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Abstract— Effective teaching of teamwork skills in local and 
globally distributed Software Engineering (SE) teams is 
recognized as an important part of the education of current and 
future software engineers. Effective methods for assessment and 
early prediction of learning effectiveness in SE teamwork are not 
only a critical part of teaching but also of value in industrial 
training and project management. This paper presents a novel 
analytical approach to the assessment and, most importantly, the 
prediction of learning outcomes in SE teamwork based on data 
from our joint software engineering class concurrently taught at 
San Francisco State University (SFSU), Florida Atlantic 
University (FAU) and Fulda University, Germany (Fulda). Our 
approach focuses on assessment and prediction of SE teamwork 
in terms of ability of student teams to apply best SE processes 
and develop SE products. It differs from existing work in the 
following aspects: a) it develops and uses only objective and 
quantitative measures of team activity from multiple sources, 
such as statistics of student time use, software engineering tool 
use, and instructor observations; b) it leverages powerful 
machine learning (ML) techniques applied to team activity 
measurements to identify quantitative and objective factors 
which can assess and predict learning of software engineering 
teamwork skills at the team level. In this paper we provide the 
following contributions:  a) we present in detail for the first time 
the full team activity measurement data set we developed, 
consisting of over 40 objective and quantitative measures 
extracted from student teams working on class projects; b) we 
present a ML framework which applies the Random Forest (RF) 
algorithm to the team activity measurements and team outcomes, 
focusing on predicting teams that are likely to fail; c) we describe 
in detail our now fully implemented and operational data 
processing pipeline, consisting of data collection methods from 
multiple sources, ML training database creation, and ML 
analysis subsystems;  and finally d) we present very preliminary 
results of ML analysis results based on the data from our joint 
software engineering classes in Fall 2012, and Spring 2013, with 
the data from 17 student teams. While our ML training database 
is currently small, it continuously grows. Our preliminary 
results, verified with two independent accuracy measures, show 
that RF is able to predict SE Process and SE Product team 
performance in intuitively explainable manner. 

Keywords—Assessment, Software Engineering Teamwork, 
Machine Learning, Education 

I. INTRODUCTION 
Modern software development involves intensive, often 

globally distributed teamwork, with teams being required to 
develop easy-to-use, maintainable software on schedule and on 
budget, satisfying detailed specifications. The need for 
improved teaching, industrial management, and training in 
software development is evidenced by the unacceptably high 
incidence of failure of industrial software projects: about 9% 
are abandoned, about a third fail, and over half experience cost 
and schedule overruns [1-5]. The research also indicates that 
these failures stem primarily from failures in non-technical 
aspects of software engineering (SE) such as communication, 
organization and teamwork [1][4-8].  Therefore, there is a 
critical need to develop methods to effectively teach and assess 
teamwork skills.  Given today’s distributed, global SE 
development environment, it is also important that these 
methods take into account locally and globally distributed SE 
teams.  Effective methods for assessment and early prediction 
of learning effectiveness in SE teamwork are not only a critical 
part of learning and teaching, but also of value in industrial 
training and project management.  

Most existing approaches to assessing achievement of SE 
teamwork skills are based on qualitative and subjective data 
captured via surveys taken at the end of the SE class, with only 
rudimentary data analysis techniques applied to the collected 
data (for example [9-10]).  These qualitative surveys may 
include questions such as “rate the impression of your SE 
teamwork experience in the class”, etc.  While these 
approaches are very worthwhile, they are in general lacking in 
the following ways: a) qualitative and subjective data used in 
these methods are not precise nor amenable for sophisticated 
data analysis; b) detailed user behavior and “meta-data” readily 
available from today's SE tools, such as software development 
tool usage and communication patterns among the team 
members are rarely used; c) the more complex decision 
methods such as machine learning (ML) [11] that are widely 
used today in many applications ranging from medicine, 
marketing, analysis of customer and user behavior (e.g. on-line 
shopping [12]) to SE problems such as software reuse and 
evolution management [13-14] are rarely used; d) methods for 
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early prediction of SE team failure are rarely developed and 
difficult to implement when data collection through class 
surveys is performed only at the end of the class. 

Our work focuses on assessment and prediction of SE 
teamwork learning of teams, not of the individual students that 
make up those teams. We define the learning of SE teamwork 
as an ability of a team: (i) to learn and effectively apply SE 
processes in a teamwork setting, and (ii) to develop software 
that satisfies defined requirements.  We therefore assess not 
only the quality of the team’s output (i.e. the software product), 
but also on the team’s ability to follow best practices in SE 
teamwork. Since we study the behavior and communication of 
the team as a whole during the semester, and not prior personal 
and communication profile of each student, special attention 
has been devoted to team selection. Our focus on the team 
instead of the individual has also been motivated by the 
observation that team cohesion and communication are critical 
in the success of SE team projects. 

II. OUR APPROACH 
Our approach to assessment and, most importantly, 

prediction of learning of SE teamwork consists of three basic 
steps [22]: 

Step 1: Collect the objective and quantitative data on 
student team activity during joint SE classes at SFSU, FAU 
and Fulda 

Step 2: Create a ML training database comprising student 
team activity measurements, instructor observations, and 
grades for student SE teamwork achievement and product 
quality 

Step 3: Apply random forest (RF) ML method to the data to 
discover models and factors that determine and predict SE 
teamwork achievement and product quality of student teams. 

Our approach is novel in that it: a) develops and uses only 
objective and quantitative measures from multiple sources such 
as statistics of student time use and SE tool use, counts of 
emails exchanged and of issues needing attention etc.; and b) 
applies powerful ML techniques which uses these quantitative 
and objective measures of teamwork activity to assess and 
predict team’s achievement in learning and applying of SE 
teamwork skills.  Our analysis is focused on teams and their 
communication and behavior dynamics during the SE project 
development.  

We chose the RF ML approach [15-16] for its accuracy, 
ease of implementation, availability as open source software, 
and for its ability to rank variables in terms of their predictive 
power, which can illuminate the most important factors for 
assessment and prediction.  

III. ORGANIZATION OF THE JOINT  
SOFTWARE ENGINEERING CLASS 

Our research is integrated and critically dependent on a 
teamwork intensive, globally distributed SE class taught at San 
Francisco State University (SFSU), Florida Atlantic University 
(FAU) and Fulda University in Germany, which has been 
ongoing since 2006 [17-21].  This class provides an 

TABLE I.  PROCESS AND PRODUCT GRADING RUBRICS USED IN 
DETERMINING OUTCOMES AND ML CLASSES A AND F. 

SE Process Grading Rubrics 
1. Team participation at the meetings 
2. Quality and timing of follow-up on outstanding issues 
3. Ability to deal with feedback constructively 
4. On time delivery of software on non-software items 
5. Quality and completeness of non-software deliverables such as 

website design, documentation, and milestone docs. 
6. Number and severity of teamwork issues in which the instructor had 

to intervene. 
7. Ability to apply best SE and teamwork practices as taught in class 

and as advised 
8. Ability to effectively use collaborative software development and 

communication tools  
 

SE Product Grading Rubrics 
1. Correctness and reliability of operation 
2. Functionality actually delivered vs. team commitment 
3. Ease of use, user interface 
4. Performance 
5. Architecture 
6. Database design 
7. Code quality and comments  
8. Presentation and effectiveness of final demo 

 

environment where student teams are “embedded and 
observed” in as realistic a project and teamwork development 
environment as possible, thus providing realistic data for the 
research.   

Our SE class now involves about 140 students each year, 
working in 25 to 30 teams of 5 to 6 students each, which is 
jointly and concurrently taught at SFSU, FAU, and Fulda in 
Fall semesters and additionally at SFSU in Spring semesters.  
The exact number of teams varies with class enrolment and is 
growing.  

A. Term Project and Grading 
During the class, all student teams develop the same web 

application, with mandatory use of a suite of modern SE 
development and communications tools.  Starting with only a 
single page, high-level description of the product, student 
teams develop their application in five well-defined milestones:  

1. M1: high level requirements  

2. M2: detailed requirements and specification  

3. M3: prototype development and review  

4. M4: beta release 

5. M5: final delivery and demo 

Student team composition may be local (comprising students 
from the same school) or global (comprising students from 
each of SFSU and FAU or SFSU and Fulda schools).  Teams 
meet weekly in class for a mandatory meeting with instructors, 
and are expected to meet independently outside of class.  
Teams (especially global teams) may use Skype or Google 
Chat for meetings outside of class.  Observations of student 
teams are made and recorded by instructors during the in-class 
meeting, for the components of SE product and SE process as 
described in more details in TABLE I.   
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To ensure teamwork culture and student commitment, all 
members of a student team share the same grade for the SE 
process and SE product components, which each contribute 
25% to the student's overall class grade.  To ensure that 
students quickly learn the class SE tools, an individual 
milestone, M0, is instituted early in the class, requiring 
students to install and learn the tools through the development 
of a small example application.  M0 is worth 5% of a student's 
grade.  A comprehensive final exam testing students’ 
knowledge of class material contributes the remaining 45% to a 
student's grade.  

Great effort has been made to smoothly integrate the 
research and its related data collection with the SE class 
teaching and grading.  Class teaching is “just in time” i.e. 
teaching topics are offered at the time when students need them 
for project milestones. For about one hour at the end of each 
class, instructors meet with student teams where the instructors 
observe, advise and record their observations in instructor 
observation logs (IO).  Students complete a weekly time card 
survey (WTS), which is used to collect “time spent” 
information (e.g. time spent on meetings, coding, 
documentation).  It is made very clear to all students that no 
information collected or derived from this research influences 
student grade.  Students are given the choice to participate in 
the research study or not, and those who choose to participate 
in the study sign informed consent documents.  Students who 
choose not to participate are grouped together into a team, and 
the entire team’s data is discarded for that semester.  To assure 
strict adherence to student privacy, analysis is done and 
published only at the aggregated team level from team activity 
measurements (TAM). 

The SE process component of the outcomes of student 
teamwork learning is graded by instructors reviewing 
observation logs and student project documentation, using the 
rubric in TABLE I. to evaluate proper adherence to SE 
processes by the student team and its members.  The SE 
product component of the learning outcomes is graded both by 
instructors and by independent observers, who use the rubric in 
TABLE I. to evaluate the quality of the team's final product.  
Each team receives an absolute score in points, and is also 
ranked relative to the other teams in the same class for that 
semester.  Following grading and ranking, for the purpose of 
this research, the instructors classify each team's SE process 
and SE product achievements into two ML classes: at or above 
expectations receives class label A, and below expectations or 
needing attention receives a class label F. 

B. Team Organization 
In order to focus our analysis only on factors influencing 

team success exhibited during the class and minimize the 
influence of an individual student’s experience and skills 
developed prior to the class, it is critical to form student teams 
with approximately the same overall distribution (mix) of skills 
and experience.  While we note the importance of prior student 
personality profile, we focused only on the student SW and 
team experience in composing the teams. To minimize 
influence of personality and communication issues of each 
student we used mentoring and coaching during early stages in 
the class.  The decision not to use student personality profiles 

was also motivated by concerns of cost and efficiency of 
obtaining the profiles given a tight class management schedule 
and by privacy implications. We do however pay considerable 
attention to communication and personality profile in choosing 
team leads. 

We have developed, and recently improved and formalized, 
the following process for student team selection: 

• A Team Placement Survey (TPS) is administered to all 
students at the start of the class.  This survey comprises 
17 graded (Lickert) scale, Y/N questions, and a small 
programming proficiency test.  In the TPS, the student 
is asked about their prior product development and 
teamwork experience, GPA, gender, etc.  The student is 
asked to self-rate on a scale their proficiency in various 
programming languages used in the class.  Finally the 
TPS includes 3 simple programming proficiency tests 
on the languages that will be used during the semester. 

• Each TPS is rated by the weighted sum of responses to 
questions and instructor grading of the programming 
tests to determine student skill scores for each student. 
Teams are formed such that team skill scores, obtained 
by averaging student skill scores are approximately 
equal. 

• Global teams are formed primarily from students who 
have volunteered to be on a global team. 

• Each team is asked to recommend a team lead, who is 
evaluated and must be approved by instructors. Global 
teams have a team lead in each participating school. 

IV. COLLECTION OF DATA ON TEAM ACTIVITY 
Team activity measurements (TAM) are computed for each 

team by aggregating individual student activity measurements 
(SAM) of participating team members.. The design of TAM 
and SAM was motivated by the real-world experience and 
intuition gained from teaching joint SE class for several years, 
trying to formalize and understand how to better assess and 
predict student teamwork learning.   

The challenge was to choose only objective and 
quantifiable measurements (e.g. time spent, counts of 
events/issues, tool usage like e-mails, postings, etc.) suitable to 
more advanced data analysis techniques like ML and motivated 
by our teaching and teamwork evaluation experience. For 
example, it was observed that teams who struggle to establish 
communication early on tend to fail more often, so we measure 
time spent in meetings and collect statistics about e-mail usage.  
We observed that teams writing poor software repository 
commit messages, such as messages that are empty or repeated, 
tend to produce a lower quality software product, so we 
measure the percent of unique commit messages to the code 
repository.  We have also noticed that teams completing 
assignments late or having a high number of teamwork-related 
issues tend not to do well, so we measure both percent of late 
delivery and the count of issues requiring instructor 
intervention.  To measure dynamics in time and within the 
team, we compute standard deviation of certain measures such 
as e-mail usage and repository commits over time in weeks,  
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Fig. 1. Dataflow for the data acquisition and data processing phases of the 

SETAP project, which results in the creation of the ML training 
database. 

and over team members. These measures are intended to help 
reveal cases such as a student doing most of the work in a team 
instead of the work being evenly distributed among the team 
members. We have also conjectured that TAM predictive 
importance and student team dynamics may change during the 
course of project development (i.e. in each milestone), hence 
we collect TAM data separately for time intervals 
corresponding to five project milestones as well as for the 
whole class period. 

A. Data Collection Methods 
Fig. 1 depicts the data collection process, starting from 

collecting SAM measures, and using several methods such as: 

Mandatory student Weekly Timecard Surveys (WTS) 
collect information from each student about the time the 
student spent during the week on coding, meeting, 
teamwork, etc.  It is difficult to collect this data by other 
means without the use of significantly more invasive 
collection methods.  We are aware that students might 
enter somewhat erroneous numerical estimates, but we 
found that, when averaged over all the team members, 
these estimates are reasonably reliable when used in 
ML analysis.  We emphasize to students that they are 
not graded on the content of their WTS, only on the 
submission of the WTS. 

• Tool Logs (TL) collect statistics/counts of individual 
student usage of SE communication and development 
tools, such as the number of e-mails between the team 
members, number of postings to source code repository, 
quality of commit messages.  

• Instructor observation logs (IO) of team activity such as 
team participation, number of issues requiring instructor 
intervention, number and percent of issues closed on 

time, etc., are also recorded weekly and included in the 
calculation of the TAM. Other basic data such as 
semester, team lead gender, etc., are collected from 
Class Data (CD). 

Time stamps are kept for all data, since further analysis is 
performed in selected time intervals, Ti, which correspond to 
the five predefined milestones: T1 - start to end of Milestone 1; 
T2 – start to end of Milestone 2 and so on; T6 is composed of 
the data from T1 through T5, the dataset for the entire 
semester.  

Once collected, SAM data for team members are 
aggregated with other data into TAM for each team and are 
computed for each time interval T1 to T5 and T6.  It is only 
TAM data that are used for ML analysis, and no analysis is 
performed on any data that may individually identify a student.   

TABLE II. provides a description of rows 1-47 of the 
TAM, the method of extraction of the data points, and the 
name and brief description of the each TAM data item. 

B. Data Collection Infrastructure 
Teacher, student, and team accounts, software development 
and communication tools, and data extraction software are 
hosted on a virtual Ubuntu server hosted in the Amazon cloud, 
which we call the SETAP server.  Each student and each 
student team is provided a Unix shell account on this server in 
which to develop their project; the student team's final project 
must be served from their group server account.  The student 
team projects are developed for a LAMP (Linux, Apache, 
MySQL, PHP) stack, which is provided on the system. The 
server provides SE tools, which the students are required to use 
during project development, including Subversion 
(http://subversion.apache.org), and Bugzilla 
(http://www.bugzilla.org).  Students are provided email service 
through the class server,  and are required to communicate with 
their team and instructors with it.   A custom web interface has 
been developed for the creation and management of these 
student and group services. 

For processing of student email and Subversion activity, 
custom PHP and shell scripts capture and convert data from 
these tools' system logs and store the data to the central 
MySQL (http://www.mysql.com) database.  WTS are sent out 
every week of the semester by an automated script, which also 
notifies instructors of survey non-responders.  The surveys are 
administered to students using LimeSurvey [25] via a web 
interface.  Both LimeSurvey and Bugzilla write directly to the 
database, so no additional data conversion is necessary.  At the 
beginning of the semester, class data (CD) are entered into an 
excel spreadsheet.  The spreadsheet is uploaded to the system 
through a custom web interface.  The CD are then converted 
and stored to the database by custom scripts.  Placement survey 
data, instructor observation data, and project evaluations are 
done on paper, and manually entered into a spreadsheet; these 
spreadsheets are then uploaded to the system via a custom web 
interface, where custom scripts convert the spreadsheet data 
and store the information to the database.  Strict quality control 
(code reviews, testing, manual data checking etc.) of data  
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TABLE II.  ML TRAINING DATABASE. TAMS (ROWS 1-47) AND SE 
PROCESS AND SE PRODUCT OUTCOMES (ROWS 48-53).  MEANS OF 

COLLECTION: CD – CLASS DATA; WTS – WEEKLY TIMECARD SURVEYS; IO – 
INSTRUCTORS' OBSERVATIONS; TL – TOOLS LOGS 

Row Means Measure: Description 
1 CD Year: Year the measures collected 
2 CD Semester: Semester the measures collected 
3 CD Time Interval: Time interval for which measures are collected 

(i.e. milestones 1-5 or complete semester) 
4 CD Team number:  ID of the team 
5 CD Team member Count:  How many students in the team 
6 CD Percent of female team members: Percent of female student 

members in the team 
7 CD Team Lead Gender:  Gender of the team lead 
8 CD Team Distribution:  Local (from the same school); Global 

(from different schools) 
9-11 WTS Time spent on meetings: Average per student/week, standard 

deviation (SD) over weeks, SD over team members 
12-14 WTS Time spent on non-coding tasks: Average per student/week, 

SD over weeks & team members 
15-17 WTS Time spent on coding tasks:  Average per student/week, SD 

over weeks & team members 
18-19 WTS Lead admin time: Average time and SD over weeks the team 

lead (local or global) spent management tasks 
20-21 WTS Global Team Lead Admin Time: Average time and SD over 

weeks spent on admin for global portion of teamwork 
22-24 WTS Time students spent helping other team members:  Average 

per student/week, SD over weeks & team members 
25-26 IO Meeting participation: Average per team, SD over weeks of 

percent of team members being present at in-class scrums 
27 IO Percent of late deliverables:  Percent of deliverables (e.g. 

documentation, programs) not delivered on time. 
28 IO Instructor teamwork intervention count: Count of instructor 

process intervention for teamwork issues 
29-31 TL Number of e-mails within a team: Average per student/week, 

SD over weeks, SD over team members 
32-33 TL Number of e-mails by team lead to team members:  Average 

per week, SD over weeks 
34-36 TL Number of commits to code repository: Average per 

student/week, SD over weeks, SD over team members  
37-39 TL Length of commit message to code repository: Average per 

student/week, SD over weeks; SD over team members 
40-42 TL Uniqueness of commit messages: Average percent per 

student/week, SD over weeks, SD over team members 
43-45 TL Number of commit files changed: Average number per 

student/week, SD over weeks, SD over team members 
46 IO Total number of instructor initiated issues: Count of 

instructor requested formal response to an issue/checkpoint 
47 IO Percent of late issue responses: Percent of responses to issues 

that were late 
48-50 IO SE Process Outcome Grades: Letter (A or F), percentile, and 

class rank of team’s SE process outcome grades 
51-53 IO SE Product Outcome Grades: Letter (A or F), percentile, and 

class rank of team’s product outcome grades.   
 
collection SW and the data itself has been applied during 
development to ensure accuracy of collected data. 

V. CREATION OF THE MACHINE LEARNING TRAINING 
DATABASE 

In the final part of the data collection and processing phase, 
data is extracted from the database by custom scripts and SQL 
queries, which organize and extract the TAM data and 
instructor evaluations into a ML training database.  The ML 

training database is composed of TAM data for each team 
paired with ML class labels A or F for each of SE process and 
SE product (A for teams at or above expectations and F for 
teams below expectations or needing attention) to constitute 
feature vectors in ML training database. This ML training 
database is constructed at the team level with no individual 
student data and in addition, to protect student privacy, this 
database contains no individually identifiable student 
information.  

The complete ML training database shown in TABLE II.  
consists, for each team, of:  a) the Team Activity Measurements 
or TAM (rows 1-47), and b) SE process and SE product 
“ground truth outcomes”  (rows 48-53) determined as 
explained above.  Currently, our ML training database contains 
carefully vetted information from 17 teams:  11 teams 
participated in the Fall 2012 semester, and 6 teams participated 
in Spring 2013 (SFSU only, no global teams). In total, for SE 
Product there were 12 teams classified as A and 5 as F, and for 
SE Process 8 teams were classified as A and 9 teams classified 
as F. We note a slight imbalance between A and F 
classifications for SE Product.  Our ML analysis procedure has 
been designed to address this imbalance. 

VI. APPLYING RANDOM FOREST MACHINE LEARNING 
Our goals are to develop optimal predictive RF models 

which, based on TAM data, best predict occurrence of teams 
graded F for SE product and SE process learning outcomes 
separately. In the future, using built-in RF variable importance 
functionality, we will work on discovering which TAM data 
has the highest predictive power for class F, thus indicating 
factors which most influence the learning of SE teamwork.  
The key challenge in this early phase is the small size of the 
training database where each item corresponds to one student 
team completing our class, which is limited by the number and 
enrollment size of classes we can effectively teach.  With time 
this database will grow at an expected rate of 25 to 30 teams 
per year.  Another challenge from our focus on predicting 
teams labeled F inspired the exploration of alternative accuracy 
measures for RF predictor than the commonly used Out of Bag 
Error (OOB) [15], which averages misclassification error for 
all class labels (e.g. A and F). We also note our somewhat 
unbalanced training data, where the class of interest (F) may 
constitute a minority; we believe this problem might persist 
with more data collected.   

 
Fig. 2. Data flow of the ML portion of SETAP project. 
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Given our objectives, and in light of the above challenges, 
we have developed ML analysis methods using RF as depicted 
in Fig. 2.  For accuracy measures, given our focus on class F, 
we use recall and precision in detecting class F as our primary 
accuracy measure.  Recall is the number of samples correctly 
classified as class F vs. all existing samples of class F.  
Precision is the number of samples correctly classified as class 
F vs. all samples classified as F. To estimate the recall and 
precision in the presence of unbalanced training data we use 
stratified sampling in cross validation (CV) so that each class is 
fairly represented in every fold of a CV process.  To make our 
predictions practical (i.e. having good prediction with minimal 
false predictions), we are specifically interested in finding 
maximal recall for class F at a fixed high precision  (e.g. 90%).  
To account for different dynamics in each SE class milestone, 
we perform prediction in different time intervals T1-T5 
corresponding to each milestone M1-M5, and T6 
corresponding to the whole class period.  We also wish to 
investigate if predictors from earlier time intervals (T1-T3) can 
be used for early prediction of teams which later fail, enabling 
earlier instructor intervention.  

As a secondary accuracy measure, and to check for 
consistency, we use above-mentioned Out of Bag Error (OOB) 
common with all RF implementations. This measure is 
computed in same early intervals T1-T3. 

Specific questions we want to answer are: 

• Can RF predict teams labeled F in SE Process and SE 
Product with sufficient accuracy (indicated by high recall 
and low OOB)? 

• In which of early intervals T1-T3 does RF achieve the best 
and sufficiently accurate prediction? 

• Do recall and OOB accuracy measures indicate best 
predictions in the same time intervals? 

 

As depicted in Fig. 2, the ML portion of the system consists 
of the combination of custom Unix shell, Perl and Python 
scripts, which use the randomForest package run by the R 
statistical computing package [26-27].  Again, to ensure 
accuracy the code and the data have undergone multiple 
reviews by experienced programmers, and tested on a synthetic 
test data set with known results. We also leveraged our 
experience and cross validation code from a project where we 
used RF technology on bioinformatics data [28] and tested and 
compared results on two independent ML systems. 

A. Derivation of Random Forest Predictive Models 
The derivation of predictive RF models and estimation of 

accuracy in predicting teams classified as F is accomplished by 
training RF on a ML training database to find the best RF 
models, or predictors, for class F.  The process of optimizing 
RF consists of finding the optimal values of RF accuracy (i.e. 
recall/precision or OOB) for the number of decision tress 
(ntree) to be included in the RF ensemble (forest), and the 
number of variables (mtry) to be evaluated at each tree node 
during training, which maximizes the recall measure at the 
desired 90% precision.  The range and interval of grid search  

Loop over ntree (1000, 50000) 
   Loop over mtry (2, 4)       
       Loop over 3-fold stratified cross-validation (K=1..3) 
         Train RF on data from two folds, test on third fold 
         Vary RF cutoff to achieve 90% Precision for class F, 
           Record Recall for class F  
      Average Recall measures for class F over 3 folds 
Fig. 3. Pseudocode for RF optimization using CV 

for ntree and mtry follows recommendations from literature, 
given the nature and size of our training database. Due to the 
very small training database and a relatively large number of 
TAM measures, to avoid over-specification we currently use 
{2, 4} for mtry and to provide for enough random tress given 
large number of TAM  data  we use {1000, 50000} for ntree.  
To handle our unbalanced data set, we adapt a 3-fold stratified 
cross validation as recommended in [23-24]. 3-fold stratified 
cross validation first partitions the training database into larger 
training and smaller test sets, consisting of 2/3 and 1/3 of the 
data, respectively.  These partitions are constructed so that 
samples labeled A and less frequent samples labeled F 
participate proportionally in each partition.  Training and 
testing RF for each partition is followed by computing recall at 
precision of 90% for class F by varying the RF decision 
threshold to achieve the desired (90%) precision.  Finally these 
recall values are averaged over 3 different repetitions of cross 
validation.  The pseudo code for this process is in Fig. 3. 

For OOB error estimates we used standard open source RF 
implementation from randomForest library [26-27] using the 
same range for ntree and mtry values as above. 

The template is used to format your paper and style the 
text. All margins, column widths, line spaces, and text fonts are 
prescribed; please do not alter them. You may note 
peculiarities. For example, the head margin in this template 
measures proportionately more than is customary. This 
measurement and others are deliberate, using specifications 
that anticipate your paper as one part of the entire proceedings, 
and not as an independent document. Please do not revise any 
of the current designations. 

Derived predictive models for class F consist of an 
ensemble of decision trees provided by the RF implementation  
(in our case the randomForest R library [26-27]) for optimally 
determined ntree and mtry values as above, and are derived for 
each interval T1-T3, and separately for SE process and SE 
product prediction. 

VII. RESULTS AND DISCUSSION 
The system (methods and software implementation) for 

data collection and creation of the ML training database is fully 
operational and deployed for continuous data collection for 
three concurrent SE classes at SFSU, FAU and Fulda with over 
140 students and 25 to 30 student teams each year.  This 
system is fairly complex and took about 3 years to develop and 
test. ML analysis system (algorithms, software) based on RF is 
fully operational as well. 

In this first step, we have created a ML database with over 
40 TAM measures for each of 17 student teams from the 
period of Fall 2012 and Spring 2013 including graded 
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outcomes of their achievement of SE Process and SE Product 
learning. The data has been carefully checked for accuracy due 
to complexity of collection process and large number of 
parameters. Currently, we are organizing, checking and adding 
the data from additional 25 teams from our joint SE class in 
Fall 2013.  

We note the current small size of our current training 
database. Our approach was to first establish the “proof of 
concept”, test and prepare the software infrastructure for more 
data and then embark on more data processing and analysis.  

We performed two kinds of ML experiments by 
computing: recall and precision for detecting class F, and 
standard RF OOB error of misclassification in intervals T1-T3, 
for SE Process and SE Product separately. 

To estimate RF prediction for class F with recall and 
precision, we used 3 fold stratified cross validation, looking for 
best RF predictor for class F both for SE process and SE 
Product. We focused on early millstones M1, M2, M3 (the 
time intervals T1, T2, T3) looking for early predictions so that 
class intervention can be effectively implemented. We  

TABLE III.  BEST RF PREDICTORS FOR SE PROCESS 

Time period 
(milestone) 

Recall at 90% 
precision Ntree mtry 

T2 (Milestone 2) 0.667 1000 2 

T2 (Milestone 2) 0.667 1000 4 

T2 (Milestone 2) 0.667 50000 4 

TABLE IV.  BEST RF PREDICTORS FOR SE PRODUCT 

Time period 
(milestone) 

Recall at 90% 
precision Ntree mtry 

T3 (Milestone 3) 0.6 50000 4 

 

measured recall for class F (teams that need attention or are 
below expectations) at 90% precision. Results are in TABLE 
III. and TABLE IV.   

To assess RF performance using OOB as an accuracy 
measure, we performed the same set of experiments as above 
(same ntree, mtry and time intervals) using the radomForest 
software library from R statistical computing [26-27]. 
Significantly, OOB results are consistent with recall and 
precision, namely they provide best predictions in the same 
intervals Ti as recall measure both for SE Process and SE 
Product. Specifically: a) for SE Product the best OOB predictor 
was again in interval T3 with an OOB of 18% for ntree=1000 
and mtry=4, detecting 3 out of 5 teams F; b) for SE Process the 
minimal OOB of 24% for ntree, mtry combinations (1000, 2; 
1000,4; 50000,2; 50000, 4) was again in interval T2, detecting 
6 out of 9 teams F.  

These results have an intuitive explanation.  It makes sense 
for T2 (comprising Milestone 2 – the detailed specification 
phase) to be the best predicting interval for teams’ SE Process 
performance since in that milestone teams are at the peak of 
establishing communication and teamwork while developing 

many non-coding deliverables. Similarly, it makes sense that 
T3 (comprising Milestone 3 – the prototyping phase) is the best 
interval in predicting SE Product teams’ performance because 
this is when the teams start implementing their project. In 
terms of recommendations for educators and managers these 
results indicate intervals when most attention has to be paid to 
identifying teams that could fail. 

We note again a very preliminary nature of results but we 
conjecture that “proof of concept” has been validated with both 
recall and OOB measures agreeing, and with the intuitively 
justifiable interpretation of the results as above  

Some bias in determining classes A and F is still present 
since these grades are partially determined by class instructors, 
an issue hard to eliminate completely. To mitigate this we 
created as objective grading rubrics as we could and we also 
involved external graders for SE Product grade. 

We also recognize that we are simultaneously collecting 
activity measures from student teams as the students are 
learning and being coached, resulting in a “non-stationary 
observed process”.  We mitigate this by careful recoding of 
team behavior with time stamps and whereby our more 
aggressive coaching and help is generally withheld until after 
M3 so that team behavior with all its issues can be exposed in 
early stages (Milestones M1-M3). 

VIII. CONCLUSIONS AND FUTURE WORK 
In this paper we presented, for the first time, the details of 

the SETAP Project's full data definition, data collection and 
first preliminary ML analysis methods and results, and the 
software pipeline used to implement them.  The whole system 
(methods, algorithms, software) for data collection, creation of 
ML training database and ML analysis is fully operational and 
deployed for continuous data collection and analysis from three 
concurrent SE classes at SFSU, FAU and Fulda with over 140 
students in 25 to 30 teams each year.  Out preliminary results 
show consistency when tested with two independent accuracy 
measures and prediction intervals indicated by our ML 
approach offer intuitive explanation. 

Future work includes first and foremost gathering and 
processing more data, which is under way with about 25-30 
teams each year.  In parallel we plan to investigate variable 
importance measures associated with RF in order to derive 
factors (e.g. TAM measures) that have most predictive power. 
Knowing such measures will help educators and SW managers 
better focus on predicting team performance. 

We also recommend and plan ourselves the investigation of 
other ML and analysis methods, specifically those which deal 
well with small data sets and offer some explanation and 
ranking of the variables. 

We plan to significantly streamline and improve our SW 
system for data gathering and collection into a training DB 
including creating on-line forms for instructor observations. In 
the long run we plan to leverage the fact that more and more 
tools for SE development and communication offer statistics of 
their usage as a byproduct, thus potentially enriching our TAM 
observation data. 
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Our future work will also include special attention to 
differences between local and global teams deploying, among 
others, clustering techniques on ML training database. 

In order to enable others to try their own analysis 
techniques, and noting the very significant cost and time it 
takes to collect the data for the ML training database, we plan 
to make it publicly available once more data is collected. 
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