Classifiability Criteria for Refining of Random Walks Segmentation
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Abstract

This paper proposes a novel approach to improve the
segmentation quality of a 3D random walks algorithm
using classifiability criteria. We produce a range of po-
tential threshold values by extending the decision func-
tion of a random walks algorithm using a likelihood ra-
tio test. Optimal threshold values are quantitatively iso-
lated using two data-driven methods: maximum total
accuracy and Bayesian cross validation criteria. The
proposed methods are evaluated using a dataset of 28
dental lesions in 3D cone-beam CT scans. Both meth-
ods produce viable thresholds, the first corresponding to
a conservative segmentation and the second a relaxed
segmentation. We qualitatively compare the results to
determine the best method.

1. Introduction

Segmentation is a standard pre-process for data anal-
ysis including classification and recognition. Deter-
mining the best segmentation is difficult because it is
highly dependent upon problem-specific criteria. Dif-
ferent models can produce various distinct segmenta-
tions. Logically the segmentation algorithm should be
biased to achieve the best post-processing result. This
article proposes a novel approach to improve the seg-
mentation pre-processing by incorporating classifica-
tion criteria as a part of the objective function for seg-
mentation.

We demonstrate this method using a graph-based
random walks algorithm, which is an effective approach
for segmentation in medical imaging [2, 3]. Specifically
we extend its decision function by using the likelihood
ratio test (LRT) [1] and refine the algorithm by opti-

mizing the threshold of LRT via the results of a trained
linear discriminant analysis (LDA) classifier. We de-
duce the threshold with two data-driven methods: the
maximization of total accuracy of multiple LDA clas-
sifiers (maximum total accuracy) and the maximization
of Bayesian posterior distribution using the classifier’s
cross validation results (Bayesian cross validation).

In this paper we provide a brief overview of the ran-
dom walks segmentation algorithm, the initialization
method in 3D space, and the two approaches for deriv-
ing a threshold. Experimentally we evaluate 3D seg-
mentations of dental lesions in cone-beam computed
tomography (CBCT). Our study shows the benefits of
each approach in this medical imaging application. Fi-
nally we compare the qualitative results and state our
conclusion.

2. Methods
2.1. Random Walks Algorithm

The random walks algorithm proposed by Grady [2]
is adapted to segment a 3D target lesion for medical
imaging applications [3]. Random walks is a graph-
theoretic, semi-automatic segmentation algorithm. This
method utilizes inter-voxel weights according to
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where ¢ represents the voxel intensity and 3 is a free
parameter in the algorithm. Given initial binary seed
labels manually specified by users, these weights are
iteratively calculated from each voxel to each seed,
assigning each voxel a probability that it belongs to
foreground label in or background label out. Treat-
ing this as a combinatorial Dirichlet problem results in



Figure 1. Example seed points for random
walks segmentation. The inner sphere
of seed points designates a region inside
the lesion while the outer sphere of seed
points designates a region outside the le-
sion.

a sparse, symmetric, positive-definite system of equa-
tions. See [2] for more details. Among other methods,
we chose this algorithm due to its advantage in segment-
ing weak boundaries that are common in our target med-
ical imaging applications.

2.2. Initialization Method in 3D

We introduce a method for the random walks al-
gorithm to place initial seeds in 3D with minimal
user-interaction. The method specifies two concentric
spheres. It then places foreground and background seed
labels along the surface of the inner and outer sphere,
respectively. Three parameters are required to generate
these seed points: the center of the spheres, an inner
radius and an outer radius. The inner radius specifies
a sphere small enough to be completely surrounded by
the region of interest (ROI). Likewise, the outer radius
specifies a sphere large enough to entirely enclose the
ROI. An example is provided in Figure 1.

2.3. Segmentation with Likelihood Ratio Test

The original random walks segmentation assigns a
label to a voxel by comparing the foreground and back-
ground probability. The label with larger probability
will be assigned at each voxel. We extend this decision
rule by using the LRT formalism with a threshold pa-
rameter introduced to control trade-off between under-
and over-segmentations. This LRT extension assigns
voxel label [, using
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where p(x|in) and p(x|out) denote the spatial likeli-

hood function, indicating the probability that the voxel

Figure 2. Slices of 3D segmentation exam-
ples with increasing threshold values, k.
(a) k = 0.05, (b) k = 0.50, (c) k = 1.00, (d) k
=1.50, (e) k = 2.00, (f) k = 2.50.

is inside or outside the lesion, respectively. These prob-
abilities are computed directly by the random walks al-
gorithm. k is a threshold parameter. The parameter flex-
ibly controls segmentation results in the standard like-
lihood ratio test sense. The 3D segmentation becomes
more conservative as k increases, as exemplified in fig-
ure 2. The original random walks segmentation uses
k=1.0.

2.4. Data-Driven Threshold Selection

2.4.1. Maximum Total Accuracy Criterion. Our
first approach derives the optimal performing threshold
by maximizing the total accuracy of multiple LDA clas-
sification results. Given a set of N features, we train a
set of K’ LDA classifiers for arbitrary feature combina-
tions. We then perform leave-one-out cross-validation
(LOOCYV) for M test cases chosen randomly from a
training dataset. Total accuracy is defined as the total
number of accurately classified test cases among K x M
cases. For each value of k, the total accuracy is com-
puted with IV features extracted from the corresponding
segmentation. The k value that results in the largest to-
tal accuracy provides an optimal threshold according to
this maximum total accuracy criterion.

2.4.2. Bayesian Cross Validation Criterion. We also
deduce an optimal threshold derived directly from the
cross validation performance by using Bayesian infer-
ence. Using the best performing feature combination,
we train a single LDA classifier. LOOCV performance
statistics, such as hit rate, sensitivity, and 1-specificity



are computed at each k value. After an appropriate
normalization, we treat such a function f(k) of the
cross validation results as a data likelihood distribution
P(f|k). Suppose that we now have an independent pre-
diction, as prior knowledge, of what k value we should
use. For simplicity, we model the probability distribu-
tion P(k) of this prior knowledge by a Gaussian distri-
bution with mean p and width o.
. 1 —( (1‘72—015)2 )
P) = e,

Using the Bayes theorem, the posterior probability dis-
tribution is define by
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P(fIK)P(k)
P(f)
Bayesian cross validation criterion is defined by finding

the & value that maximizes P(k|f) in the maximum a
posteriori (MAP) estimation sense.

P(k[f) = “

k* = argmax, P(k|f) = argmax, P(f|k)P(k). (5)
3. Experiments

3.1. Application and Data

We consider a computer-aided diagnosis application
using 3D medical scans. In such an application, a target
lesion is first segmented within an input 3D scan and a
feature set is next extracted from the segmented lesion.
Clinical diagnosis is ascertained by training a machine
learning-based classifier on expert-validated cases, as-
signing the unclassified lesions to clinical categories. In
this scenario, a slight error in segmentation can largely
influence the final classification results. For example,
inclusion of bone with high intensity values near the
target lesion can introduce a strong bias to the features
extracted from the segment, causing mis-classification.
To counteract this, we refine the segmentation results in
order to minimize the inclusion of high intensity regions
while ensuring the maximum number of statistical sam-
ples. This is achieved by assigning voxel label [,, using
the LRT extension of the random walks with the pro-
posed optimal threshold selection methods.

Our data is comprised of 28, 3D cone-beam com-
puted tomography (CBCT) target lesion images. Ran-
dom walks has previously been shown to outperform
other graph-based segmentation algorithms for this
dataset [3]. Ground-truth binary classification between
cyst and granuloma cases, as defined by [4], is available
for all 28 lesions and is referenced in all classification
results.
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Figure 3. Total accuracy computed for
varying threshold k. See text for more in-
formation.

3.2. Methods and Results

For each segmented lesion with varying k, we ex-
tract eight features (N = 8) based on intensity statis-
tics: mean, median, maximum, minimum, standard de-
viation, skewness, kurtosis, entropy. For evaluating the
maximum total accuracy (MTA) criterion, a set of LDA
classifiers are trained for every possible two, three and
eight feature combinations of K = 85. Each classifier
is tested by LOOCYV with the total of M = 28 test cases.
Figure 3 displays the total accuracy computed for each
k value. The maximum is observed at k = 1.45.

For evaluating the Bayesian cross validation (BCV)
criterion, we choose the best performing two feature
combination of median and minimum intensity. Figure
4 shows the LOOCYV results of the hit rate, sensitivity,
and 1-specificity. We treat cyst cases as positive cases.
In this example, no prominent peak was observed in the
sensitivity statistics. Thus we choose the LOOCYV hit
rate as our data likelihood distribution. We centered the
Gaussian prior at ;¢ = 1.0 as this is the baseline random
walks segmentation. The width is manually set broadly
to 0 = 1 so that we focus more on the data term. Figure
5 shows the data likelihood, prior and posterior distribu-
tions computed for our data. The maximum is observed
at k = 0.75.

Next we qualitatively compare the MTA and BCV
approaches in terms of segmentation quality. For most
of the 28 cases, both approaches result in an appropri-
ate segmentation, confirmed by visual inspection. We
observe that the threshold identified by MTA corre-
sponds to a conservative segmentation while the thresh-
old derived from BCV results in a relaxed segmentation.
Howeyver, in a few cases, both conservative and relaxed
segmentation result in classification failures. Figure 6
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Figure 4. LOOCV, Sensitivity and 1-
Specificity computed for varying thresh-
old %, respectively.
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Figure 5. Likelihood, prior and posterior
distributions. Gaussian prior centered at
k=1 is scaled and translated for visual en-
hancement.

illustrates 2D slices of such failure cases.

The first row in figure 6 shows a case whose segmen-
tation quality improves with an increasing threshold.
Figure 6a illustrates a relaxed segmentation correspond-
ing to k = 0.75, which over-segments the lesion and in-
corporates a large amount of dense tissue. This may dis-
rupt the LDA classification. A more conservative seg-
mentation resulting from a threshold of £k = 1.45 by
MTA is presented in figure 6¢ and contains only desired
voxels, ensuring a better classification.

Conversely the second row in figure 6 illustrates a
case that benefits from a lower threshold. The segmen-
tations of this lesion decrease in quality as k increases.
The relaxed segmentation found by BCV in figure 6d
closely follows the delineation between the lesion and
the dense tissue, identifying the majority of the lesion
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Figure 6. Example slices of 3D segmenta-
tions showing benefits of MTA (a-c) and
BCV (d-f). (a,d) k = 0.75, (b,e) k = 1.00, (c,f)
k =1.45.

while simultaneously obstaining from including dense-
tissue. The conservative segmentation corresponding to
a threshold of k£ = 1.45 includes fewer lesion voxels,
decreasing the number of statistical values and there-
fore hindering the performance of the LDA classifier.

4. Conclusion

We propose an extended random walks segmentation
using a likelihood ratio test. Two selection methods are
presented which uniquely derive thresholds from data-
driven classifiability criteria. MTA avoids inclusion of
dense tissue with high intensity values while BCV in-
cludes more voxels. Although both produce valid seg-
mentations, the avoidance of dense tissue has a greater
impact on the LDA classifier than a statistically insub-
stantial increase in sampled voxels. Therefore MTA is
the better choice for this application.
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