnosis of lung nodules in CT. In CAD systems for detec-
tion (often abbreviated as CADe), a classification component
categorizes the nodule candidates identified in the previous
step into nodules or nonnodules (i.e., normal anatomic struc-
tures), whereas a CAD system for diagnosis (often abbre-
viated as CADx) classifies detected nodules (either by a com-
puter or a radiologist) into benign or malignant nodules.

Below, we will address each processing step in developing
CAD systems: lung segmentation, nodule detection, nodule
segmentation, and nodule diagnosis.

2. Lung Segmentation

The segmentation of lungs from chest images is a crucial step
in any CAD system that can lead to the early diagnosis of
lung cancer, as well as other pulmonary diseases. The seg-
mentation of lungs is a very challenging problem due to inho-
mogeneities in the lung region, pulmonary structures of simi-
lar densities such as arteries, veins, bronchi, and bronchioles,
and different scanners and scanning protocols. A wealth of
known publications has addressed the segmentation of lung
regions from CT images and chest radiographs. The success
of a particular technique can be measured in terms of accu-
racy, processing time, and automation level. Most existing
techniques for lung segmentation can be classified into four
categories: methods based on signal thresholding, deform-
able boundaries, shape models, or edges.

Healthy lung tissues form darker regions in CT images
compared to other parts of the chest such as the heart and the
liver.This fact has encouraged many researchers to search for
an optimum threshold that separates the lungs from all other
tissues. Hu et al. [3] computed iteratively such a threshold to
get an initial lung region. Then the initial segmentation was
refined by opening and closing morphological operations.
This method was further used by Ukil and Reinhardt [4] and
Van Rikxoort [5] to automatically segment the lung fields as a
preprocessing step for lung lobe segmentation. Ross et al. [6]

used a similar method to the Hu et al. approach [3] but used
Otsu’s method [7] for thresholding, instead of the iterative
thresholding, in order to segment the lung fields as a step of
lung lobe extraction. Yim et al. [8] extracted the lung fields by
the region growing followed by connected-component anal-
ysis. Armato et al. [9, 10] used gray-level thresholding to seg-
ment the thorax from the background first and then the lungs
from the thorax. A rolling ball filter was further applied to the
segmented lung borders to avoid the loss of juxtapleural nod-
ules. The identified lung fields were used to limit the search
space for their lung nodule detection framework. In Pu et al.
study [11], the threshold is selected automatically as described
byArmato et al. [9]. A threshold-based region fillingmethod-
ology was then used to segment the lung fields as a first step
in a pulmonary fissure segmentation framework. Pu et al. [12]
set a threshold to initially segment the lung regions. To refine
the segmentation and include juxtapleural nodules, a border
marching algorithm was used to march along the lung bor-
ders with an adaptive marching step in order to refine convex
tracks.

Gao et al. [13] proposed another threshold-based segmen-
tation approach consisting of four processing steps: (i)
removing the large airway from the lung region by using
isotropic diffusion to smooth edges followed by region grow-
ing, (ii) finding an optimal threshold to remove pulmonary
vessels, (iii) separating the left and the right lungs by the
detection of anterior and posterior junctions using the largest
threshold, and (iv) morphological smoothing of the lung
boundary along the mediastinum and lung wall based on the
structure of the airway tree. To identify lung fields in a lung
lobe segmentation framework, Wei et al. [14] selected a thre-
shold to segment the lung regions using histogram analysis.
The segmented lungs were then refined using connect-com-
ponent labeling (CCL) and circular morphology closing. Ye
et al. [15] used 3D adaptive fuzzy thresholding to segment the
lung region from CT data.The segmentation was followed by
smoothing the segmented lung contour, represented as chain
code [16], by 1D Gaussian smoothing. They further applied
a methodology to detect the lung nodules in the segmented
lung fields.

Themain problemof the threshold-based segmentation is
that its accuracy is affected by many factors, including image
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acquisition protocol and scanner type (e.g., GE, and
Siemens). Moreover, densities (in Hounsfield units) of some
pulmonary structures, such as arteries, veins, bronchi, and
bronchioles, are very close to densities of the chest tissues. As
a result, the threshold-based segmentation cannot be accu-
rate for the whole lung region and needs further intensive
postprocessing steps to overcome the inhomogeneity of
densities in the lung region.

Lung segmentation techniques of the second category
use deformable boundary models, such as active contours
(snakes), level sets (LS), or geodesic active contours. A snake
starts from some initial position and shape and evolves under
specific internal and external guiding forces to fit the shape
of one or more desired objects. Snakes can extract a region
of interest (ROI) or locate an object boundary. Itai et al. [17]
extracted the lung region with a 2D parametric deformable
model using the lung borders as an external force. The
deformable model started from an initial segmentation
obtained by a threshold estimated from CT data. The seg-
mentation results were used as a preprocessing step to classify
abnormal areas within each lung field. Silveira et al. [18] used
a 2D geometric LS active contour being initialized at the
boundary of the chest region, which was then automatically
split into two regions representing the left and right lungs.
Themain drawbacks of the deformablemodel-based segmen-
tation are the excessive sensitivity to initialization and the
inability of traditional external forces (e.g., based on edges
and gray levels) to capture natural inhomogeneity in the lung
regions. As a result, it is hard to provide an adequate guidance
to the deformable model to achieve the accurate segmenta-
tion.

To improve the segmentation accuracy, shape-based tech-
niques add prior information about the lung shape to image
signals. To use the shape prior, it should be aligned with the
initial CT data before starting the segmentation. Annangi
et al. [19] integrated a prior shape term, calculated as des-
cribed in [20], with a term describing edge feature points and
a term representing region-based data statistics [21] in a var-
iational energy framework for lung segmentation.The formu-
lated energy was used to guide an LS deformable model in
order to segment the lung fields from posterior-anterior (PA)
chest X-ray images. Shi et al. [22] used an adaptive shape prior
to guiding a deformablemodel used to segment the lung fields
from time-series data. The initial shape was trained from
manually marked lung field contours from the population
using the principle component analysis (PCA) method and
was used to segment the initial time-point images of each
subject. To address the shape variability for each subject, the
shape was adapted for the segmentation of further time-point
images with the previously segmented images from the same
subject. Van Ginneken et al. [23] optimized the active shape
model (ASM) developed by Tsai et al. [24] to segment the
lung fields. They compared the segmentation with an active
appearance model-(AAM-) based segmentation and a multi-
scale resolution pixel classification, concluding that the latter
gave the best results. Hardie et al. [25] invoked the optimized
ASM of van Ginneken et al. [23] to segment the lungs field
in a CAD system developed to identify lung nodules on CT
images.

Sun et al. [26] segmented the lungs in two main pro-
cessing steps. First, a 3D ASM matching method is used to
get a rough initial segmentation of the lung borders. Second,
a global optimal surface finding method, developed by Li
et al. [27], is used to find a refined smoothed segmentation
of the lungs. Besbes and Paragios [28] used a graph-based
shape model with image cues based on boosted features to
segment the lung fields from chest radiographs. Sluimer et al.
[29, 30] proposed to segment a pathological lung by using
the shape model of a normal lung. Sofka et al. [31] aligned a
shape model using a set of automatically detected anatomical
landmarks and refined the shape model through an iterative
surface deformation approach in order to segment lungs
that involve pathologies. The main limitation of the shape-
based segmentation techniques is that their accuracy depends
strongly on how accurately the prior shapemodel is registered
with respect to the CT image. Instead of using a shape prior,
Kockelkorn et al. [32] used a user-interactive framework for
lung segmentation in CT scans with severe abnormalities,
where a user corrected the results obtained by a k-nearest-
neighbor (KNN) classifier trained on prior data.

Hua et al. [33] presented an automaticmethod to segment
pathological lung fields using a graph-based search of a cost
function that incorporates the intensity, gradient, boundary
smoothness, and the rib information. El-Baz et al. [34–36]
proposed an iterative Markov-Gibbs-random-field-(MGRF-)
based segmentation framework to segment the lung fields
from LDCT images. A linear combination of discrete Gaussian
(LCDG) model with positive and negative components [37,
38] was used to approximate the empirical distribution of
the LDCT signals of the lung fields and their background,
describing the first-order visual appearance model of the
LDCT image. An initial segmentation of the lung fields was
obtained by a voxel-wise Bayesian maximum a posteriori
(MAP) classification of a given image, based on its LCDG
approximation of the signals of the lung fields and their back-
ground. The segmentation of the lung fields was iteratively
refined by the iterative conditionalmode (ICM) relaxation that
maximizes a MGRF energy that accounts for the first-order
visual appearancemodel and the spatial interactions between
the image voxels. They further extended their work by apply-
ing their iterative MGRF-based segmentation framework on
different scale spaces [39, 40]. Then the segmentations of the
different scales were fused using a Bayesian fusion approach
to get the final segmentation of the lung region. Ali et al. [41]
proposed a graph-cut segmentation algorithm for the lung
fields based on the iterative MGRF-based segmentation in
[34–36].

The edge-model-based lung segmentation is performed
using spatial edge-detector filters or wavelet transforms.
Campadelli et al. [42] detected an initial outline of lung bor-
ders by using the first derivative of Gaussian filters taken at
four different orientations. Then, an edge tracking procedure
using the Laplacian of Gaussian (LoG) operator at three diff-
erent scales was used to find a continuous external lung con-
tour, which was further integrated with the initial outline to
produce the final lung segmentation from PA chest radio-
graphs. Mendonca et al. [43] selected automatically the ROIs
from PA chest radiographs as rectangular areas that surround
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each lung field as closely as possible through an iterative pro-
cedure. Edge points (i.e., themediastinal, costal, top, and bot-
tom edge points) were detected using spatial edge-detector
filters and combined to define a closed contour for the lung
borders. Korfiatis et al. [44] used 2D wavelet transform to
highlight lung borders in a stack of 2D images. An optimal
threshold, selected by the minimum error criterion [45],
was applied to the wavelet-processed 3D stacks to segment
lung volumes. 3D morphological processing was further per-
formed to refine the final segmentation.

A review of the current methodologies for lung field seg-
mentation is presented in Table 1. To efficiently reduce the
search space for lung nodules, some technical issues should
be further investigated to provide accurate segmentation of
the lung fields. These technical issues include the automation
level of the technique, the sensitivity of the method to the
scanning parameters, the efficiency of an algorithm to work
with different image modalities (e.g., CT, LDCT, or CE-CT),
and the ability of the algorithm to provide a proper lung seg-
mentation in cases with severe pathologies that are associated
with inhomogeneities in the pathological lungs.

3. Detection of Lung Nodules

After the definition of the search space for the nodules (e.g.,
the segmented lung fields), nodule detection is the next step
in lung cancer CAD systems. Early detection of lung tumors
(visible on chest radiographs as nodules) may increase the
patients’ chance of survival [1, 46], but the nodule detection
problem is a complicated task; see, for example, [47, 48].
Nodules show up as relatively low-contrast white circular
objects within the lung fields. The difficulty for CAD systems
is to distinguish true nodules from (overlapping) shadows,
vessels, and ribs.

At present, spiral LDCT is of prime interest for screening
(asymptomatic, but high risk) groups for early detection of
lung cancer [49–51]. The LDCT provides chest scans with
very high spatial, temporal, and contrast resolution of ana-
tomic structures and is able to gather a complete 3D volume
of a human thorax in a single breath-hold [47]. Hence, for
these reasons, in the recent years most lung cancer screening
programs have been investigated in the United States [51–
55] and Japan [48, 50, 56, 57] with LDCT as the screening
modality of choice.

CAD systems for detection of lung nodules in thoracic CT
(i.e., CADe) generally consist of two major stages: (1) initial
candidate nodules are selected (i.e., identification of nodule
candidates) and then (2) the false positive nodules (FPNs) are
partially eliminated while preserving the true positive nodules
(TPNs) (i.e., classification of the identified nodule candidates
into nodules or nonnodules (i.e., normal anatomic struc-
tures)).

At the first stage, conformal nodule filtering [58] or
unsharp masking [59] can enhance nodules and suppress
other structures to separate the candidates from the back-
ground by simple thresholding (to improve the separation,
the background trend is corrected in [60–63] within image
regions of interest) or a multiple gray-level thresholding

technique [9, 64, 65]. A series of 3D cylindrical and spherical
filters are used to detect small lung nodules from high-resolu-
tion CT (HRCT) images [66–70]. Circular and semicircular
nodule candidates can be detected by template matching
[59, 71, 72]. However, these spherical, cylindrical, or circular
assumptions are not adequate for describing general geom-
etry of the lesions. This is because their shape can be irreg-
ular due to the spiculation or the attachments to the pleural
surface (i.e., juxtapleural and peripheral) and vessels (i.e.,
vascularized) [73]. In [74–77], they used morphological
operators to detect lung nodules. The drawbacks to these
approaches are the difficulties in detecting lung wall nodules.
Also, there are other pattern-recognition techniques used in
the detection of lung nodules such as clustering [78–81], lin-
ear discriminate functions [82], rule-based classification [83],
Hough’s transform [84], connected-component analysis of
thresholded CT slices [85, 86], gray-level distance transform
[80], and patient-specific a priori model [87].

The FPNs are excluded at the second stage by nodule
classification [60, 61, 84, 88–90]. The most popular way to
do classification is to use a feature-based classifier. First, the
nodule candidates identified in the first step are segmented,
and features are extracted from the segmented nodule can-
didates. Features may include morphologic (or shape-based)
features (e.g., size, circularity [61], curvature [90], etc.), gray-
level-based features (including histogram-based features),
and texture features. The task of the classifier is to determine
“optimal” boundaries for separating classes (i.e., nodules or
nonnodules) in the multidimensional feature space which is
formed by the input features [91].

Feature-based classifiers include linear discriminant anal-
ysis (LDA) [92], rule-based or linear classifier [9, 63, 64, 66,
66, 68, 78, 81, 93], template matching [87], nearest cluster [75,
77],Markov random field (MRF) [94], quadratic discriminant
analysis (QDA) [92], multilayer perceptron (often called just
an artificial neural network—ANN) [74, 89, 95–97], and a
support vector machine (SVM) [98, 99]. A classifier is trained
with sets of input features and correct class labels. A class
label of 1 is assigned to the corresponding output unit when a
training sample belongs to that class, and 0 is assigned to the
other output units. After training, the class of the unit with the
maximum value is determined to be the corresponding class
to which an unknown sample belongs.

Recently, as available computational power increased
dramatically, pixel/voxel-based machine learning (PML) [100]
emerged in medical image analysis which uses pixel/voxel
values in images directly instead of features calculated from
segmented regions as input information. Thus, feature cal-
culation or segmentation is not required. Because the PML
can avoid errors caused by inaccurate feature calculation and
segmentation which often occur for subtle or complex
lesions, the performance of the PML can potentially be higher
for such lesions than that of common feature-based classi-
fiers. PML includes neural filters [101, 102], convolution
neural networks (NNs) [103–107] (including shift-invariant
NNs [108–110]), andmassive-training ANNs (MTANNs) [111–
114] (including multiple MTANNs [111, 115–117], a mixture of
expertMTANNs [118, 119], aLaplacian eigenfunctionMTANN
(LAP-MTANN) [120], and a massive-training support vector
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regression (MTSVR) [121]). Convolution NNs have been
applied for classification tasks such as false-positive (FP)
reduction in CADe systems for the detection of lung nodules
in chest radiographs [103–105] and FP reduction in CADe
systems for the detection of microcalcifications [106] and
masses [107] in mammography. MTANNs have been used
for classification, such as FP reduction in CADe systems
for the detection of lung nodules in chest radiographs [115]
and thoracic CT [111, 116, 122], distinction between benign
and malignant lung nodules in thoracic CT [117], and FP
reduction in a CADe system for polyp detection in CT
colonography [112, 118–121].

Technical development of the classification step in CADe
systems for the detection of lung nodules in CT is summa-
rized in Table 2. In 1994, Giger et al. [123] developed a CADe
system for the detection of lung nodules in CT. In their CADe
system, classification was performed by geometric feature
analysis in conjunction with a comparison of suspected
regions in each slice with suspected regions in adjacent slices.
In 1999, Armato et al. [9, 124] extended themethod to include
3D feature analysis, a rule-based scheme, and LDA for classi-
fication. Gurcan et al. [78] employed a similar approach, that
is, a rule-based scheme based on 2D and 3D features followed
by LDA for classification. Lee et al. [71] employed a simpler
approach which is a rule-based scheme based on 13 features
for classification. Ko and Betke [64] differentiated between
normal structures (vessels and bronchi) and nodules by the
analysis of the candidates’ location and shape using a rule-
based classifier.Their method was able to detect nodules with
a diameter larger than 3mm and missed those with a dia-
meter less than 3mm or those that contacted the lung border.

Kanazawa et al. [81] segmented the nodule candidates
(normal structures (vessels and bronchi) and nodules) within
the lung fields using a fuzzy clusteringmethod [209]. For each
candidate, they extracted a shape, a gray-level, and a posi-
tion features. Then, a rule-based filter was used to combine
these features in order to detect the lung nodules. Brown et al.
[87] build semantic network a priori models to describe the
lung nodules and other structures. In the training phase, a
set of features, composed of the X-ray attenuation range, the
relative location, the volume, and a sphericity shape param-
eter, were used in the semantic network nodes to describe
the expectation models for the lung nodules as well as other
structures. For each test candidate, a fuzzy logic was used to
score thematch between the extracted candidate features and
the priori estimated models to define its belonging to either
nodule or other structures. Wiemker et al. [72] evaluated
the compactness, thickness of connecting vessels, average
Hounsfield (HU) value, and HU distribution within the
nodule candidate to detect nodules using 1mmHRCT slices.
On 12 HRCT exams with 203 nodules, their method achieved
a sensitivity of 0.86% and 4.4 FPs per case for nodules with a
diameter ≥1mm.

Mekada et al. [63] discriminated between nodule regions
and normal structures (e.g., vessels) using the maximum
distance inside connected components (MDCC) in 3D X-ray
CT images. The number of FPNs was reduced by applying
a minimum directional difference filter for the nodule candi-
dates that have sizes smaller than a given threshold value.

Their method achieved a sensitivity of 71% with an average
number of 7.4 FP per case in a study composed of 242CT
medical exams. Awai et al. [74] identified the initial potential
nodules using a sieve filter that selected the intrapulmonary
structures larger than a predefined size as lung nodule
candidates. Then, an ANN classifier was used to determine
if the lesion is a true nodule or not based on a set of extracted
candidate features, including the volume, roundness, average
diameter, maximum diameter and the diameter perpendicu-
lar to it, and distance between potential nodule and thoracic.
The sensitivity of this method was 80% and 0.87 FPs nodule
per section on a test group composed of 82CT exams (3556
sections) containing 78 nodules.

Paik et al. [69] used a method, called the surface normal
overlap (SNO) method, to detect the lung nodules and colon
polyps. The SNO method describes the shape and geometry
of a potential nodule and assigns a score for each shape.
A threshold score was used to discriminate between the
lesions and other structures. Their method was tested on 8
lung CT datasets, achieving a varying sensitivity based on
the allowed FPs per sets. At 1.3 FPs per dataset, a sensitivity
of 80% was achieved; at 5.6 FPs per dataset, a sensitivity of
90% was achieved; and at 165 FPs per dataset, a sensitivity
of 100% was achieved. Mendonca et al. [70] used a filter
for highlighting the nodule-like structures (i.e., the ROI) in
CT images. For every voxel in the ROI, the eigenvalues of a
curvature tensor were computed and thresholds derived from
anatomical models (i.e., a geometric and an intensity models)
were used to label each voxel as spherical (e.g., nodules),
cylindrical (e.g., vessels), or neither.

Suzuki et al. [111] developed anMTANN for the reduction
of a single source of FPs and a multiple MTANN scheme for
the reduction of multiple sources of FPs that had not been
removed by LDA. This MTANN approach did not require
a large number of training cases: the MTANN was able to
be trained with 10 positive and 10 negative cases [210–212],
whereas feature-based classifiers generally require 400–800
training cases [210–212]. Arimura et al. [116] employed a
rule-based scheme followed by LDA or MTANN [111] for
classification. Farag et al. [213, 214] and El-Baz et al. [125, 126,
215–218] developed a template modeling approach using LS
for classification.Ge et al. [127] incorporated 3Dgradient field
descriptors and ellipsoid features in LDA for classification.
Matsumoto et al. [128] employed LDA with 8 features for
classification. Yuan et al. [129] tested a commercially available
CADe system (ImageChecker CT, LN-1000, by R2 Technol-
ogy, Sunnyvale, CA; Hologic now). Pu et al. [130] developed
a scoring method based on the similarity distance of medial
axis-like shapes obtained through a progressive clustering
strategy combined with a marching cube algorithm from a
sphere-based shape.

Retico et al. [131] used theMTANN approach (as they call
it in their paper) for classification. Ye et al. [15] used a rule-
based system followed by a weighted SVM for classification.
Golosio et al. [132] used a fixed-topology ANN for classifi-
cation and they evaluated their CADe system with a publicly
available database from the Lung Image Database Consortium
(LIDC) [219]. Murphy et al. [133] used a KNN classifier for
classification. Tan et al. [135] developed a feature-selective
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Table 2: Classification component in CADe systems. Studies are ordered by their publication year.

Study Feature/input Classifier/method Database Performance

Giger et al. [123] Geometric features Comparison of
geometric features

Thick-slice diagnostic CT scans
of 8 patients with 47 nodules

Sensitivity of 94% with1.25 FPs
per case

Kanazawa et al. [81] 8 features Rule based scheme

Helical CT scans from 450
patients with 230 nodules
(a total of 15,750 image
sections)

Sensitivity of 90%

Armato et al.
[9, 124] Nine 2D and 3D features Rule-based scheme and

LDA

Thick-slice (10mm) diagnostic
CT scans of 43 patients with 171
nodules

Sensitivity of 70% with 42.2 FPs
per case in a leave-one-out test

Lee et al. [71] 13 features Rule-based scheme and
LDA

Thick-slice (10mm) diagnostic
CT scans of 20 patients with 98
nodules

Sensitivity of 72% with 30.6 FPs
per case

Ko and Betke [64]
Location and 2 shape
features (circularity and
roundness)

Rule-based scheme

Helical CT scans of 16 studies (8
initial and 8 followup) obtained
from 8 patients with 370
nodules

Sensitivity of 86%

Brown et al. [87] Prior models based on 4
features Fuzzy matching Thick slice (5–10mm) CT scans

of 17 patients with 36 nodules
Sensitivity of 86% and 11 FPs
per case

Wiemker et al.
[72]

4 shape and intensity
features NA

Thin-slice (1mm) HRCT scans
of 50 subjects (a total of more
than 20,000 image sections);
12 scans were reviewed by
radiologist with 203 nodules

Sensitivity of 86% with 4.9 FPs
per case for nodules with
diameter ≥1mm and sensitivity
of 95% with 4.4 FPs per case
with diameters ≥2mm

Gurcan et al. [78] Six 2D and 3D features Rule-based scheme and
LDA

Thick-slice (2.5–5mm, mostly
5mm) diagnostic CT scans of
34 patients with 63 nodules

Sensitivity of 84% with 74.4 FPs
per case in a leave-one-out test

Suzuki et al. [111] Pixel values in a 9 × 9
subregion Multiple MTANNs

Thick-slice (10mm) screening
LDCT scans of 63 patients with
71 nodules with solid, partially
solid, and nonsolid patterns,
including 66 cancers

Sensitivity of 80.3% with 4.8 FPs
per case in a validation test

Mekada et al. [63] Minimum directional
difference filter Rule-based scheme

CT scans of 6 subjects with 361
nodules (160–350 sections per
case)

Sensitivity of 71% and 7.4 FPs
per case

Arimura et al. [116]

Pixel values in a 9 × 9
subregion for MTANNs
(selected features for
LDA)

Rule-based scheme
followed by multiple
MTANNs (or LDA with
Wilks’ lambda stepwise
feature selection)

106 thick-slice (10mm)
screening LDCT scans of 73
patients with 109 cancers with
solid, partially solid, and
nonsolid patterns

Sensitivity of 83% with 5.8 FPs
per case in a validation test (or
a leave-one-out test for LDA)

Awai et al. [74] 6 geometric features Artificial neural network
classier

CT scans of 82 patients with 78
nodules (a total of 3,556 image
sections)

Sensitivity of 80% with 0.87 FPs
per section

Paik et al. [69]
SNO method that
describes the shape and
geometry

Rule-based scheme CT scans of 8 patients
Sensitivity of 90% with 5.6 FPs
per case in a cross validation
test

Farag et al.
[125, 126] NA Template modeling

approach using LS

Thin-slice (2.5mm) screening
LDCT scans of 16 patients with
119 nodules and 34 normal
patients

Sensitivity of 93% with 3.4 FPs
per case

Ge et al. [127]
44 features including 3D
gradient field descriptors
and ellipsoid features

LDA with Wilks’ lambda
stepwise feature
selection

82 thin-slice (1.0–2.5mm) CT
scans of 56 patients with 116
solid nodules

Sensitivity of 80% with 14.7 FPs
per case in a leave-one-out test
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Table 2: Continued.

Study Feature/input Classifier/method Database Performance

Mendonca et al.
[70]

Geometric and intensity
models combined with
eigen curvature analysis

Rule-based scheme

Thin-slice (1.25 and 2.5mm) CT
scans of 242 exams from two
institutions: 50 CT scans with
109 nodule and 192 CT scans
with 210 nodules

Sensitivity of 67.5% and 9.3 FPs
per case for data from the first
50 CT scans and sensitivity of
62.9% and 10.3 FPs per case for
the second 192 CT scans in a
leave-one-out test

Matsumoto et al.
[128] 8 features LDA

Thick-slice (5 or 7mm)
diagnostic CT scans of 5
patients (4 of which used
contrast media) with 50 nodules

Sensitivity of 90% with 64.1 FPs
per case in a leave-one-out test

Yuan et al. [129] NA
ImageChecker CT
LN-1000 by R2
Technology

Thin-slice (1.25mm) CT scans
of 150 patients with 628 nodules

Sensitivity of 73% with 3.2 FPs
per case in an independent test

Pu et al. [130] NA

Scoring method based
on the similarity
distance combined with
a marching cube
algorithm

Thin-slice (2.5mm) screening
CT scans of 52 patients with 184
nodules including 16 nonsolid
nodules

Sensitivity of 81.5% with 6.5 FPs
per case

Retico et al. [131] Pixel values in a
subvolume

Voxel-based neural
approach (MTANN)

Thin-slice (1mm) screening CT
scans of 39 patients with 102
nodules

Sensitivities of 80–85% with
10–13 FPs per case

Ye et al. [15] 15 features
Rule-based scheme
followed by a weighted
SVM

Thin-slice (1mm) screening CT
scans of 54 patients with 118
nodules including 17 non-solid
nodules

Sensitivity of 90.2% with 8.2 FPs
per case in an independent test

Golosio et al. [132] 42 features from
multithreshold ROI Fixed-topology ANN

Thin-slice (1.5–3.0mm) CT
scans of 83 patients with 148
nodules that one radiologist
detected from the LIDC
database

Sensitivity of 79% with 4 FPs
per case in an independent test

Murphy et al. [133] Features selected from
135 features KNN

Thin-slice screening CT scans
of 813 patients with 1,525
nodules

Sensitivity of 80% with 4.2 FPs
per case in an independent test

Messay et al. [134] Features selected from
245 features

LDA and quadratic
discriminant analysis
with feature selection

Thin-slice CT scans of 84
patients with 143 nodules from
the LIDC database

Sensitivity of 83% with 3 FPs
per case in a 7-fold
cross-validation test

Tan et al. [135] 45 features

Feature-selective
classifier based on a
genetic algorithm and
ANNs

Thin-slice CT scans of 125
patients with 80 nodules that 4
radiologists agreed from the
LIDC database

Sensitivity of 87.5% with 4 FPs
per case in an independent test

Riccardi et al.
[136]

Maximum intensity
projection data from the
volume of interest

Heuristic approach
(rule-based scheme)
and SVM

Thin-slice CT scans of 154
patients with 117 nodules that
4 radiologists agreed on from
the LIDC database

Sensitivity of 71% with 6.5 FPs
per case in a 2-fold
cross-validation test
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classifier based on a genetic algorithm and ANNs for classi-
fication. Messay et al. [134] developed a sequential forward
selection process for selecting the optimum features for LDA
and quadratic discriminant analysis. Riccardi et al. [136] used
a heuristic approach based on geometric features followed
by an SVM for classification. Thus, various approaches have
been proposed for the classification component in CADe
systems.

The above overview shows that some important factors
should be further investigated in designing any CADe system
for detecting lung nodules including the automation level, the
speed, the ability of the detection scheme to detect nodules
of different shapes, for example, irregular-shape nodules and
not only the spherical ones, and the ability of the CADe
system to detect cavity nodules, nodules contacted to the lung
borders, and small nodules (e.g., less than 3mm).

4. Lung Nodule Segmentation

Lung nodule segmentation refers to a task of delineating the
spatial extent of focal nodular lesions appearing in chest CT
scans, providing a critical foundation ofCAD for lung cancers
[220–222]. The nodule segmentation is a very important and
crucial step in many lung cancer applications. In this section,
we outline the clinical applications of lung nodule segmen-
tation. Then, we review the state-of-the-art segmentation
techniques for lung nodules from CT images as well as from
PET images. Finally, we address various aspects of challenges
that researchers often face in the development of techniques
for solving the nodule segmentation problem.

4.1. Clinical Applications. Accurate nodule segmentation is
a crucial prerequisite for various diagnostic and treatment
procedures for lung cancer [223], such as diagnosing tumor
growth in follow-up CTs [140, 146], monitoring tumor res-
ponse to therapy [224, 225], computer-aided lung cancer
screening for early detection [71, 87, 226], and computer-
aided diagnosis of tumor malignancy [115, 227]. In this appli-
cation context, segmentation accuracy directly influences
important clinical factors, such as the minimum size of mea-
surable lesions and the shortest time duration for repeat CT in
follow-up studies. Another interesting approach is to derive
the standard RECIST/WHO 2D measures of lesions from
the results of their volumetric 3D segmentation in order to
improve their accuracy and reproducibility [177, 228].

The segmentation also defines a local image area from
which image features can be extracted for further computa-
tional analyses. For example, lung cancer screening by CADe
[71, 87, 226] often enhances the overall detection accuracy
by segmenting detected nodules as a postanalysis to remove
false-positive cases [229].

Malignancy classification of lung nodules in CADx [227]
will also rely on accurate segmentation for extracting image
appearance features whose quality dictates the overall clas-
sification performance [248]. Thus, improving the accuracy
of nodule segmentation has a direct impact to these clinical
tasks. While segmentation of a large solitary nodule can be
straightforward, there exist types of nodules, such as small

or partially solid nodules, which pose difficulty in accurate
segmentation. Because these difficult cases are also of clinical
importance (e.g., early detection of lung cancer with small
nodules [249]; a partially solid nodule with high likelihood
of being malignant [250–252]), nodule segmentation plays a
critical role in successfully administering these clinical tasks.

4.2. CT Segmentation Techniques. Due to the increasing
clinical significance described above, the number of papers
reported in the literature for pulmonary nodule segmentation
has been increasing rapidly. The advent of thin-slice multi-
detector HRCT technologies in early 2000s has shifted trends
in nodule segmentation research from early-thresholding-
based 2D methods to more sophisticated flexible 3D/vol-
umetric segmentations. Previously reportedmethods for lung
nodule segmentation are summarized in Tables 3, 4, and 5.
Prior to the advent of CT in routine medical practices, auto-
matic detection, segmentation, and analysis of nodules in 2D
chest radiography were actively investigated [253, 254]. Seg-
mentation algorithms proposed in this context were intrin-
sically 2D based. During the early phase of CT applications,
images are oftenmade with a large slice thickness. Some early
methods in the literature [141, 142] have also adopted this 2D
approach for this reason. The following section summarizes
the advances in nodule segmentation focusing on the recent
volumetric approaches.

Technical approaches previously reported for volumetric
lung nodule segmentation can be roughly classified into the
following eleven categories: (1) thresholding [140–144, 146,
154], (2) mathematical morphology [73, 76, 147, 152, 153,
158], (3) region growing [152, 153, 175–178], (4) deformable
model [137, 138, 160, 161, 163, 168, 182, 255], (5) dynamic
programming [145, 169, 180], (6) spherical/ellipsoidal model
fitting [148, 149, 151, 256, 257], (7) probabilistic classification
[97, 156, 157, 166, 167, 174, 181], (8) discriminative classifica-
tion [162, 183], (9) mean shift [150, 151, 170], (10) graph-cuts
[172, 173], and (11) watersheds [165].

Thresholding (TH). TH is one of the most ubiquitous and
straightforward methods for solving general segmentation
problems. It yields a binary (foreground/background) seg-
mentation of the volume of interest (VOI) by labeling each
voxel by testingwhether its intensity value surpasses a specific
threshold value or not [16]. This approach was adapted by
early methods proposed by Zhao et al. [142, 143] and Yankele-
vitz et al. [140, 141, 144]. Automatic data-driven methods to
determine threshold values have been proposed by using K-
mean clustering [140, 141] and average gradient magnitudes
and boundary compactness [142, 143].

Mathematical Morphology (MM). MM is another popular
technique in the lung nodule segmentation especially for
handling special cases attached to nontarget structures such
as vessels (juxtavascular) and parenchymal wall or the dia-
phragm (juxtapleural). MM is a set theoretic technique for
processing geometric structures in binary and gray-scale
images [16]. It offers variousmorphological operations (MOs)
with four basic operators (erosion, dilation, opening, and
closing) with a task-specific structuring element. Commonly,
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Table 5: Studies on volumetric nodule segmentation reported from 2011 to present. See Table 3 for description of captions.

Study Purpose Type Method Database Validation and
Performance

Farag et al. [182] Juxtapleural Deformable
model, 3D

Variational LS
segmentation with narrow
band implementation

ELCAP database: 397
nodules of 50 patients, 115
juxtapleural cases

Success rate: 70% for
juxtapleural cases

Zinoveva et al.
[183] General Discriminative

classification

Soft segmentation. CART
decision-tree classifier
trained with texture and
intensity features. VI
trimming after processing

LIDC2 dataset: 39 nodules
with 3–30mm in diameter;
manual GTs by 4
radiologists

Median soft-overlap: 0.49
and 0.52 with VI trimming

Jirapatnakul et al.
[184] Juxtapleural Surface analysis

Robust estimation of the
pleural surface, surface
removal by change
detection over the
estimated surface

150 solid juxtapleural
nodules

Success rate: 98.0% (81.3%
by [185])

Diciotti et al.
[186] Juxtavascular Shape analysis

Refine an initial rough
segmentation based on a
local shape analysis on
3D geodesic distance map
representations

ITALUNG dataset: 256
small nodules; LIDC12
datasets: 157 small nodules

Success rate: 84.8%
(ITALUNG) and 88.5%
(LIDC12) for automatic;
91.0% (ITALUNG) and
91.7% (LIDC12) for
interactive mode

a sequence of iterative MOs are used to remove the nontarget
structures juxtaposed to the target nodule in an initial binary
segmentation result. Kostis et al. [73, 147] and Kuhnigk et al.
[152, 153] have proposed effective iterative approaches for
binary morphological filtering with various combinations
of these basic operators. Okada et al. [158] presented a
data-driven method to determine the ellipsoidal structuring
element from anisotropic Gaussian fitting. Gray-scale MOs
have also been successfully applied to nodule segmentation.
Fetita et al. [76] proposed an approach with a selective
marking and depth-constrained (SMDC) connection cost for
handling the juxtaposed cases.

Region Growing (RG). RG is another classical image seg-
mentation method that has been successfully adapted to the
lung nodule segmentation problem. It identifies a connected-
component region that surrounds a seeded pixel by iteratively
adding neighboring pixels which satisfies a logical predicate
defining pixel intensity proximity [16]. RG has been pop-
ular among the recent methods as their base component
to produce initial rough segmentation to be improved on
further, replacing the simpler TH adopted by earlier methods
in the same context [140–144]. In the MM-based approach
by Kuhnigk et al. [152, 153], RG was adopted in this manner.
There are more recent studies [175–178] that have extended
this approach as the main component of their overall seg-
mentation algorithms. Dehmeshki et al. [175] proposed an
adaptive sphericity-oriented contrast-based RG on the fuzzy
connectivity map computed from the results of local adaptive
thresholding segmentation. Diciotti et al. [176] presented an
RGmethod with a fusion-segregation criteria using geodesic
distances. Finally, Kubota et al. [177, 178] proposed an RG
on an Euclidean distance map that is adjusted to handle
juxtaposed structure more effectively.

Deformable Model (DM). DM represents a class of segmen-
tation methods based on the iterative evolution of contour
curves that models the boundary of a target object, such as
classic energy-minimization-based active contour (AC) [258],
edge-based geodesic AC [259], and region-based variational
LS [21]. One of the earliest works on volumetric lung nodule
segmentation reported in the literature was by Kawata et al.
[137, 138] which adopted the geodesic AC approach by
Caselles et al. [139]. El-Baz et al. [160, 255] and Farag et al.
[161] have adopted the energyminimization approach byKass
et al. [258] with a prior appearance model by MRF and a cur-
rent appearance model by a bimodal LCDG. Farag et al. [182]
proposed a variational LS solution with adaptive prior proba-
bility term for nodule segmentation. Yoo et al. [168] adopted
the multiphase LS framework by Vese and Chan [260] to
present an asymmetric 3-phase LS segmentation method
for partially solid nodules. These approaches are adopted to
evolve a 3D surface boundary directly. In Way et al. [163], an
approach to derive volumetric segmentation by 2D ACs was
applied to successive axial slices with 3D gradient, 3D curva-
ture, and mask energy terms in order to facilitate continuity
along slice depths.

Dynamic Programming (DP). DP here refers to a variational
energy minimization approach for detecting optimal con-
tours in images [261]. It guarantees to find noniteratively the
energy’s global minimum among all possible contours, assur-
ing its optimality [261, 262]. This global optimality is an
attractive property of this approach leading to better repro-
ducibility. DP has been successfully applied to detection,
tracking, andmatching the boundary of general objects in 2D
images [262]. Xu et al. [145] also applied this to 2D nodule
boundary detection with lesion contour discontinuity detec-
tion by transforming an image from theCartesian to the polar
coordinate system. An inherent issue to this approach is
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that its generalization to higher dimensional space is not
straightforward. Several methods to extend this 2D approach
to 3D surface detection for volumetric nodule segmentation
have been reported. In Wang et al. [180], a sequence of 2D
DPs are applied to successive slices with constraints for lesion
center and radius from neighboring slices along the third
dimension.This is repeated to the three orthogonal directions
and the results are then fused. Wang et al. [169] proposed a
method to transforma 3DVOI to a 2D image by transforming
the 3D spherical to the 2D polar coordinate system along the
points on the unit sphere sampled in the order of a spiral
from the north to the south pole. After this spiral scanning
transformation, the standard 2DDPwas applied to detect 3D
lesion boundary.

Spherical/Ellipsoidal Model Fitting. This fitting exploits the
proximity of CT lung nodule appearance to the standard
Gaussian intensitymodel. Such an approximationmodel with
isotropic Gaussian has been used in an early work for CADe
of nodules [71]. For segmentation, both ellipsoidal (aniso-
tropic Gaussian) and spherical (LoG) models have been
exploited to approximately segment and estimate the size of
nodule lesions. Okada et al. [148, 149, 151] proposed a robust
estimationmethod for fitting the anisotropic Gaussian inten-
sity model (RAGF: robust anisotropic Gaussian fitting) by
posing the problem as the scale selection over an aniso-
tropic scale-space [149]. At each scale, the Gaussian model is
fit to a nodule image by using the MS algorithm [263]. Then
the most stable scale that minimizes the Jensen-Shannon
divergence [264] computed over the varying scales deter-
mines the final outcome. In Diciotti et al. [257], the nodule
size was estimated by using the multi-scale LoG filtering
[265]. The characteristic scale defined over the LoG scale-
space was adopted as the lesion’s size estimate and as an
initialization of their RG-based segmentation method [176].
Jirapatnakul et al. [256] also studied this method as their
nodule size measurement.

Probabilistic Classification (PC). PC is another popular
approach where each voxel is probabilistically classified as a
nodule or other structures. Probability distributions such as
class-conditional likelihoods and prior distributions for each
class must first be estimated from data. At each voxel, the
classification decision is then casted as the standard estima-
tion framework, such asMAP,maximum likelihood (ML), and
likelihood ratio test (LRT) [91]. Zhang et al. [97, 156] proposed
an MAP approach by using the MRF as the prior and Gaus-
sian mixture model (GMM) as the class-conditional model
estimated by offline training [97] or online for each image
[156]. Okada et al. [157] proposed an approach based on LRT
where foreground and background likelihoods were esti-
mated online over a joint spatio-intensity domain from the
results of the RAGF [151]. In Zhou et al. [166, 167], likelihood
distributions were estimated by nonparametric kernel density
estimator (KDE), then the Bhattacharya distance was used
as their classification criterion. Browder et al. [174] also pro-
posed an ML approach for three classes (solid nodule, non-
solid nodule, and parenchymal tissue), where a Gaussian
model is used to define each distribution. In Tao et al. [181],

likelihoods are derived by GMMs over a subspace found by
LDA of various intensity features, yielding probability maps.
Final segmentation is given by thresholding the map with a
shape prior.

Discriminative Classification (DC). DC casts the segmenta-
tion problem as a voxel-wise classification similar to PC;
however, the classifiers are built by using generic supervised
machine learning algorithms without explicitly estimating
probability distributions [91]. There exists numerous meth-
ods for supervised discriminative classifiers in the machine
learning literature. For nodule segmentation, only a few
approaches from them have been adopted. Van Ginneken
[162] proposed a soft-segmentationmethod where a function
is learned tomap various-input intensity-based features com-
puted at a voxel to a probability of the voxel being a part of a
nodule.The output probability values for the training set were
collected from multiple ground-truth segmentations. The
KNN regression method was used to establish this function.
Zinoveva et al. [183] proposed a similar soft segmentation
method by using a decision-tree classifier with a classification
and regression tree (CART) algorithm [266].

Mean Shift (MS).MS is a segmentation approach based on an
iterative feature space analysis [263]. The MS algorithm per-
forms a clustering of feature data points by iteratively seeking
from each data point a mode of nonparametric distributions
estimated byKDE [263].Unlike the standard gradient descent
algorithm [91], MS is provably convergent without requiring
to tune the learning parameter thus can be implemented effi-
ciently. Several works have adopted MS for the purpose of
lung nodule segmentation. Okada et al. [150] proposed a
robust nodule segmentation method that applied MS in the
4D joint spatio-intensity domain to refine the RAGF results,
characterizing a nodule by an anisotropic Gaussian. Nie et al.
[170] proposed an MS-based 2D nodule segmentation
method over a feature space that combines the convergence
index to the 3D joint spatio-intensity domain. Finally, the
RAGF method proposed by Okada et al. [148, 151] extended
the MS algorithm to the Gaussian scale-space [265] and
applied it to estimate the covariance for robustly fitting a
Gaussian to data.

Graph-Cuts (GCs) [267] and Watersheds (WSs) [16]. GCs
and WSs are the other well-known techniques of standard
image segmentation that have been adopted to the nodule
segmentation problem. Zheng et al. [172, 173] applied GC to
derive their initial 2D nodule segmentation in their coupled
segmentation-registration method with B-spline nonrigid
registration [268]. Goodman et al. [165] utilized WS in their
volumetry study. Each nodule was first segmented by using
WS semiautomatically followed by a model-based shape
analysis performed to determine anatomical characteristics
of various nodule types.

The above-described techniques have been adopted to a
number of commercially available semiautomatic software
packages and put into the clinical practice today.Many repro-
ducibility studies for lung nodule volumetry have investi-
gated performance of such software packages [202, 269–273].
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DeHoop et al. [274] compared six packages (AdvantageALA,
GE, v7.4.63; Extended Brilliance Workspace, Philips, EBW
v3.0; Lungcare I, Siemens, Somaris 5 VB 10A-W; Lungcare II,
Siemens, Somaris 5 VE31H; OncoTreat, MEVIS v1.6; Vitrea,
Vital images v3.8.1) and found that substantial variations in
segmentation performance exist among current lung nodule
software packages.

4.3. PET Segmentation Techniques. Positron emission tomog-
raphy (PET)with the glucose analog, 18F-2-fluoro-2-deoxy-D-
glucose (FDG), has beenwidely used in oncology applications
such as lung cancer detection and nodule segmentation.
Using CT alone, target volume delineation of lung cancer is
prone to interobserver variability, with variations in the gross
tumor volume (GTV) definition being as high as 700% in lung
tissue [275]. However, incorporating PET enhances the result
of tumor outlining, diagnostic evaluation of pulmonary nod-
ules, and staging the mediastinum. The widely used quanti-
fier in PET imaging is the standardized uptake value (SUV)
that estimates the intensity of the lesion on PET. The SUV is
calculated either pixel-wise or over an ROI for each image at
time 𝑡𝑡, as the ratio of the tissue radioactivity concentration,
𝑐𝑐𝑐𝑡𝑡𝑐, and injected dose at the time of injection divided by body
weight:

SUV = 𝑐𝑐 𝑐𝑡𝑡𝑐
injected dose (𝑡𝑡0) / bodyweight

. (1)

To define the tumor region, the most straightforward
technique is to apply a thresholding-based method. Auto-
matic thresholding-based methods used the SUV parameter
to estimate the optimal threshold that defines the tumor
region. Paulino and Johnstone [276] used an SUV value of 2.5
to autocontour the derived GTV. Other fixed thresholding-
based methods define the tumor region by an arbitrary
threshold value such as 40%, 42%, or 50% of the maximum
SUV [189–193, 277].

In addition to the fixed thresholding-based techniques,
there are other adaptive thresholding-based approaches that
incorporate tumor volume, background activity, and source-
to-background ratios [278–283]. Nestle et al. [278] compared
different GTVs obtained from different methods to look
for the optimal threshold value. Four different GTVs are
obtained using four different methods: 𝑐1𝑐 GTVvis obtained
by visual interpretation, (2) GTV40 obtained by applying a
threshold of 40% of the SUVmax, (3) GTV2.5 obtained by
applying a threshold equal to SUV = 2.5, and (4) GTVbg
obtained by using phantom studies as the best fit obtained
based on the tumor and background intensities. GTVvis,
GTV2.5, andGTVbg showed a strong correlationwith the CT-
derivedGTV,whereas theGTV40 was shown to be unsuitable.
Nestle et al. concluded that the variability of the differences
was due to the inhomogeneity in the nodules appearance and
the difference in their sizes.

The main limitations of thresholding-based techniques
are that they are user- and system-dependent and do not con-
sider some important factors in the tumor delineation such
as target motion due to respiration and cardiac activity. In
addition, a single threshold model lacks the incorporation of

other factors such as tumor size and the nonuniformdistribu-
tion of FDG activity [278]. In many cases, due to conditions
such as necrosis and hypoxia in non-small-cell lung cancer
(NSCLC), a single threshold model cannot be obtained since
these conditions create a non-uniform uptake value. Exper-
imental measurements of radioactive spheres in a phantom
using thresholding-based methods show that the threshold-
ing-based methods are unreliable in the clinical studies [195,
278, 284, 285].

To provide more reliable tumor delineation, statistical
segmentation techniques cast the tumor segmentation within
a statistical framework as an unsupervised classification
problem. For a given dataset composed of a set of items, a
statistical classification framework attempts to label each item
with some level of certainty, like that in [286]. For example,
fuzzy locally adaptive Bayesian (FLAB) [197] and 3-FLAB
[199] are locally adaptive Bayesian segmentation approaches
that are combined with a fuzzy measure. Each voxel is
assigned to its appropriate class based on its value and the val-
ues of its neighbors and also the noise model’s parameters. In
3-FLABwhich is an improvement of FLAB, three hard classes
and three fuzzy transitions are incorporated and the model
is evaluated on heterogenous tumors as well as homogenous
ones. Based on unsupervised estimation and noise modeling,
the fuzzy C-means clustering method (FCM) [287] and the
fuzzy hidden Markov chain (FHMC) [196] similarly attempt
to find large groupings within the intensity distributions
obtained from the PET image. The segmentation results of
these fuzzy-based methods show better tumor delineation
with respect to the thresholding-based methods. However,
they usually require an estimation of the initial class and they
consider only the PET modality in their implementations.

More complex segmentation methodologies have been
proposed to solve the lung tumor delineation problem [196,
197, 288–295]. For example, Li et al. [294] used an adaptive
region growing method that extracts the tumor boundaries
using deformable models in PET images. Avazpour et al.
[198] used a region growing approach that is employed on
coregistered PET/CT for the exclusion of collapsed lung.
Mohamed et al. [296] andWoods et al. [297] incorporate tex-
tural and structural features in their segmentation methods.
To summarize the approaches presented for the segmentation
of lung nodules from PET images, Table 6 briefly describes
the number of the patients enrolled in each study and the
type of the nodule delineation approach with respect to the
methodology, the approach dimension, and the approach
automation level.

As PET acquisition takes several minutes, it is influenced
by the patient’s breathing and motion. These respiratory
movements and cardiac actions result in the target motion
which creates significant image blur that affects the accuracy
of GTV estimation. On the other hand, using CT only implies
a large uncertainty in the result of target volume delineation,
especially in NSCLC [298, 299]. Reported cases, in which
the GTV delineated based on CT, include abnormalities that
appear totally devoid of FDG activity and can safely be
removed from the GTV. Thus, the combination of PET and
CT information has been studied in order to improve the
target volume definition especially in NSCL and cases with
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Table 6: Summary of lung nodule segmentation approaches from PET images. For each study, the table summarizes the number of the
patients enrolled in the study and the type of the nodule delineation approach with respect to the methodology, the approach dimension, and
the automation level.

Study Patients Delineation approach Dim AL
Kiffer et al. [187] 15 Coregistration 2D A
Munley et al. [188] 35 Manual registration NA NA
Nestle et al. [189] 34 Visual NA NA
Mah et al. [190] 30 Thresholding 3D A
Erdi et al. [191] 11 Thresholding NA A
Bradley et al. [192] 26 Thresholding 2D A
Deniaud-Alexandre et al. [193] 101 Visual NA NA
Van Der Wel et al. [194] 21 Visual NA NA
Ashamalla et al. [195] 19 Thresholding NA A
Hatt et al. [196] NA Fuzzy hidden Markov chain NA A
Hatt et al. [197] NA Fuzzy classification 3D A
Avazpour et al. [198] 11 Region growing 2D A
Hatt et al. [199] 38 Fuzzy classification NA A
∗
Note that Dim denotes the approach dimension (2D, 3D), AL denotes automation level (A: automatic, UI: user interactive), and NA stands for nonapplicable.

atelectasis. In this regard, the recent studies have shown that
the integration of PET information in the treatment planning
has significantly reduced the interobserver contouring vari-
ability [298, 299].

To combine PET and CT information, a fusion technique
should be applied to integrate both PET and CT images. The
fusion techniques can be classified into one of three cate-
gories: (1) visual fusion in which both imaging modalities
are simply considered side by side, (2) software fusion, and
(3) hardware fusion. Using visual fusion, Kiffer et al. [187]
showed that by using PET information the outlined volume
has changed in 26.7% of the cases. They conclude that the
variability on the volume estimation is due to the detection
of abnormal mediastinal nodes on PET which cannot be
detected on CT. Steenbakkers et al. [298] and Fox et al. [299]
used a software fusion method and analyzed the observer
variation in two phases, one with CT only and another one
with fused PET/CT. The two studies addressed the issue of
inter-observer variation reduction using matched PET and
CT and concluded that the PET/CT software fusion is supe-
rior to visual fusion. Nestle et al. [189] andMunley et al. [188]
used software fusion techniques that reported a significant
change in the target volume extraction when compared to
CT-defined volume. Nestle et al. [189] has documented that
in 6 out of 17 patients with dystelectasis or atelectasis, the size
of the delineated target was reduced with a median change
of 19.3%. Munley et al. [188] reported an increase in the GTV
in 34% of the cases when compared to CT. Erdi et al. [191] per-
formed a study on patients who received CT and PET scan-
ning using the same device. GTV, PTV, and normal tissues
were initially contoured on the CT and then CT and PET
were registered in a treatment-planning system. There was
an average increase of 19% in the PTV volume in 7 out of
11 patients and an average decrease of 18% in the PTV in
the other four patients. Van Der Wel et al. [194] showed that
the GTV decreased significantly when shifting from the CT
only to the fused PET/CT in 21 patients, thus allowing dose

escalation. Further studies on the rate of recurrence when
PET is used showed that only 1 out of 44 patients developed
the tumor recurrence [300].

Table 7 summarizes the published studies on the effect
of PET on GTV as a complementary to CT. For each study,
the number of patients, the PET/CT fusion method, and the
increase and decrease in the GTV as a percentage of the
total number of the study cases are reported. These studies
reported that the PET/CT fusion has improved the GTV esti-
mation and thus is preferable for the treatment optimization
in NSCLC. However, some well-known technical issues such
as the resolution of PET, the exact tumor edge definition, and
the misregistration between PET and CT images still need
further investigations.

4.4. Nodule Segmentation Challenges. Several challenges and
aspects have been facing lung nodule segmentation tech-
niques, such as the ability of a technique to segment the
challenging types of nodules, the automation level of the tech-
nique, and its robustness. In this section, we briefly address
each of these challenges.

4.4.1. Nodule Types. CT values for parenchymal tissues differ
significantly from those for soft tissues.Therefore, segmenta-
tion of solitary and large solid nodules is technically straight-
forward. Problems arise when targeting (1) small nodules, (2)
nodules attached to vessels (juxtavascular cases), (3) nodules
attached to parenchymal wall and diaphragm (juxtapleural
cases), and (4) ground-glass opacity nodules. The following
outlines the nature of each issue and the current approaches
handling them.

Small-nodule segmentation plays an important role for
the early detection of lung cancers [249]. The advent of thin-
sliceHRCThas introduced the capability for the visualization
of small nodules with less than 5mm in diameter which could
not be made visible by previous-generation CT technologies.
Accurate segmentation of such small nodules is needed to
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Table 7: Assessing the effect of PET/CT on GTV. For each study, the number of patients, the PET/CT fusion method, and the increase and
decrease in the GTV as a percentage of the total number of the study cases are reported.

Study Patients PET/CT fusion method GTV increase GTV decrease
Kiffer et al. [187] 15 Graphical co-registration 27% NA
Munley et al. [188] 35 Visual 34% NA
Nestle et al. [189] 34 Visual (side by side) 9% 26%
Mah et al. [190] 30 Software 22% NA
Erdi et al. [191] 11 Software 64% 36%
Bradley et al. [192] 26 Software 46% 12%
Deniaud-Alexandre et al. [193] 101 Software 26% 23%
Ashamalla et al. [195] 19 Hardware 26% 26%
Van Der Wel et al. [194] 21 Visual 14% 52%
Avazpour et al. [198] 11 Software NA NA

assess malignancy of the lesions by measuring their growth
rate as will be discussed in Section 5.1. Partial-volume effect
(PVE) is the main technical concern when handling small
nodules. Due to spatial discretization used for the CT imag-
ing, a single voxel may represent more than one tissue type,
resulting in averaging of their intensity values. This causes
PVE, image blur especially at lesion boundaries, making their
segmentation difficult. PVE becomes more pronounced
when handling smaller lesions because the percentage of
errors over the lesion volume would increase in such a case.
This makes accurate area/volume measurement for small
nodules more challenging. A number of approaches have
been proposed to handle PVE in small-nodule segmentation
[73, 146, 151, 153]. Ko et al. [146] presented the partial-volume
method (PVM) for estimating nodule volume based on the
consistency of the average attenuation amounts. Their phan-
tom study demonstrated that PVM yields higher accuracy in
volumetry than various thresholdingmethods. Kuhnigk et al.
[153] proposed segmentation-based partial-volume analysis
(SPVA) that extended the PVM approach to incorporate
segmentation of VOI into the nodule core, the parenchyma
area, and partial-volume region. A histogram sampled from
the partial volume region was used to estimate the nodule’s
volumenear its boundary. Kostis et al. [73] proposed isotropic
resampling of volumetric images to mitigate PVE and also
presented an upper bound for the PVE error of a perfect
circle. Finally, RAGF proposed by Okada et al. [151] yields
an ellipsoidal approximation of lesion boundary. When seg-
menting a small nodule, and volumemeasure derived directly
from a fitted ellipsoid may be more accurate than voxel-wise
segmentation results due to PVE.

Lung nodules are frequently attached to other pulmonary
structures such as airways, blood vessels, parenchymal walls,
and the diaphragm. Because the CT values of nodules and
these nontarget structures are often very similar, accurate
delineations of the extent of nodules from these structures
become a difficult technical challenge.

Juxtavascular nodules refer to nodules that are attached
to blood vessels. There are many studies that have addressed
a solution for handling such juxtavascular cases [73, 76, 97,
143, 145, 151, 153, 165–168, 174–177, 185, 186]. One common
approach for this purpose is the morphological filtering [73,

76, 97, 143, 153, 185]. Because the portion of nodules that
attaches to vessels/airways is typically small with respect to
the total extent of the 3D nodule surface, basic MOs, such
as erosion, dilation, and opening, are often effective for most
juxtavascular cases [76, 143]. More complex morphological
filtering based on iterative [73, 185] and successive [153]
combinations of these basic operators, convex hull operations
[153, 177], and 3D moment analysis [174] have also been
adopted as a postsegmentation refinement method. Geo-
metric/shape-constrained segmentation is another popular
approach in this context [151, 165, 175, 176, 186].This approach
integrates shape-based prior information within the segmen-
tation process in order to bias the results toward a spher-
ical/nodular shape and suppress the elongated nontarget
structures attached to the target. Gaussianmodel fitting [151],
eigen analysis of the Hessian matrix [166, 167], sphericity-
oriented region growing [175], geodesics distance constraints
between the connected components [186], and a steepest-
ascent test [177] are some examples of this type of geometric-
constraint approaches.

Juxtapleural nodules refer to cases that are attached to
the parenchymal wall or the diaphragm. A number of studies
have addressed a solution for handling such juxtapleural cases
[73, 76, 145, 151, 153, 155, 158, 175, 177, 182, 184, 185]. Pleural
surface removal (PSR) is the most common approach [73, 76,
153, 155, 158, 184, 185]. PSR can be addressed either globally or
locally.The global methods first segment the entire lung from
a CT image then use the result as a negative mask to avoid
the non-target wall regions to be included in the nodule seg-
mentation results. Morphological filtering was the common
approach similar to juxtavascular cases [76, 153, 155]. In order
to accurately segment lung walls, juxtapleural nodules must
be discounted. Local surface smoothing [155] and convex
hull operation [153] have specifically been adopted for this
purpose. The local PSR methods perform the same task of
removing the pleural surface within a VOI [73, 158, 184, 185].
Morphological filtering is also a popular approach in this
context [73, 158, 185]. A local patch of the pleural surface
can be approximated as a 3D plane. Kostis et al. [73] used a
morphological filtering with a disk-shape kernel and Reeves
et al. [185] presented an iterative clipping plane adjustment,
exploiting this planar assumption. Beyond the planar model,
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a polynomial surface can be fit to VOI to improve the accu-
racy [184]. Another approach is to robustly detect the center
of juxtapleural nodules because many reported general-pur-
pose methods fail to do this. Prior constraint mean shift
[158, 159], robust nodule core detection by centricity trans-
formation [177], and the maximum curvature point [182] are
the examples of robust methods addressing this task.

The ground-glass opacity (GGO) nodule refers to a type of
nodules with subsolid CT values that are significantly lower
than those of typical solid nodules. Based on whether any
solid components are present or not, they are categorized into
two types: nonsolid/pure and partially solid/mixed. Segmenta-
tion of the GGO nodules poses a technical challenge because
it is hard to delineate their subtle boundaries and to model
their irregular appearances. In clinical practice, the increased
image resolution by the recent CT technologies have made
it possible to study these small GGO nodules that were pre-
viously undetectable. Their growth is often very slow [252];
however, such GGO nodules, especially the mixed ones, have
been found to have a high chance of being malignant [250].
Recent clinical studies have confirmed that they represent the
histologic spectrum of peripheral adenocarcinomas, includ-
ing the premalignant atypical adenomatous hyperplasia
(AAH) and the malignant bronchioloalveolar carcinoma
(BAC) [251]. A small non-solid GGO representing AAH or
BAC can slowly evolve into an invasive lung adenocarcinoma
over the period of 10 years [252]. Due to the clinical interests
and technical challenge, many attempts have recently been
made to propose the segmentation solutions for this nodule
subtype [97, 146, 150, 156, 157, 166–168, 174, 177–179, 181].The
most common approach among them was the voxel-wise
probabilistic classification in order to handle the subtle and
irregular lesion appearances [97, 156, 157, 166, 167, 174, 181]. In
this approach, segmentation is performed by assigning each
voxel with a nodule/background label according to its prob-
abilistic decision rule derived from the training data. MAP
segmentation with a MRF prior [97, 156], LRT segmentation
in the joint spatio-intensity domain [157], classification by
the Bhattacharya distance with a nonparametric KDE-based
intensity likelihood [166, 167], 3-classML segmentation [174],
and classification by the Otsu thresholding [7] with class-
conditional probability map derived by an iterative LDA and
shape-prior mask [181] are examples of various classification
andmodelingmethods explored in the literature.Other inter-
esting approaches for GGO nodule segmentation include the
RAGF approach [151], asymmetric 3-phase LS segmentation
[168], robust region growing [178], and graph Laplacian-
based opacity map estimation [179].

Overall, the authors of the above-cited studies have
agreed that the juxtapleural and part-solid GGO nodules are
the most difficult types of nodules to segment accurately.
Developing type-specific and general nodule segmentation that
can handle these difficult cases remains an unresolved chal-
lenge.

4.4.2. Automation. In a CADx system, lung nodule seg-
mentation serves as a subcomponent of the overall system.
Beyond the obvious accuracy requirement, the usability of
the segmentationmethods plays a significant role in assessing

the effectiveness of the overall system. In this sense, to reduce
labor burden of users is one of the critical goals of the
segmentationmethods since an accurate but a labor-intensive
method that requires a large amount of precise manual
user interactions would be less preferred. In this application
context, previously proposed segmentationmethods are clas-
sified into two types: automatic and semiautomatic.

The automatic approach takes aCT image as an input then
simultaneously segments all nodules present in the image
without their locations specified by users [76, 154, 166, 167,
181]. Early methods with gray-scale MM filtering by Fetita
et al. [76] and with automatic locally adaptive thresholding
by Mullally et al. [154] have addressed this simultaneous seg-
mentation of all nodules in volume. More recently, the pro-
babilistic approach, targeting GGOnodule segmentation, has
been exploited to address a couple of automatic segmenta-
tion methods. Zhou et al. [166, 167] used the Bhattacharya
distance-based classification with a GGO intensity distribu-
tion modeled by the non-parametric KDE. Tao et al. [181]
employed a class-conditional probability map modeled by a
GMM over a subspace of various intensity features, such as
gray-level cooccurrence matrix (GLCM), local binary pattern
(LBP), and 3D Harr wavelet, derived by an iterative LDA.
In both methods, the automation is realized by deriving a
probabilistic model of general nodule appearance.

On the other hand, the semi-automatic approach assumes
that the location of target nodules is known. In this assump-
tion, a segmentation method takes a VOI as an input and
assumes that the VOI contains the entire extent of a single
nodule. Many segmentation algorithms fall into this category
since their iterative process requires initializations or seeds.
The amount of seeds required ranges from a single user click
with robust model fitting [151] and region growing [151, 175,
177, 178] to an entire 3D contour with deformable models
[137, 138, 160, 161, 163, 182]. Note that these semi-automatic
methods can also be automated by using them together with a
CADe nodule detection systemwhich automatically provides
seeds to one of these semi-automatic segmentations.

Error correction is another important usability aspect of
nodule segmentation systems. As described in the previous
section, there are methods for refining/correcting segmenta-
tion results for specific types of nodules that are difficult to
segment, exploiting the nature of the specific nodule types.
In order to improve their usability, such error correction
process can be automated with an automatic detection of
nodule types or of segmentation failures. Such nodule type-
specific automatic error correction has been presented for
juxtavascular [186] and juxtapleural cases [158].

Semi-automatic error correction is of interest in its
clinical context. Such an approach can provide users stricter
control on the details of segmentation outcomes in order
to better exploit the domain knowledge of expert observers
during its clinical workflow. Some segmentation algorithms
allow users to interactively constrain segmentation results
by specifying certain voxels to be a part of the results. For
example, the optimization process used in the DP algorithm
can take an arbitrary number of voxels as its hard constraints
such that they are fixed to be a part of the final lesion contour.
Xu et al. [145] exploited this pixel-wise hard constraint in their
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semi-automatic segmentation refinement by letting users
specify correct contour voxels with mouse clicks.

4.4.3. Robustness. The semi-automatic procedure used in
many segmentation methods involves user-determined seed
points to indicate a target nodule to be segmented as
described in the previous section. Different observers, or a
single observer studying the same scan more than once, may
produce different seed points, causing the intra- and inter-
observer variances with different segmentation results of the
same nodule. Reduction of such variance plays a key role
to realize repeatable and reproducible volumetry [301]. For
example, in percentage error of estimated volume, this inter-
observer variance can be as high as 20% [225]. A number
of robust approaches have been studied to design a reliable
and robust segmentation solution against such variabilities
[151, 153, 175, 177, 178, 184]. One of the common approaches in
this context is to robustly estimate nodule’s center/core from
a user-specified seed in order to reduce the intra- and inter-
observer variance of the semi-automatic methods. The result
of this process can be treated as the optimal seed that refines
the user-specified seed to be robust against the perturbations
due to user interactions. RAGF proposed byOkada et al. [151]
estimated a nodule center by majority-voting of convergence
of the mean shift procedures initialized by voxels randomly
sampled around the initial seed. Kuhnigk et al. [153] detected
the optimal seed as the convergence of an iterative local
maximum search of 3D distance map around the initial seed.
Dehmeshki et al. [175] chose the optimal seed as the voxel
of the highest intensity value among the maximum distance
voxels in a 3Ddistancemap. Finally, in Kubota et al. [177, 178],
the optimal seed was estimated by the voxels with maximum
centricity values computed over a 3D distance map.

Some common robust estimation techniques have also
been adopted to the nodule segmentation problem. A model
fitting process can bemade robust by ignoring outlier samples
and only considering inlier samples. This standard principle
has been applied in the RAGF method by fitting an aniso-
tropicGaussian only with samples within a basin of attraction
defined by theMS [151], and in the robust lung surfacemodel-
ing by fitting a polynomial surface to the lung wall only
with samples that lie on the pleural surface but not on the
nodule [184]. A perturbation-based stability analysis was
adopted in the RAGFmethod by Okada et al. [151] in order to
determine the most stable scale for a Gaussian scale-space by
minimizing the Jensen-Shannon divergence computed with
a set of the Gaussians estimated with perturbed scales.

As discussed in Section 4.4.1, variability among various
types of nodules poses a significant challenge for accurate
nodule segmentation. Some robust approaches to handle
these various nodule types have been proposed yielding
general-purpose segmentation methods. The RAGF method
[151] imposes the ellipsoidal constraints for handling juxta-
posed cases. A similar approach with LoG filtering, imposing
the spherical constraints of various sizes, has also been
applied for the detection and rough segmentation of nodules
[256, 257]. Recently, Kubota et al. [177, 178] have proposed

a robust region growing method that successfully handles all
types of nodules.

4.4.4. Validation. Validation refers to the experimental pro-
cedures that measure the accuracy of segmentation methods
to be evaluated. It is important not only for choosing the best
performing method for a particular application but also
deriving some critical clinical parameters, such as the min-
imum size of measurable lesions and the shortest time dura-
tion for repeat CT in follow-up studies [185, 225]. Designing
the effective validation procedure is a major challenge in the
lung nodule segmentation research. This is because manual
lesion contouring by observers used to prepare the ground-
truth (GT) segmentations is labor-intensive, making it diffi-
cult to create large GT datasets. Another reason is the intra-
and inter-observer variability for nodule segmentation, indi-
cating that even the manual GTs prepared by expert radiolo-
gists can vary significantly [301].

The most accurate gold standard for validation currently
available is chest phantom scans, where an artificial device
simulating nodules and other parenchymal structures of
known sizes is imaged by a standard CT scanner. Many stud-
ies have utilized various phantom scans for tuning parameters
and bench-marking their best possible performance in vivo
[140, 141, 146, 153, 154, 164, 176, 204, 302–304]. Recently, El-
Baz et al. [305–307] validated the growth rate volumetric
measurements on elastic lung synthetic phantoms. They
developed more realistic phantoms using a state-of-the-art
microfluidics technology to mimic the contractions and
expansions of the lung and nodules seen during normal
breathing.

Experimental validation of nodule segmentation meth-
ods with actual patient scans poses difficulty as described
above. One common approach is based on subjective judg-
ment of the segmentation results by visual inspection of
expert observers. In this approach, the observer(s) classifies
each case as success or failure, then the rate of successfully
segmentation is reported [73, 97, 150, 151, 153, 165, 175, 176,
182, 184, 186]. Some authors prepare and use GT datasets of
2D segmentation [142] and of 3D segmentation for a solid
nodule [154, 160, 172, 177] and for GGO nodules [156, 174,
177, 179, 181]. With such GTs, various segmentation methods
have been validated by a number of quantitative accuracy
and error measures, such as (1) overlap ratio (a fraction of
cardinality of the intersection and the union of voxel sets
for a lesion’s segmentation and its GT) [156, 162, 163, 169, 170,
177, 180, 181, 183], (2) percentage voxel error rate (percentage
of voxels missegmented with respect to the total number of
voxels in a nodule) [160, 163, 172, 180], and (3) percentage vol-
ume error rate (percentage of error in volume measurement
with respect to the GT’s volume) [154, 162, 176]. The mean,
standard deviation, and the root mean square statistics are
often reported for these accuracy/error measures computed
for a set of test cases.

Publicly available nodule CT datasets with GT segmen-
tations are an important way to facilitate better validation,
especially for cross-algorithm comparisons. In 2003, the
Early Lung Cancer Action Program (ELCAP) [249] made a
dataset of chest CT scans exhibiting lung nodules available to
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the public [308]. This dataset has only been used in a few
recent studies [174, 182]. It was the LIDC that made the most
significant efforts to make such nodule CT datasets with GTs
publicly available [219, 309]. Currently two datasets covering
many types of nodules with multiple GT segmentations for
each case are available through theirwebsite [310], which have
already been used by many studies since 2005 [162, 163, 169,
176, 177, 180, 183, 186]. More recently, Italung dataset from
a lung cancer screening program in Italy [311, 312] has been
used in the studies by Diciotti et al. [176, 186]. Despite the
increased availability of these public datasets, comprehensive
comparisons of various methods proposed previously have
not yet been thoroughly investigated. Kubota et al. [177] have
reported a comparison of five leadingmethodswith the LIDC
datasets in their recent report; however, more comprehensive
comparative studies are necessary for establishing the state-of-
the-art in this active research field.

5. Diagnosis of Lung Nodules

Once the lung nodules are detected and segmented from the
corresponding chest images, the next task is to determine
whether the detected nodules are malignant or benign. A
number of researchers developed CADx systems for this task,
which distinguish malignant nodules from benign nodules
automatically and/or determine the likelihood of malignancy
for the detected nodules based on the geometrical size, shape,
and appearance of the nodules. The performance of sys-
tems was generally evaluated by using the receiver-operating-
characteristic (ROC) analysis [313], because this task is a two-
class classification. The area under the ROC curve (𝐴𝐴𝑧𝑧) [314]
was often used as a performance index. Since the malignancy
of lung nodules correlates highly with their geometrical size,
shape, and appearance descriptors, we will review the diag-
nostic systems that are based on each of these descriptors.

5.1. Diagnosis of LungNodules Based onGrowth Rate. Growth
of small pulmonary nodules measured in 2D area [141] and
3D volume [140] has been shown to predict the malignancy
in early clinical studies [140, 141, 315–317] and monitoring
the tumor response to therapy [224]. A more recent clinical
lung cancer screening study [318] has demonstrated the effec-
tiveness of doubling time measured with commercial nodule
segmentation software in diagnosing adenocarcinoma and
bronchioloalveolar carcinoma. In oncology, there exists stan-
dard clinical protocols for measuring tumor size, such as
RECIST andWHO [224]. However, thesemeasures are based
on crude linear (sum of 2D maximal diameters) or bilinear
(product of 2D maximal diameter and the largest perpen-
dicular length) approximation of 2D nodule areas, developed
prior to the advent of theHRCT technologies. Approximation
errors of these 2D measures limit the minimum size of mea-
surable lesions (e.g., 10mm in RECIST) because of the well-
known volume averaging effect in which growth of smaller
nodules cannot be determined with accuracy by them [224].
Addressing this shortcoming, segmentation-based volumet-
ric measures have recently been reported in the clinical
literature and actively investigated as alternative to these

traditional 2Dmeasures formore accurate sizemeasurement.
Accurate volumetric measures as results enable lesion’s vol-
umetry: objective quantification of lesion’s growth in terms of
growth rate (i.e., differentiating nodule’s volume measured at
different time-points) and/or doubling time (i.e., time that it
takes to double the volume of a lesion) [185, 225].

The aforementionedRECIST andWHOmeasures involve
observer’s subjective judgment of 2D lesion boundary and
manual measurement of lesion’s diameters with a ruler or
electronic calipers by oncologists/radiologists [224]. Exercis-
ing the same approach to the volumetry would necessitate
manual contouring of lesion boundary by the trained obser-
vers, which significantly increases their labor burden. Fur-
thermore, the subjective nature of such manual measure-
ments inevitably causes significant intra- and interobserver
variance. In a study comparing various lesion size metrics
derived from manually segmented lesion boundaries [301],
all 1D, 2D, and 3D/volumetric metrics, included in this study,
resulted in high inter-observer variations, mitigating repro-
ducibility of themeasures. Reduction of such intra- and inter-
observer variance and observer’s burden are major motiva-
tions for adapting automaticmethods for lesion segmentation
in order to facilitate objectivity in the volumetry [165, 185].

A large volumeof the recent studies have addressed repro-
ducibility/repeatability of lung nodule volumetry by charac-
terizing its bias and variance with respect to a number of var-
iational factors relevant to current clinical practice and work-
flows. Factors considered in these studies include nodule
characteristics such as size [147, 204, 269, 303, 329, 330],
shape [269, 330], and appearance types of solidness [273];
pulmonary deformation due to cardiovascular motion [331]
and inspiration [269]; CT reconstruction parameters such as
slice thickness [164, 204, 304, 329, 330, 332], slice intervals
[164, 204, 304, 332], field of views [164, 204, 304, 332],
algorithm types [146, 164, 332], kernel types [273, 304], tube
current time [146, 164], and dosage settings [271]; CT scanner
vendors [303]; segmentation performance due to choices of
threshold parameters in a segmentation algorithm [204, 248],
segmentation algorithms [146, 248, 302, 333], segmentation
algorithms in the same segmentation software package [272],
segmentation software packages [274], and versions of a seg-
mentation software package [270]; intra- and interobserver
variations by using a commercial software package for semi-
automatic nodule segmentation and volumetry [165, 202,
269]; levels of observer’s experience and training [302].

Results of these studies have revealed considerable vari-
ability of the current volumetric measures when the above-
listed factors are altered during the volumetric measurement
process over time. These variations directly limit the shortest
time interval of CT follow-up studies to be some large values,
reducing its clinical usability [147]. Note that a fixed-value
bias in segmentation error is canceled out when measuring
volumetry so that even an inaccurate segmentation algorithm
can be a good choice for volumetry as long as it is repro-
ducible and robust [154]. Thus a robust segmentation algo-
rithm that produces more consistent results than the existing
accurate but less robust solutions can be a better choice in this
application context [151, 224].
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Technical Approaches. Volume measurement precision and
accuracy depend on a number of factors, including the inter-
scan variability, slice selection artifacts, differences in degree
of inspiration and scan angles, and performance of nodule
segmentation algorithms, which can make comparing serial
scans unreliable. Below, we provide an overview of the exist-
ing work on measuring the growth rate of the detected lung
nodules.

Generally, the growth rate of pulmonary nodules is deter-
mined by a size-based comparison of different temporal CT
scans. Earlier 2D techniques exploited changes in the maxi-
mal transverse diameter of the nodule to estimate the growth
rate between the CT scans [123, 141, 142, 231, 334]. Unfortu-
nately, these techniquesmet with problems; for example, pos-
sible asymmetric growth results not only in minimal changes
in themaximal diameter, but also in an increase of the overall
lesion volume [201]. Hence, alternative 3D approaches were
published for the measurement of the growth rate of small
nodules. These volumetric measurements [140, 146, 147, 172,
185, 200, 202–207, 225, 335–338] have overcome the former
2D limitations.

Yankelevitz et al. [140] used HRCT scans to assess the
growth rate of small pulmonary nodules.The ROI containing
the nodule was identified in each image manually by a radio-
logist. Then it was resampled to obtain an isotropic space
using a 3D linear interpolation, thresholded, and segmented
using a 3D technique to reconstruct the 3D image volume.
The number of voxels contained in the resulting volume was
counted, and the doubling times were estimated using a
simple exponential growthmodel.This 3Dmethod offered an
advantage over the 2D counterpart that measured the cross-
sectional area, but it did not take into account the global
motions of the patients due to their movements and the local
motions of the whole lung tissues due to breathing and heart
beating.

Reeves et al. [185] presented a method for measuring
the change in the nodule size from two CT images obtained
close in time where the ROI of each CT scan was selected by
hand and resampled to an isotropic space. To make an accu-
rate assessment and facilitate the comparison of the selected
regions, a registration process using the 3D rigid-body trans-
formation was performed such that both nodules would have
the same position and orientation in the image space. Fol-
lowing the registration stage, an adaptive thresholding tech-
nique for segmenting the nodule was applied. A rule-based
segmentation adjustment was applied to both nodule seg-
mentations. By comparing the nodule segmentations and the
thresholded regions, this rule-based system achieved a more
consistent measurement of the nodule volumes by discarding
missegmented nodule voxels. The main limitation of this
work is that only the global motion of the patient, but not
the local motion due to breathing and heart beating, was
taken into account.This strongly affects the estimated growth
rate, especially for small detected nodules (less than 5mm in
diameter).

Taking into account the difference in inspiration levels,
Zhao et al. [142] presented an adaptive doubling time (ADT)
measure of the growth rate of the detected lung nodules.
The ADT calculation was obtained through non-rigid lung

registration that took into account expanding or shrinking
the nodule. This was accomplished by weighting matching
costs of each voxel based on a proposed nodule detection
process and a segmentation refinement process. The main
limitation of this framework is that the nonrigid registration
is applied directly to the segmented nodules. This affects the
growth rate estimation because after segmentation of the lung
nodules, we can no longer discriminate between the changes
due to the true growth rate of the lung nodules and the
changes in their shapes that come from breathing and heart
beating.

Kawata et al. [336] coregistered the pulmonary nodules
by using rigid-body registration and affine registration at
two different stages. The nodules were segmented using a
3D deformable surface model, and curvature features were
calculated to track the temporal evolution of the nodule.
The same research group presented an extension of [336] by
adding a 3D non-rigid deformable registration stage, and the
analysis was performed using a displacement field to quantify
areas of the nodule growth over time [337]. Zheng et al. [172]
proposed a simultaneous segmentation and registration of
the lung tomeasure the growth rate from serial CT data.They
used a non-rigid transformation for lung deformation and
rigid structure for the tumor in order to preserve the volume
and the shape of the tumor during the registration. Segmen-
tation of the 3D lung and tumor was based on a 2D graph-
cut algorithm, and a B-spline-based non-rigid registration
was used. Both of these works have the same limitation as the
above-mentioned work of Zhao et al. [142].

Jirapatnakul et al. [206] presented a nodule growth mea-
surementmethod, called growth analysis fromdensity (GAD).
They applied a Gaussian weighting function to the region
around the nodule to reduce the influence of structures lying
far from the nodule center. Also, some researchers used a
number of commercial packages that have been released by
the CT vendors for measuring the volume of pulmonary
nodules, and a number of studies have evaluated the accu-
racy and limitations of these software packages. Since the
actual volumes of real pulmonary nodules are unknown,
such evaluations usually involve either radiologists/experts
as the “gold standard” [200, 202, 203, 205, 207] or synthetic
phantoms for which the volumes of the nodules are known
[146, 204, 305–307, 338]. A general limitation of the majority
of the volumetric measurement algorithms is that they are
only capable of segmenting solid nodules. Moreover, the
results from these packages show that the volumetric error
depends on the performance of the segmentation algorithms,
particularly in the presence of the nodule’s vascular and
pleural attachments [225].

Recently, El-Baz et al. [208, 339–345] proposed a method
for monitoring the development of lung nodules detected in
successive chest LDCT scans of a patient. To accuratelymoni-
tor the volumetric changes between the corresponding nod-
ules, a two-step registration approachwas applied [346]. First,
a global alignment of successive LDCT scans was performed
using the learned LDCT prior appearance model in order
to maximize the overlap between the scans. Second, a local
registration step was performed to handle the local motion
caused by breathing and heart beating. This step is based on
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deforming the target object over evolved closed equispaced
surfaces to match a prototype. Preliminary results on the 135
LDCT datasets from 27 patients showed that their two-step
registration methodology could lead to accurate growth rate
measurements and thus more precise diagnosis of the lung
nodules.

Table 8 briefly overviews the different growth rate tech-
niques. In summary, several aspects of growth rate techniques
should have further investigations. One of these aspects is to
consider the global motion of the patients due to their move-
ments and the local motions of the whole lung tissues due to
breathing and heart beating in the volumetric measurements
of growth rate. Another aspect is that the application of global
and local registration directly to the segmented nodule leads
to the inability to discriminate between the changes due to the
true growth of the lung nodules and the changes in the nodule
shape which come from breathing and heart beating. Finally,
special types of lung nodules such as cavities and ground-
glass nodules cannot be diagnosed using the current growth-
rate techniques, so further methods and nodule descriptors
are needed.

5.2. Diagnosis of Lung Nodules Based on Shape and Appear-
ance. A great deal of work has been published regarding the
usefulness of morphologic features to distinguish between
malignant and benign pulmonary nodules on CT and, to a
lesser extent, chest radiographs. Several studies have shown
a correlation between different nodule shape characteristics
and their underlying pathology. For example, Furuya et al.
[347] analyzed the margin characteristics of 193 pulmonary
nodules on HRCT scans and subjectively classified them as
one of several types, including round, lobulated, densely
spiculated, ragged, and halo.They found a high level ofmalig-
nancy among the lobulated (82%), spiculated (97%), ragged
(93%), and halo (100%) nodules, while 66% of the round
nodules proved to be benign.

Automatically extracted features have also been shown
to correlate with underlying malignancy. Kawata et al. [137,
227] quantified the surface curvature and the degree of sur-
rounding radiating patterns in biopsy-proven benign and
malignant nodules when compared with the resulting feature
maps. Their results showed good separation of the feature
maps between the two categories. Their further work [348]
extended the curvature analysis method to include internal
nodule features, and using this method, which is described
in more detail below, they attained similar results. The same
research group [233] designed an automated retrieval system
to obtain diagnosis and prognosis information by searching
similar images in a 3D CT image database of pulmonary
nodules (248 nodule, 179malignant and 69 benign) for which
the diagnosis is known. An ROI is selected to include the
nodule region and its surrounding. Each voxel in the ROI is
represented using its CT density and a curvature shape index.
The CT density and the shape index are characterized using
joint histograms for analysis. For each input nodule, a sim-
ilarity measure between the input nodule and the database
is estimated using the correlation coefficient of the joint his-
tograms of the nodules.The results for querying the 3D data-
base for similar nodules show a reasonable set of similar

nodules sorted from highest to lowest similarity with the
queried nodule. Similarly, fractal analysis has been used to
quantify the nodule margin characteristics of benign and
malignant nodules. Kido et al. [349] used 2D and 3D fractal
dimensions to analyze the lung-nodule interface in a series
of 117 peripheral pulmonary nodules with various underlying
pathology, including benign hamartomas, tuberculomas, and
pneumonias, as well as malignant diagnoses including bron-
chogenic carcinomas. They noted statistically significant dif-
ferences between the 2D fractal dimensions of hamartomas
and all other nodules, as well as differences between the 3D
fractal dimensions of pneumonias and tuberculomas and
bronchogenic carcinomas. Although none of these studies
directly assessed the accuracy of their methods for diagnosis
prediction, they supported the notion that the nodule shape
can potentially be used by automated systems to distinguish
between benign and malignant nodules.

Several groups have designed CAD systems with the goal
of predicting a diagnosis based on features extracted fromCT
scans or chest radiographs. In general, these systems share
the following common schema: first extracting features from
the images, then designing and using an automatic classifier
to categorize nodules based on these features, and lastly,
evaluating the performance of the system with ROC analysis.
The CAD systems differ in the specific extracted features and
the type of classifier used, with linear discriminant classifiers
(LDC) and neural networks (NNs) being the most common.
Below, systems based on LDC classifiers will be discussed
followed by systems based on NNs and other types of classi-
fiers.

Kawata and colleagues [232] designed a CT-based CAD
system that classified pulmonary nodules based on a com-
bination of the curvature index and the relationship of the
nodules to their surrounding features. The curvature index
of a nodule is calculated from a combination of shape indices,
which describe the surface type (i.e., ridge, saddle, pit, etc.),
and curvedness, which describes the degree of curvature.The
area surrounding the nodules was assessed for the degree
of vascular convergence and pleural retraction using vector
field analysis. Using an LDC classifier based on these features
to evaluate a series of 248 nodules (179 malignant and 69
benign), they found the combination of curvature-based and
surrounding features to be most accurate (area under ROC
curve (𝐴𝐴𝑧𝑧 = 0.94)), followed by curvature-based alone (𝐴𝐴𝑧𝑧 =
0.88), and surrounding characteristics alone (𝐴𝐴𝑧𝑧 = 0.69).
Mori et al. [241] also designed a CAD system using curved-
ness index in combination with dynamic contrast-enhanced
CT in order to evaluate the temporal change as a possible dis-
criminating feature of benign and malignant nodules. Shape
index, curvedness values, and attenuation were calculated at
0, 2, and 4 minutes after contrast administration, and using
these values, a score was generated by an LDC. Attenuation
had an𝐴𝐴𝑧𝑧 value of 0.69 at 2minutes after contrast, the highest
of the three time points. Curvedness yielded a maximum 𝐴𝐴𝑧𝑧
of 0.83 at 2 minutes, and the shape index had an 𝐴𝐴𝑧𝑧 value of
0.90 at 0 and 2 minutes.The combination of all three features
had an 𝐴𝐴𝑧𝑧 value of 1.00 at 4 minutes.

The CAD system developed by McNitt-Gray et al.
[231] used a pattern classification approach to determine
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the malignancy of pulmonary nodules on HRCT in a series
of 31 cases (17 malignant, 14 benign). They identified solitary
nodules using a semi-automated contouring technique and
extracted quantitative measures of the resulting contour
related to shape, size, attenuation, distribution of attenuation
and texture. Using a stepwise discriminant analysis, they
selected features that were best able to predict malignancy
and used these to design a LDC to characterize the nodules.
The selected features predicted malignancy with an accuracy
of 90.3% (28/31); however, no 𝐴𝐴𝑧𝑧 value was reported.

Shah et al. [350] designed a CAD system that extracted
features from two separate contours, one including only the
solid portion of the nodule and one including any ground-
glass components. For each contour, 75 features were cal-
culated to measure nodule attenuation, shape, and texture.
These features were then inputed into a feature selection step,
and four different classifiers were used to determine if the
diagnosis could be predicted from the feature vector. Training
and testing was conducted using both resubstitution and
leave-one-out methods. With leave-one-out testing method-
ology with a database composed of 19 malignant and 16
benign nodules, the classifiers resulted with an 𝐴𝐴𝑧𝑧 ranging
from 0.68 to 0.92. When evaluating with resubstitution, the
𝐴𝐴𝑧𝑧 ranged from 0.93 to 1.00. The same research group [239]
employed different classifiers such as logistic regression and
QDAwith features selected from 31 features by using stepwise
feature selection based on the Akaike information criterion.
Their system with logistic regression achieved an 𝐴𝐴𝑧𝑧 value
of 0.92 in distinction between 19 malignant and 16 benign
nodules in thin-slice CE-CT.

Other LDC-based CAD systems include those developed
by Way and colleagues [163]. They designed a system based
on the morphological and texture features of pulmonary
nodules on CT images, using a series of 96 lung nodules, with
44 biopsy-or-PET-scan-proven malignant nodules and 52
nodules that proved to be benign on biopsy or follow-up CT.
The nodules were segmented using 3D active contours that
were guided by a combination of 2D and 3D energies. Next,
they extracted several morphological and texture-based fea-
tures from the segmented nodules. The morphological fea-
tures include volume, surface area, perimeter, maximum dia-
meter, andmaximumandminimumCTvalue inside the nod-
ule. Using a stepwise method, they selected the most predi-
ctive features for use in the LDC. The classifier was trained
and tested using a leave-one-out method, and the system
achieved an 𝐴𝐴𝑧𝑧 of 0.83. More recently, the same group [243]
designed a systemusing themorphological features described
above in combination with new measurements of the sur-
face characteristics that quantified the smoothness and
shape irregularity of the nodules. They calculated the ROC
statistics for LDCs designedwith andwithout the new surface
feature, and found a significant (𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃) improvement in
performance with the 𝐴𝐴𝑧𝑧 increasing from 0.821 to 0.857 in
the classification of 124 malignant and 132 benign nodules in
152 patients. Aoyama et al. [236] used LDC for the distin-
ction between malignant and benign nodules in thick-slice
screening LDCT. They achieved an 𝐴𝐴𝑧𝑧 value of 0.846 for
a database of 73 patients with 76 primary cancers and 342
patients with 413 benign nodules.

One of the early neural network-based CAD systems was
developed by Gurney and Swensen [351]. They compared
two systems, one using a neural network-based classifier and
one using a Bayesian classifier. Both systems used a combina-
tion of subjectively evaluated clinical and radiologic charac-
teristics including border smoothness, spiculation, and lobu-
lation.The Bayesian system showed a significantly (𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃)
higher level of performance (𝐴𝐴𝑧𝑧 = 𝑃𝑃894) than the neural
network-based system (𝐴𝐴𝑧𝑧 = 𝑃𝑃871). Another neural net-
work-based system using subjectively extracted features was
developed by Matsuki et al. [234]. The radiological features
included shape-based parameters such as border definition,
spiculation, and concavity as well as other associated features
such as blood vessel involvement, lymphadenopathy, and
emphysematous changes. From a series of 155 nodules found
on HRCT (99 malignant, 56 benign), features were extracted
by attending radiologists using subjective rating scales and
used to train the neural network. The neural network
alone showed a high level of performance (𝐴𝐴𝑧𝑧 = 𝑃𝑃9𝑃1)
and significantly increased the radiologists’ performance,
increasing the 𝐴𝐴𝑧𝑧 value from 0.831 to 0.959.

Other CAD systems have been designed to automatically
define and extract features as well as classify nodules. For
example, Henschke et al. [230] adapted the S-MODALS
neural network, originally designed for tactical and strategic
reconnaissance, to the task of nodule classification. Features
were automatically selected from the example image using
a NNs’ clustering technique with operator-defined selection
parameters including spatial separation of features and the
degrees of similarity and dissimilarity that grouped features
into clusters. The system was tested on a series of 28 biopsy-
provennodules (14malignant, 14 benign), and all but 3 benign
nodules were correctly classified. Another neural network
system based on using automatically extracted features was
designed by Lo et al. [235] and used a combination of radio-
graphical parameters including vascularity, CT density distri-
bution, and shape indices including aspect ratio, circularity,
irregularity, extent, compactness, and convexity. Nodules
were segmented using an automatic thresholding method,
and the resulting 3D volumes were automatically smoothed
and pruned of vasculature.The vascular index was calculated
during this smoothing process, and shape indices were cal-
culated from the resulting volume. Using a leave-one-out
method, they trained the neural network on a series of 48
nodules (24 malignant, 24 benign). The results yielded an 𝐴𝐴𝑧𝑧
value of 0.89, and they found that themost predictive features
were the vascular index, size, compactness, and difference
entropy of the CT density.

Suzuki et al. [117] developed a multiple MTANN scheme
for the classification task based on training the MTANN
classifier with a set of benign and malignant nodules. They
achieved an 𝐴𝐴𝑧𝑧 value of 0.88 for thick-slice screening LDCT
scans of 73 patients with 76 primary cancers and 342 patients
with 413 benign nodules. Chen et al. [244] employed ANN
ensemble to classify 19 malignant and 13 benign nodules, and
they achieved an 𝐴𝐴𝑧𝑧 value of 0.915. Nakamura et al. [237]
compared the performance of two separate networks, one
trained on 8 subjective features rated by radiologists
(i.e., nodule size, shape (round-to-elongated), marginal
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irregularity, spiculation, border definition, lobulation, and
nodule density (contrast)) and the other trained on 12
matched features automatically extracted from chest radio-
graphs (i.e., effective diameter, degree of circularity, degree
of ellipticity, magnitude and coarseness of irregular edge
patterns, mean gradient, radial gradient index, tangential
gradient index,mean pixel, and and line enhancement index).
Both sets employed shape-based features including margin
irregularity, spiculation, lobulation, and nodule shape as
well measures of homogeneity and CT density. The network
based on objective features demonstrated the highest level of
performance (𝐴𝐴𝑧𝑧 = 0.854) andwas followed by the subjective
feature network (𝐴𝐴𝑧𝑧 = 0.761) and then the radiologists (𝐴𝐴𝑧𝑧 =
0.752).

Iwano et al. [238] developed a system to automatically
classify pulmonary nodules detected on HRCT into different
shape categories and compared the performance to radiol-
ogists. The nodules were extracted from a series of 102 CT
images without a prior diagnosis of malignancy and were
classified into different shape categories based on quantitative
measures of aspect ratio, circularity, and their second central
moment. The results were compared to a subjective classi-
fication by radiologists, and they found that the automated
system classified the nodules as accurately as the radiologists.
Although no direct attempt at automatic diagnosis was car-
ried out, they concluded that the system had the potential to
aid radiologists in classifying nodules as malignant or benign
based on the correlation between certain shape categories
and the underlying pathology.The same research group [242]
extended their work on 107 HRCT images and achieved a
sensitivity of 76.9% and a specificity of 80% with their system
based on LDA with two features (circularity and second
moment) in the classification of a total of 52 malignant and
55 benign nodules.

Matsuoka et al. [240] analyzed the differences in nodule
appearance onHRCT images from emphysematous and non-
emphysematous patients based on subjective and quantitative
measures of nodule appearance. Using a series of 41 emphy-
sematous patients (21 malignant nodules, 20 benign nodules)
and 40 non-emphysematous patients (20 malignant nodules,
20 benign nodules), two radiologists, who were blinded to
the diagnosis, independently evaluated the appearance of the
nodules and classified nodules as being either malignant or
benign. The fractal dimensions of the nodule interfaces and
circularity of the nodule shape were calculated and the per-
centage of the nodule surrounded by emphysema was
obtained. In patients with emphysema, there were no signifi-
cant differences in fractal dimension, circularity, spiculation,
or frequency of lobulation between malignant and benign
nodules. Of all the nodules found in patients with emphy-
sema, 63% were correctly diagnosed. Thirteen benign nod-
ules (65%) were misdiagnosed as malignant in patients with
emphysema. Of the nodules in non-emphysematous lungs,
93% were correctly diagnosed. The mean percentage of the
emphysematous tissue around the nodulewas greater formis-
diagnosed nodules than for correctly diagnosed nodules (𝑃𝑃 𝑃
0.003), indicating that its presence complicates the diagnosis
of pulmonary nodules. Lee et al. [245] developed a two-step
supervised learning scheme based on a set of image-based

gray-level, texture, and shape features combining a genetic
algorithm with a random subspace method. They achieved
an 𝐴𝐴𝑧𝑧 value of 0.889 in classification between 62 malignant
and 63 benign nodules.

Recently, El-Baz et al. [352, 353] proposed a 2D approach
for early assessment of malignant lung nodules based on
analyzing the spatial distribution of the Hounsfield values
for the detected lung nodules. Spatial distribution of the
Hounsfield values comprising the malignant nodule appear-
ance was modeled with a 2D rotationally invariant second-
order MGRF. To account for the whole 3D appearance of the
lung nodules, they extended their approach in 3D to work
on 3D lung nodule data [246, 354]. More recently, El-Baz
et al. [247, 355–358] proposed an alternative, advanced
method for diagnosing malignant lung nodules by their
shapes. In this method, the 3D surfaces of the detected lung
nodules are approximated by spherical harmonic analysis,
which represented a 3D surface of the lung nodule supported
by the unit sphere with a linear combination of special basis
functions, called spherical harmonics (SHs). The lung nodule
shape complexity was described with a new shape index, the
estimated number of the SHs, which was used to distinguish
between malignant and benign lung nodules.

Thus, various approaches have been proposed in CADx
systems. Database size varied in different studies; CT scans in
the databases included screening LDCT, standard diagnostic
CT, andHRCT. Studies on the development of CADx systems
for the distinction between malignant and benign lung nod-
ules in CT based on shape and appearance features are sum-
marized in Table 9. In summary, the existing approaches
that classify the lung nodules based on the extracting 2D
features (e.g., round, lobulated, ragged, and halo) cannot con-
sider the whole variability of lung nodules. Assessing the lung
nodules using 3D metrics can enhance the classification
accuracy. However, there is a need for developing qualitative
measures that have the ability to describe the whole shape
and appearance of the detected nodules. Another issue is that
the existing set of shape and appearance features (e.g., curva-
ture roundness) depend on the accuracy of the nodule seg-
mentation algorithm. This makes a classification method,
based on these features, difficult for clinical practitioners
to use. Other investigators integrated the information from
images captured using different types of image modalities
(e.g., CT and PET) and investigated the impact of fusing the
information obtained from these images on the accuracy of
diagnosis. In the next section, we overview the related work
done in this field.

5.3. PET/CT Nodule Diagnosis. Since the combination of
PET and CT information has shown an improvement in the
delineation of lung nodule contours and the estimation of
their volumes (see Section 4.3), PET/CT fusion has been
widely considered in lung cancer applications such as the
tumor staging and the pulmonary nodule diagnostics. In PET
images, the malignant cells have unregulated metabolism
that results in having higher FDG uptake that permits
malignancy to be detected. Reported studies [319–324, 359,
360] used this characteristic to detect malignant solitary
pulmonary nodules (SPNs) in PET. SPNs are single, spherical,
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Table 9: Classification between malignant (M) and benign (B) nodules based on shape and appearance features.

Study Purpose Method Database Observations

Kawata et al. [227]
To characterize
morphology of small
pulmonary nodules

Using surface curvatures
and a ridge line

Thin-section CT images for
56 cases including 42M
and 14 B nodules

The distribution of the
nodule characteristics in
the feature space shows
good evidence of separation
between the two classes

Henschke et al.
[230]

To explore the usefulness of
neural networks (NNs) to
help in this differentiation

Statistical-multiple-object
detection and location
system (S-MODALS) NNs
technique developed for
automatic target recognition
(ATR)

CT images of 28 pulmonary
nodules, 14 B and 14M,
each having a diameter less
than 3 cm were selected

Correctly identify all but
three B nodules, but did not
misclassify anyM nodule

Kawata et al. [137]
To characterize the internal
structure of small
pulmonary nodules

Using multiscale
curvature-based shape
spectrum

Thin-section CT images of
27 pulmonary nodules
(9 solid B and 18 solid and
infiltrativeM cases)

The distribution of the
nodule characteristics in
the feature space shows
good evidence of separation
between the two classes

McNitt-Gray et al.
[231]

To classify nodules into
benign or malignant

LDA with stepwise feature
selection based on nodule’s
shape, size, attenuation,
distribution of attenuation,
and texture

HRCT scans of 17M and 14
B nodules

Correct classification rate
of 90.3%

Kawata et al. [232] To discriminate between B
andM nodules

LDA with stepwise feature
selection based on nodule’s
features (density and
curvatures) and
surrounding structure
features

CT images of 248
pulmonary nodules
including 179M and 69 B
nodules

Nodule’s features (𝐴𝐴𝑧𝑧 =
0.88) were more effective
than the surrounding
structure features (𝐴𝐴𝑧𝑧 =
0.69) in classification.
Combing both features
achieves 𝐴𝐴𝑧𝑧 = 0.94

Kawata et al. [233]

To obtain nodule diagnosis
information by image
retrieval from a database of
known diagnosis

Retrieving the nodules with
similar characteristics from
a 3D image database based
on its CT density and
curvature index

CT images of 248
pulmonary nodules
including 179M and 69 B
nodules

The resulted visual figures
are sorted from more
similar to less similar with
M case and show a high
similarity with the test
nodule

Matsuki et al. [234] To classify nodules into
benign or malignant

ANN with 16 subjective
features determined by
radiologists and 7 clinical
data

155 HRCT scans of 99M
and 56 B nodules

𝐴𝐴𝑧𝑧 = 0.951 in a
leave-one-out test

Lo et al. [235] To quantify lung nodules in
thoracic CT

A NNs based on
geometrical features,
intensity, and texture
features

CT images of 48 cases of
lung nodules (24 B, 24M) 𝐴𝐴𝑧𝑧 = 0.89

Aoyama et al. [236] To classify nodules into
benign or malignant

LDA with Wilks’ lambda
stepwise feature selection

Thick-slice (10mm)
screening LDCT scans of
76M and 413 B nodules

𝐴𝐴𝑧𝑧 = 0.846 in a
leave-one-out test

Nakamura al. [237] To classify nodules into
benign or malignant

Two NNs: one trained with
8 subjective features
recorded by radiologist
rating and the other with 12
matched computerized
objective features

56 radiographs of 34M and
22 B nodules

𝐴𝐴𝑧𝑧 = 0.854 using subjective
features and 𝐴𝐴𝑧𝑧 = 0.761
using objective features.
The reported radiologist
accuracy was 𝐴𝐴𝑧𝑧 = 0.752
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Table 9: Continued.

Study Purpose Method Database Observations

Iwano et al. [238]
To classify the shape of
pulmonary nodules using
computer analysis of HRCT

LDA with 2 features
(circularity and second
moment)

HRCT images from 102
patients with 102 nodules
classified as round or oval,
lobulated, polygonal,
tentacular, speculated,
ragged, and irregular

For 95 of 102 cases, the
shape classification by the
two radiologists was the
same. For the seven
mismatched cases,
pulmonary nodules with
circularity ≤0.75 and
second moment ≤0.18 were
very likely to reveal lung
cancer

Shah et al. [239] To classify nodules into
benign or malignant

Logistic regression or QDA
with stepwise feature
selection from 31 features

Thin-slice (≤3mm) CE-CT
scans of 19M and 16 B
nodules

𝐴𝐴𝑧𝑧 = 0.69 and 0.92 with
logistic regression and
QDA, respectively, in a
leave-one-out test

Matsuoka et al.
[240]

To analyze features of
peripheral noncalcified
solitary pulmonary nodules
in patients with
emphysema

Analyze the fractal
dimensions of the nodule
interfaces, nodule
circularity, and the
percentage of the nodule
surrounded by emphysema

CT images of 41 nodules (21
M, 20 B) in 41 patients with
emphysema

In patients with
emphysema, there were no
significant differences in
fractal dimension,
circularity, or frequency of
lobulation or spiculation
betweenM and B nodules

Mori et al. [241] To classify nodules into
benign or malignant

LDA using 3 features: shape
index, curvedness values,
and attenuation

Thin-slice (2mm) CE-CT
scans of 35M and 27 B
nodules

𝐴𝐴𝑧𝑧 = 0.91 and 1.0 with
non-CE CT and CE-CT,
respectively, in a
leave-one-out test

Suzuki et al. [117] To classify nodules into
Benign or Malignant

Multiple MTANNs using
pixel values in a 9 × 9
subregion

Thick-slice (10mm)
screening LDCT scans of
76M and 413 B nodules

𝐴𝐴𝑧𝑧 = 0.88 in a
leave-one-out test

Iwano et al. [242] To classify nodules into
benign or malignant

LDA based on nodule’s
circularity and second
moment features

HRCT (0.5–1mm slice)
scans of 52M and 55 B
nodules

Sensitivity of 76.9% and a
specificity of 80%

Way et al. [243] To classify nodules into
benign or malignant

LDA or SVM with stepwise
feature selection

CT scans of 124M and
132 B nodules in 152
patients

𝐴𝐴𝑧𝑧 = 0.857 in a
leave-one-out test

Chen et al. [244] To classify nodules into
benign or malignant ANN ensemble

CT scans (slice thickness of
2.5 or 5mm) of 19M and 13
B nodules

𝐴𝐴𝑧𝑧 = 0.915 in a
leave-one-out test

Lee et al. [245] To classify nodules into
benign or malignant

GA-based feature selection
and a random subspace
method

Thick-slice (5mm) CT
scans of 62M and 63 B
nodules

𝐴𝐴𝑧𝑧 = 0.889 in a
leave-one-out test

El-Baz et al. [246] To classify nodules into
benign or malignant

Analysis of the spatial
distribution of the nodule
Hounsfield values

CT scans (2mm slice) of
51M and 58 B nodules

Sensitivity of 92.3% and a
specificity of 96.6%

El-Baz et al. [247] To classify nodules into
benign or malignant

Analysis of the SHs needed
to delineate the lung nodule

CT scans (2mm slice) of
153Mand 174 B nodules 𝐴𝐴𝑧𝑧 = 0.9782
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well-circumscribed, radiographic opacity that measures
≤3 cm in diameter. Provided a visually validated diagnostics
of the SPNs in PET images, these studies [319–324, 359, 360]
have reported an SPN diagnostic accuracy with a sensitivity
of 88–96% and a specificity of 70–90% formalignant cells (see
Table 10 for more detail).

Using PET alone without incorporation of CT was
reported to provide imprecise information on the exact loca-
tion of focal abnormalities [361] and can result in false-
negative (FN) errors for lesions with low 18F-FDG uptake
value [321, 362, 363] and FP errors in patients with active
tuberculosis, histoplasmosis, and rheumatoid nodules.
Annema [364] reported the FP findings of PET to be up
to 39%, despite the high negative predictive value of PET,
suggesting that the PET-positive mediastinal lymph nodes
(MLN) were further biopsied in order to confirm or rule out
metastasis.

To investigate the integration of PET and CT information
on the accuracy of the malignancy detection, Nie et al. [327]
developed an ANN approach based on CT alone, PET
alone, and both CT and PET for distinguishing benign and
malignant pulmonary nodules. Their results show that the
accuracy of PET/CT (𝐴𝐴𝑧𝑧 = 0.95) is higher than that of the CT
(𝐴𝐴𝑧𝑧 = 0.83) and the PET (𝐴𝐴𝑧𝑧 = 0.91). Nakamoto et al. [328]
compared the diagnosis accuracy of CT, side-by-side PET/
CT, and software-fused PET/CT. They documented that the
software fusion of PET/CT resulted in the highest accuracy
on patients with lung cancer. Keidar et al. [325] compared the
diagnosis performance of PET/CT and PET alone. Using PET
alone resulted in a higher FP error rate. A higher specificity
was achieved using PET/CT suggesting that the anatomical
information on CT is an independent crucial variable in
determiningmalignancy. Yi et al. [326] investigated the sensi-
tivity, specificity, and accuracy for predicting malignant nod-
ules on helical dynamic CT and PET/CT. They documented
that all malignant nodules were interpreted correctly using
dynamic helical CT or PET/CT. Lardinois et al. [361] investi-
gated tumor staging using PET/CT versus PET or CT alone.
Their results showed that the PET/CT fusion is a trustworthy
means of nodule diagnosis that has improved the accuracy of
the tumor staging.

Table 11 summarizes the evaluation results of nodule
malignancy in fused PET/CT systems. The experiments
involved in these studies [325–328, 361] have shown that using
PET/CT achieved a higher diagnostic power than CT or PET
alone, suggesting that the PET/CT fusion may present an
advancement in lung cancer applications.

6. Discussion and Conclusions

Designing efficient CAD systems for lung cancer is very
important since early diagnosis can improve the effectiveness
of treatment and increase the patient’s survival rate. In this
paper, an overview of more than 360 articles that appeared in
the field are presented to address the challenges and method-
ologies of the current CAD systems for lung cancer. This
paper addresses the current approaches and their strengths
and limitations, which were developed for each stage of lung

Table 10: Evaluation of nodule malignancy in PET.

Study Database Accu./PPV Sensitivity Specificity
Dewan et al. [319] 30 PPV = 90% 95% 80%
Gupta et al. [320] 61 PPV = 92% 93% 88%
Lowe et al. [321] 89 Accu. = 91% 92% 90%
Lee et al. [322] 71 PPV = 86% 95% 82%
Herder et al. [323] 36 PPV = 72% 93% 77%
Halley et al. [324] 28 NA 94% 89%
∗
Accu denotes accuracy and PPV denotes positive productive value.

Table 11: Evaluation of nodule malignancy in fused PET/CT.

Study Database Accu./PPV Sensitivity Specificity
Keidar et al. [325] 42 PPV = 89% 96% 82%
Yi et al. [326] 119 Accu. = 93% 96% 88%
Nie et al. [327] 92 Accu. = 95% NA NA
Nakamoto et al.
[328] 53 Accu. = 87% 94% 75%
∗
Accu. denotes accuracy and PPV denotes positive productive value.

cancerCADsystems, that is, for lung segmentation, lungnod-
ule detection and segmentation, and lung nodule diagnosis.
In the final section, we summarize this work by outlining
the research challenges that face each stage in lung cancer
CAD systems. In addition, the suggested trends to solve these
challenges are presented.

6.1. Research Challenges. Several challenges and aspects have
been facing CAD systems for lung cancer. These challenges
can be summarized as follows.

(i) To efficiently reduce the search space for lung nod-
ules, accurate segmentation of the lung fields should
be provided. The segmentation of lungs is challeng-
ing due to inhomogeneities in the lung region and
pulmonary structures and of similar densities such
as arteries, veins, bronchi, and bronchioles. Technical
issues of the lung segmentation techniques should
be further investigated.These technical issues include
the automation level of the technique, the sensitivity
of the method to the scanning parameters, the effi-
ciency of an algorithm to work with different image
modalities (e.g., CT, LDCT, or CE-CT), and the ability
of the algorithm to provide a proper lung segmen-
tation in cases with severe pathologies that are associ-
ated with inhomogeneities in the pathological lungs.

(ii) Designing an efficient CADe system for detecting
lung nodules is still challenging. Important factors
should be investigated including the automation level,
the speed, the ability to detect nodules of different
shapes, for example, irregularly shape nodules not
only the spherical ones, and the ability of the CADe
system to detect cavity nodules, nodules attached to
the lung borders, and small nodules (e.g., less than
3mm).
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(iii) Several challenges and aspects have been facing lung
nodule segmentation techniques, such as the ability
of a technique to segment the challenging types of
nodules, and the automation level of the technique
and its robustness.

(iv) Volumetric measurements of growth rate should take
into account the global motion of the patients due to
their movements and the local motions of the whole
lung tissues due to breathing and heart beating. The
application of global and local registration directly
to the segmented nodule leads to the inability to
discriminate between the changes due to the true
growth of the lung nodules and the changes in the
nodule shape which come from breathing and heart
beating. These challenging factors should be further
investigated.

(v) Special types of lung nodules such as cavities and
ground glass nodules can not be diagnosed using the
current growth rate techniques, so further methods
and nodule descriptors are needed for diagnosing
these nodules.

(vi) The existing set of shape and appearance features (e.g.,
curvature, and roundness) depend on the accuracy
of the nodule segmentation algorithm. This makes
a classification method, based on these features,
difficult for clinical practitioners to use. So, there is
a need for developing qualitative measures that have
the ability to describe thewhole shape and appearance
of the detected nodules.

(vii) Larger databases for efficient validation of the pro-
posed approaches should be provided.

6.2. Trends. To address the aforementioned challenges,
recent trends for lung cancerCADsystems involve the follow-
ing aspects.

(i) For accurate volumetric growth rate measurements,
a recent trend applies global and local registration to
the lung fields instead of the segmented nodule in
order to discriminate between the changes due to the
true growth of the lung nodules and the changes in the
nodule shape which come from breathing and heart
beat [208, 339–346].

(ii) More powerful, sophisticated shape and appearance
features for lung nodule detection and diagnosis need
further investigations. A recent trend models the
spatial distribution of the Hounsfield values of the
detected lung nodules with theMarkov Gibbs random
field (MGRF) models in order to accurately describe
the nodule appearance [246, 352–354]. Another trend
describes the lung nodule’s shape by representing its
3D surface with a linear combination of spherical
harmonics (SH) [247, 355–358].The recent works sug-
gested employing different types of appearance and
shape features to achieve better detection and diag-
nosis of lung nodules.

(iii) Investigations of using the microfluidics technology
to mimic the contractions and expansions of the lung
and nodules during normal breathing have recently
been explored to provide more realistic phantoms in
order to validate the volumetric growth rate measure-
ments [305–307].

(iv) Investigators integrated the information from images
captured using different types of image modalities
(e.g., CT and PET) and investigated the impact of
fusing the information obtained from these images on
the accuracy of diagnosis. The experiments involved
in this survey showed that using PET/CT achieved
a higher diagnostic power than CT or PET alone,
suggesting that the PET/CT fusion may present an
advancement in lung cancer applications. Still, impor-
tant points need further investigations, such as the
poor resolution of PET, the exact definition of tumor
edges, and the misregistration between PET and CT
images.

The clinical importance of the diagnosis of lung cancer
has been reflected over more than 360 publications presented
in this survey. The presented challenges and trends, in this
section, suggested that investigating more efficient CAD
systems for lung cancer will remain a very active research
area and suggested that more comprehensive studies are
necessary for establishing the state-of-the-art CAD systems
in this active research field.
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