
Using the Random Forest Classifier to Assess and
Predict Student Learning of Software Engineering

Teamwork
Dragutin Petkovic1, Marc Sosnick-Pérez1, Kazunori Okada1, Rainer Todtenhoefer3, Shihong Huang2,

 Nidhi Miglani1, Arthur Vigil1

1Department of Computer Science
San Francisco State University

San Francisco, U.S.A.
{petkovic, msosnick, kazokada,

nidhimig, ahvigil}@sfsu.edu

2Department of Computer Science and
Engineering

Florida Atlantic University
Boca Raton, U.S.A.
shihong@fau.edu

3Department of Applied Computer Science
University of Applied Science, Fulda

Fulda, Germany
rainer.todtenhoefer@informatik.hs-fulda.de

Abstract—The overall goal of our Software Engineering
Teamwork Assessment and Prediction (SETAP) project is to
develop effective machine-learning-based methods for assessment
and early prediction of student learning effectiveness in software
engineering teamwork. Specifically, we use the Random Forest
(RF) machine learning (ML) method to predict the effectiveness
of SE teamwork learning based on data collected during student
team project development. These data include over 100 objective
and quantitative Team Activity Measures (TAM) obtained from
monitoring and measuring activities of student teams during the
creation of their final class project in our joint SE classes which
ran concurrently at San Francisco State University (SFSU),
Fulda University (Fulda) and Florida Atlantic University (FAU) .
Although we have previously published RF analysis on a very
limited data set, in this paper we provide the first RF analysis
results done at SFSU on our full data set covering four years of
our joint SE classes. These data include 74 student teams with
over 350 students, totalling over 30000 discrete data points.
These data are grouped into 11 time intervals, each measuring
important phase of project development during the class (e.g.
early requirement gathering and design, development, testing
and delivery). In this paper we briefly elaborate on the methods
of data collection and description of the data itself. We then
show prediction results of the RF analysis applied to this full data
set. Results show that we are able to detect student teams who
are bound to fail or need attention in early class time with good
(about 70%) accuracy. Moreover, the variable importance
analysis shows that the features (TAM measures) with high
predictive power (highly ranked by RF) make intuitive sense and
even pointed us to measurements we did not originally expect to
have high predicve importance, such as statistics on comments to
source code postings. These measures can be used to guide
educators and softare engineering managers to ensure early
intervention for teams bound to fail. This research is funded in
part by NSF TUES Grant # 1140172.

Keywords—Assessment; software engineering teamwork;
machine learning; education

I. INTRODUCTION
There is now a consensus across industry and academia that

to be successful in today’s workplace, computer science
students and software engineers must learn and practice
effective software engineering teamwork skills. This need is
evidenced by the unacceptably high incidence of failures of
software projects in industry: about 9% are abandoned, about
one third fail, and over half experience cost and schedule
overruns. These project failures apparently stem from failures
in communication, organization and teamwork aspects of
software engineering [1-6, 25]. The emergence of global
software development projects utilizing geographically
distributed teams adds significant difficulty to overcoming
these failure points. For the education community, though it is
clear where the problem lies, little is known about the factors
that influence actual student learning of software engineering
teamwork skills or about how to objectively and quantitatively
assess, monitor and predict student progress in the acquisition
of these skills. This knowledge, especially the knowledge of
the factors that most influence or best predict learning
effectiveness, will enable educators to better and more
efficiently assess and improve software engineering education
and classroom practice and apply early classroom intervention
when necessary. For industry, this knowledge will benefit
project managers to improve software engineering project
management.

The Software Engineering Teamwork Assessment and
Prediction (SETAP) project, led by San Francisco State
University (SFSU) with collaborators at Fulda University,
Germany (Fulda) and Florida Atlantic University (FAU),
addressesing this need by using the Random Forest (RF) [18,
20] machine learning (ML) classification method for
assessment, prediction, and most importantly discovery of
factors determining the prediction of learning effectiveness of
software engineering teamwork in the educational setting [13-
17, 30]. In this research the effectiveness of learning software
engineering teamwork is defined as an ability of a student
team: (i) to learn and effectively apply software engineering
processes in a teamwork setting, and (process component) (ii)
to work well in developing satisfactory software product
(product component).

This research was funded in part by NSF TUES Grant #1140172

ML has been used in education for other similar
applications such as predicting student dropout rate, teaching
effectiveness, grades etc. Machine learning can be used in
education to discover models that can help in understanding or
predicting some aspects of educational situations, to provide
some characterization of the teaching or learning process, or to
assist in generating tools for education [10, 30]. ML
techniques are applied on subjective (e.g. surveys) or objective
(e.g. student age) data extracted from an educational
environment. For example, a class in a semester may yield
data of: the demographics of students, survey responses of the
students, registration and academic data, student activity and
grades. Paired with independently obtained outcome
assessments, these data constitute so-called “training
databases”. ML systems are then trained on those training
databases, and tested in terms of their ability to correctly
predict or mimic independently obtained outcomes on variables
under investigation such as grading, dropout rate, learning
achievement etc. [7-12, 26, 30]. Though ML methods (often
RF) have been applied to software engineering [27-28], we are
not aware of any major work using ML to predict teamwork
learning outcomes in software engineering.

In this paper we provide first RF teamwork prediction and
factor analysis results on our full data set which covers over 4
years of our joint softare engineering classes, conducted from
Fall 2012 through Fall 2015. These classes constitute 74
student teams of over 350 students. We obtained over 30000
discrete data items used to create our ML training database.
We briefly elaborate on the methods of data collection and
description of the data, and then show prediction accuracy
results of RF analysis applied to this full data set together with
ranking of team activity measures (TAMs) offering the most
predictive power.

II. SETAP PROJECT DATA COLLECTION AND THE CREATION
OF THE MACHINE LEARNING TRAINING DATABASE

SETAP data are obtained from a joint software engineering
class taught concurrently at SFSU, Fulda and FAU, where
student teams at all three schools are “embedded and observed”
in as realistic project and teamwork development environment
as possible, thus providing a rich learning environment for
students and more realistic data for researchers. The class now
involves about 140 students each year, working in 25-30 teams
of 5-6 students each. Local student teams are composed of
students from the same university, and global student teams are
composed of volunteer students from multiple—usually two—
universities. Each student team develops the same software
application. The semester is divided into five formally
managed milestones, M1 through M5, which are synchronized
across all three schools (Table I)

All student teams use the same software development and
communication tools (source code management, development
and deployment software and servers), which are hosted on an
Amazon Web Service cloud instance, and managed by the
SFSU team. Details about organization and data collection in
our joint SE class have been reported earlier [13-17]. Data
collection and analysis is done at SFSU.

TABLE I. STUDENT PROJECT MILESTONE DESCRIPTIONS

Milestone Description
M1 high level requirements and specs
M2 detailed requirements and specs
M3 prototype development;
M4 beta launch
M5 final delivery and demo

The SETAP ML training database used to train and
develop the RF predictive model is a critical component of the
project. The most time consuming tasks in this project were
creating, curating and maintaining this database. This forced
us to pay the utmost attention and significant resources to
ensuring data accuracy and validity. The final outcome of this
work is a reliable training database that will be available to
researchers at http://setapproject.org.

The data are organized by student teams and milestones,
and comprise TAM data for each student team paired with
separate evaluations of software engineering teamwork
learning outcomes, one for software engineering process and
one for software engineering product. These outcomes, for the
purposes of this research, are categorized in two ML classes:
"A", represents student work at or above expectations, and "F",
represents student work below expectation or needing
attention. The grades A and F are therefore considered ML
class labels whose prediction we are aiming for. Note that
these grades/labels are a different from student class grades and
are derived by applying cutoffs to student team percentage
grades for process and product. More details of grading,
including rubrics for our software engineering class are
available in [13]. To protect student privacy, the ML training
database contains no individually identifiable student
information.

To focus our analysis only on factors influencing team
success exhibited during the class and minimize the influence
of an individual student’s experience and skills developed prior
to the class, student teams were formed with approximately the
same overall combination of skills and experience. We form
student teams by using a team placement survey with about 20
questions about student experience, and a simple programming
test, which we then analyze. The analysis provides the skill
criteria that are then used to create teams such that the skill
profile in each team is approximately equal. Individual student
skills and experiences are not included in TAMs.

Team leads are chosen from a volunteer pool of students in
the class. Potential team leads are briefly interviewed and
chosen by the instructor. Teams must approve of the
instructors' choice of team lead before final appointment.
More details about our software engineering class management
is in [13].

There are several issues of possible bias that we had to
address. In order to reduce inherent bias, where instructors
grade and at the same time try to use ML to predict grades, two
techniques were used. For software engineering product
grading we involve reviewers external to the class, usually two.
Also, grading rubrics have been devised that in general have
more and different items from what we measure in TAMs.

TAM data consists of aggregated individual student activity
measures (SAM) from each team. SAM and TAM data are
collected use several methods such as:

a) Weekly Timecard Surveys (WTS): these mandatory
surveys collect information from each student about the time
spent during the week on coding, meetings, teamwork, etc.;

b) Tool Logs (TL): comprise the collected statistics of
individual student usage of software engineering
communication and development tools such as code
repository; and

c) Instructor Observation (IO): logs of team activity
such as team member participation, the number of issues
requiring instructor intervention, number and percent of issues
closed late, etc. [13].

TABLE II. TIME INTERVAL TO MILESTONE CORRESPONDENCE

Time Interval Corresponding Milestone
 T1 M1
 T2 M2
 T3 M3
 T4 M4
 T5 M5
 T6 M1 – M2
 T7 M1 – M3
 T8 M1 – M4
 T9 M1 – M5
 T10 M3 – M4

 T11 M3 – M5

The ML analysis is performed on different time intervals,
numbered T1-T11 (Table II), which correspond to the five
predefined milestones M1-M5 times and groupings of them.
Grouped milestones are intended to find different trends and
dynamics during the lifecycle of the student projects. For
example, T6 corresponds to M1 and M2 – covering early high-
level requirements through detailed specs, or T11 which covers
M3–M5 covering implementation, testing and delivery. ML
analysis is applied separately to each time interval. Special
focus was placed on interpretation of early time intervals (T1,
T2, T3, T6) due to our goal of early prediction.
Fig 1. Setap Data Collection and Processing Flow

 TAMs have been updated from ones reported in [13] based on our experience and initial analysis. We added over 10 new measures including statistics for commit messages, and removed measures shown to be not reliable given student usage dynamics (e.g. low usage reliability) such as group e-mail statistics where students preferred to use their own and not our instrumented e-mail clients.

SETAP data collection and processing is described in Fig 1.

For each team, 115 TAMS were calculated from SAMs for
every time interval. Many of these TAMs are averages and
standard deviations derived from core values, such as hours
spent in person in meetings, number of commits, etc, over
intervals of weeks, student, or time interval. We list here only
the core values. Full TAM information is available at the
project website http://setapproject.org.

General TAMs:

Year,
semester,
timeInterval,
teamNumber,
semesterId,
teamMemberCount,
femaleTeamMembersPercent,
teamLeadGender,
teamDistribution

Weekly Time Cards (WTS) TAMs:

teamMemberResponseCount,
meetingHours,
inPersonMeetingHours.
nonCodingDeliverablesHours,
codingDeliverablesHours,
helpHours,
globalLeadAdminHours,
LeadAdminHoursResponseCount,
GlobalLeadAdminHoursResponseCount

Tool Logs (TL) TAMs:

commitCount,
uniqueCommitMessageCount,
uniqueCommitMessagePercent,
CommitMessageLength

Instructors’ Observations (IO) TAMs:

issueCount,
onTimeIssueCount,
lateIssueCount

For each of the TAMs “core” variables e.g. CommitCount,
where applicable we compute several TAMs. This is done, for
example, by computing average for the week separately by the
team and then by the student, then by computing of standard
deviation over weekly and student averages in each team (the
latter serving to show dynamics of intergroup participation).
The core variable name then gets labels pre-and-post-pended
consistently, by use of formal naming grammar, to reflect
specific aggregation method and statistical measures. For
example variable CommitCount is aggregated by week for each
student to become CommitCountByWeek then its average and
standard deviation are computed to yield final TAM variables
standardDeviationCommitCountByWeek. These names are
made to be easily read by humans and are consistently used in
all data fields, documentations and in final training data files.

To complete the ML training DB, TAMs for each team are
paired with two ML class labels, one for softare engineering

Process (A or F) and one for softare engineering Product (A or
F). Our goal is to try to predict occurrences of F for softare
engineering process and softare engineering Product especially
in early stages of the class (time periods T1, T2, T3, T6).

To implement creation of ML training database we
developed a complex data collection infrastructure. At its heart
a master SETAP MySQL relational DB that first collects all
raw (SAM) data from various sources (WTS, TL, IO).
Dedicated scripts extract data from weekly on-line time card
surveys (WTS) and tool logs (TL) databases. Some values such
as instructors’ observations (IO) are entered manually from
paper forms used in the class. To aggregate SAM into TAMs
for each team and in each desired time interval, we created
dedicated SQL code using its statistical functions. Extracted
TAMs are paired with class labels A and F and stored back in
the master SETAP DB as a final training database table. A
custom Python script then exports training database data for
chosen time interval into CSV files ready to be used by ML
analysis software. Each of these CSV files has extensive
human-readable header information automatically generated
for data provenance and management. Finally, ML analysis
uses the randomForest machine learning package for the R
statistical mathematics program to perform RF analysis ([19]).

Guided by our experience and the complexity of data
collection, as well as criticality of good ML training DB, we
decided to pay utmost attention to data accuracy and validity.
This was achieved by several softare engineering “best
practices” including: a) testing of all data gathering,
aggregation and extraction software with real and synthetic
data; b) manual spot checking of data by two independent
researchers; c) dealing with NULL or missing data in
appropriate ways (some records are dropped, some are handled
by appropriate statistics and some are imputed based on
specific ways variables were extracted). In addition, given that
we also intend to disseminate our training database for others
to use, we designed extensive human-readable documentation
integrated with the files themselves as file headers for
documentation, ease of management and data provenance.

The current training data is collected from 74 student teams
from Fall 2012 through Fall 2015 from our joint softare
engineering classes. This data involves 383 Students and 18
class sections. For each team 115 TAM measures have been
aggregated from related SAM measures. Total number of
grades for softare engineering Process were 49 As and 25 Fs,
and for softare engineering Product 42 As and 32 Fs. For each
team we collected about 400 data items (student team selection
survey, time cards, deliverable tracking, grading of outcomes
etc.), hence our training DB involves about 30000 data points.
In two semesters, for T1 and T4 intervals we had to drop some
teams do to missing time card surveys.

III. USE OF RANDOM FOREST TO DETERMINE FACTORS THAT
PREDICT STUDENT LEARNING EFFECTIVENESS OF SOFTWARE

ENGINEERING TEAMWORK
We use RF [18,20] as our ML technology, which we have

also tested successfully on other applications [24], and we
designed experiments to be consistent with our other
experiences in using ML for bioinformatics [23]. RF is an
ensemble classifier, consisting of a set of CART (decision tree)

classifiers, each of which is generated by the Bagging
algorithm [18]. To train a RF, two parameters, the number of
CARTs (ntree) and the number of randomly selected features
used to evaluate at each CART node (mtry), must be supplied,
as well as a training database with ground-truth class labels.
RF also allows adjustment of the voting threshold or cutoff
(fraction of trees needed to vote for a given class), which we
have exploited in this study.

One of the RF algorithm's strengths, and reasons we chose
it, is its ability to calculate the variable importance (VI)
measure, namely Mean Decrease Gini (MDG), to determine
rank of each RF input variable (in our case TAM) based on its
contribution to the RF prediction [18, 20]. MDG represents
variable-wise information gain averaged over all decision trees
included in a RF classifier. During the RF's training, each
CART is built by iteratively expanding a tree node by selecting
the best single variable thresholding function to split training
data to gain most information. This information gain is
quantified by decrease of Gini impurities between before and
after the data split. This Gini decrease is then associated with
the variable chosen for that node. When a tree building is
completed, The Gini decreases from all tree nodes are
aggregated for each variable. These variable-wise aggregated
Gini decreases are then averaged over the trees, yielding the
MDG measures. Finally variables are ranked according to
MDG values indicating their importance to RF
prediction/classification.

The accuracy estimate built into the RF algorithm and all
its software implementations, and recommended by inventors
of RF [18] is called Out of Bag Error (OOB), which measures
the average misclassification ratio. We augment our report by
also computing recall and precision for our target class F,
accuracy (1 – OOB), and confusion matrices.

In order to implement RF for our study, after evaluation,
we chose statistical package R [19,21,22] namely its
randomForest package.

IV. EXPERIMENTS AND RESULTS
Our experiments and specific questions we seek to answer

are twofold:

a) Determine Prediction Accuracy: How accurate are
we in predicting software engineering process and software
engineering product class labels, specifically in the target class
F? In which time intervals is the best accuracy achieved?
This prediction accuracy (OOB, accuracy, recall and precision
for F) are estimated by performing RF training and accuracy
estimation using R package by varying the RF parameters as
follows: ntree = 1000; mtry = {5,10,20,30} and by varying
voting cutoff threshold as {10%, 20%, 25%, 30%, 35%, 40%,
50%} to adjust optimal RF sensitivity for our needs e.g.
favoring F class detection. This is repeated for softare
engineering Product and softare engineering Product and for
each time interval T1, T2, T3, T6, T9 and T11. We also
repeated each experiment several times with different random
seed, observing only very minimal changes. Results are shown
in Tables III – V.

b) Discover factors that contribute to prediction: For the
above optimal RF predictive models (e.g. operating points with
maximal accuracy) we compute best ranked TAM variables
using Gini measures as provided by R package, and investigate
if they have an intuitive explanation based on instructors’ or
any other experience. These factors (e.g. top ranked TAMs)
can serve as a guidance to practitioners. Results are shown in
Table VI and Table VII.

TABLE III ACCURACY RESULTS FOR SOFTWARE ENGINEERING PROCESS AND
PRODUCT.

Teamwork
Component

Time
Interval
with best

prediction

OOB (ntree,
mtry, cutoff)

Overall
Accuracy

Recall for
F

Precision
for F

SE Process T2 0.30
(1000,20,

 35%)

0.7 0.76

0.54

SE Product T3 0.29
(1000, 30,

40%)

0.71 0.81 0.61

TABLE IV. CONFUSION MATRIX FOR SE PROCESS T2.

SE process for T2 Predicted A Predicted F

True A 33 16
True F 6 19

TABLE V. CONFUSION MATRIX FOR SE PRODUCT T3.

SE product for T3 Predicted A Predicted F

True A 26 16
True F 6 26

TABLE VI. TOP RANKED TAM MEASURES BY GINI, FOR SOFTARE
ENGINEERING PROCESS FOR RF BEST PREDICTION PARAMETERS: TIME
INTERVAL = T2

TAM Name GINI
lateIssueCount 3.86
issueCount 1.05
standardDeviationHelpHoursTotalByWeek 1.05
averageHelpHoursTotalByWeek 1.04
standardDeviationHelpHoursAverageByWeek .08
codingDeliverablesHoursAverage 0.79
standardDeviationMeetingHoursAverageByWeek 0.75
helpHoursStandardDeviation 0.71

TABLE I. TABLE VII. TOP RANKED TAM MEASURES BY GINI, FOR
SOFTARE ENGINEERING PRODUCT FOR RF BEST PREDICTION PARAMETERS:
TIME INTERVAL = T3

TAM Name GINI
averageUniqueCommitMessageCountByWeek 2.11
uniqueCommitMessageCount 1.35
commitMessageLengthStandardDeviation 1.17
standardDeviationInPersonMeetingHoursAverageByWeek 1.05
standardDeviationCodingDeliverablesHoursAverageByWeek 0.98
standardDeviationUniqueCommitMessagePercentByWeek

0.94

standardDeviationCodingDeliverablesHoursTotalByWeek 0.89
standardDeviationNonCodingDeliverablesHoursAverageByStudent 0.88
averageHelpHoursAverageByStudent 0.87
standardDeviationMeetingHoursAverageByWeek 0.83

V. DISCUSSION
We have contributed toward demonstrating the success of

ML (namely RF) to predict the teams that are likeley to fail in
software engineering educational context. We also show that
this can be done based on easy to measure objective and
quantitative variables, and can be done early in the class or
project which offers great advantages. Moreover, we show that
factors contributing to these predictions are intuitive and offer
practical guidance to teachers and managers in software
engineering.

More work remains in deeper understanding of why RF
works, an issue we call explainability. This can be formulated
in a number of questions a practitioner (non ML expert) might
ask: What would be hit on accuracy if we use much less TAMs
so I can reduce the cost of applying this approach? How
exactly top ranked variables contribute: e.g. does more helping
time or less helping time indicate good team? What variables
most often mutually interact to produce correct decisions? We
are actively engaged in this work.

We also cannot overemphasize the importance of proper
data collection, data management and testing, which took a lot
of our effort and required utmost focus.

Finally, in near future we will be disseminating our training
database with full documentation so others can try their own
ML approaches on it.

VI. ACKNOWLECGEMENTS
Special thanks to Dr. Byron Dom for his advice with

machine learning.

VII. REFERENCES
[1] “Standish Group Report: CHAOS Summary 2009.” Internet:

http://www1.standishgroup.com/newsroom/chaos_2009.php [May 18,
2011].

[2] C. Jones, Software Engineering best Practices: Lessons from Successful
Projects in the Top Companies. McGraw Hill, 2010, ISBN 978-0-07-
162161-8.

[3] J. Reel, “Critical success factors in software projects,” IEEE Software
16(3). 1999. pp. 18-23.

[4] R. N. Charette, “Why software fails,” IEEE Spectrum 42(9). September
2005, p. 42.

[5] R. Pressman, Software Engineering: A Practitioner’s Approach, Sixth
Edition, McGraw Hill, 2005.

[6] B. Curtis, H. Krasner, N. Iscoe, “A field study of the software design
process for large systems.” Communications of the ACM 31(11), 1988,
pp 1268–1287.

[7] S. B. Kotsiantis: “Use of machine learning techniques for educational
purposes: a decision support system for forecasting student grades” Artif
Intell Rev (2012) 37:331-344

[8] I. Lykourentzou, I. Giannoukos, V. Nikolopoulos, G. Mpardis, V.
Loumos: “Dropout Prediction in e-learning courses through the
combination of machine learning techniques”, Computers & Edication,
53 (2009) 950-965, Elsevier

[9] F. Castro, A. Vellido, A. Nebot, F. Mugica: “Applying Data Mining
Techniques to e-Learning Problems”, Studies in Computational
Intelligence (SCI) 62, 183-221 (2007)

[10] R. Baker, K. Yacef:”The State of Educational Data Mining in 2009: A
Review and Future Visions”, Journal of Educational Data Mining,
Articke 1, Vol1, No. 1, Fall 2009

[11] M. Baker: “The roles of models in Artificial Intelligence and Education
Research: A Perspective View”, Int. Journal or Artificial Intelligence in
Education 11 (2000), 122-143

[12] L. P. Macfayden, S. Dawson:”Mining LMS data to develop an “early
warning system” for educators: a proof of concept”, Comput Educ 54:
588-599 (2010)

[13] D. Petkovic, M. Sosnick-Pérez, S. Huang, R. Todtenhoefer, K. Okada,
S. Arora, et. al,: “SETAP: Software Engineering Teamwork Assessment
and Prediction Using Machine Learning”, Proc. FIE2014, Madrid, Spain
2014

[14] D. Petkovic, R. Todtenhöfer, G. Thompson, “Teaching practical
software engineering and global software engineering: case study and
recommendations,” Proceedings of the 36th ASEE/IEEE Frontiers in
Education Conference, San Diego, CA, 2006, pp. 19–24.

[15] D. Petkovic, G. Thompson, R. Todtenhöfer, “Assessment and
comparison of local and global software engineering practices in a
classroom setting,” Proceedings of the 13th Annual Conference on
Innovation and Technology in Computer Science Education, Madrid,
Spain, June 2008, pp. 78–82.

[16] D. Petkovic, G. Thompson, R. Todtenhöfer, S. Huang, B. Levine, S.
Parab, G. Singh, R. Soni, S. Shrestha : “Work in progress: e-TAT:
online tool for teamwork and “soft skills” assessment in software
engineering education,” Frontiers in Education (FIE) 2010, IEEE. 27-30
Oct. 2010, pp. S1G-1-S1G-3,

[17] D. Petkovic, K. Okada, M. Sosnick, A. Iyer, S. Zhu, R. Todtehoefer, S.
Huang: “A Machine Learning Approach for Assessment and Prediction
of Teamwork Effectiveness in Software Engineering Education”,
Frontiers of Education FIE 2012, Seattle, WA, October 2012

[18] L. Breiman, “Random Forests,” Machine Learning 45(1). 2001. pp. 5–
32.

[19] A. Liaw and M. Wiener (2002). Classification and Regression by
randomForest. R News 2(3), 18--22.
http://cran.rproject.org/web/packages/randomForest/index.html [October
22, 2013]

[20] C. Chen, A. Liaw, L. Breiman, Leo, ” Using Random Forest to Learn
Imbalanced Data”, Report ID: 666, UC Berkeley, July 2004

[21] “The R Project for Statistical Computing.” Internet:
http://www.rproject.org/ [June 24, 2012].

[22] R Core Team, R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing. Vienna, Austria.
2013. http://www.R-project.org

[23] L. Buturović, M. Wong, G. W. Tang, R. B. Altman, D. Petković (2014)
High Precision Prediction of Functional Sites in Protein Structures.
PLoS ONE 2014 Feb 11; PONE-D-13-39539R1, EMID:
b17311ed7a971c30

[24] K. Okada, L. Flores, M. Wong, D. Petkovic, “Microenvironment-Based
Protein Function Analysis by Random Forest”, Proc. ICPR -
International Conference on Pattern Recognition, Stockholm, 2014

[25] C.Duhig:“What Google Learned From Its Quest to Build the Perfect
Team”, NY Times, Feb. 25, 2016

[26] D. Delen: “A comparative analysis of machine learning techniques for
student retention management”, Decision Support Systems, Volume 49,
Issue 4, November 2010, Pages 498–506

[27] H. Malik at all: “Understanding the rationale for updating a function’s
comment”, IEEE Int. Conf. on Software Maintenance, Oct 2008

[28] E. Zhang, J. Tsai, ed., Machine Learning Applications In Softwar
Engineering. Series on Software Engineering and Knowledge
Engineering, Vol. 16. World Scientific, 2005.

[29] Rajwinder Singh, Neeraj Mohan and Dr. Parvinder S. Sandhu:
“Evaluation of Success of Software Reuse using Random Forest
Algorithm”, International Conference on Artificial Intelligence and
Embedded Systems (ICAIES'2012) July 15-16, 2012 Singapore

[30] Dragutin Petkovic: “Using Learning Analytics to Assess Capstone
Project Teams”, IEEE Computer, Issue No.01 - Jan. (2016 vol.49).

