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Abstract

We present a framework for pose-invariant face

recognition using parametric linear subspace models

as stored representations of known individuals. Each

model can be �t to an input, resulting in faces of known

people whose head pose is aligned to the input face. The

model's continuous nature enables the pose alignment

to be very accurate, improving recognition performance,

while its generalization to unknown poses enables the

models to be compact. Recognition systems with two

types of parametric linear model are compared using a

database of 20 persons. The results showed our sys-

tem's robust recognition of faces with �50 degree range

of full 3D head rotation, while compressing the data by

a factor of 20 and more.

1. Introduction

Past studies in the �eld of automatic face recogni-
tion have revealed that our utmost challenge is to reli-
ably recognize people in the presence of image/object
variations that occur naturally in our daily life [18].
Among others, head pose variation is one of most com-
mon variations because humans and their heads can
move freely. Thus, handling of head pose variation is
an extremely important factor for many practical ap-
plication scenarios.

One of the successful approaches towards pose-
invariant face recognition is the multi-view approach [1,
2, 4, 22]. This approach is based on the multi-
view gallery, which consists of multiple views of var-
ious poses for each known person. Pose-invariance is
achieved by assuming that, for each test face, there
exists a view with the same head pose as the test for
each known person in the gallery. Such a multi-view
gallery can be constructed by manually recording views
for each person [1], by using a person-independent
view-transformation to create novel views from a single

view [2], or by rendering views with a 3D structural
model [4, 22]. These studies have reported generally
better recognition performance than other approaches,
such as the single-view approach [11, 9, 6], in which
each test image is transformed to a �xed, canonical
head pose prior to nearest neighbor identi�cation. The
large size of the gallery is, however, a disadvantage of
this approach. The recognition performance and the
gallery size have a trade-o� relationship; to improve
the performance requires denser sampling of the con-
tinuous pose variation, increasing the gallery size. This
increase of the gallery size makes it di�cult to scale
the recognition systems to the large number of known
people and makes the recognition process more time-
consuming.

One solution to the trade-o� problem is to repre-
sent each known person by a compact model. Given
the multi-view gallery, each set of views of a known
person can be used as training samples to learn such a
model, reducing the gallery size while maintaining high
recognition performance. The parametric eigenspace
method of Murase and Nayar [13] and the virtual
eigensignature method of Graham and Allinson [5] are
successful examples of this approach. These methods
represent each known person by compact manifolds
in the embedded subspace of the eigenspace. Despite
their good recognition performance, generalization ca-
pability is their shortcoming. Both systems utilized
non-linear methods (cubic-spline for the former and ra-
dial basis function network for the latter) for parame-
terizing/modeling the manifolds. Such methods have a
tendency to over�t peculiarities in training samples [3],
compromising capability to generalize over head poses
not given in training samples. This disadvantage must
be overcome to avoid the curse of dimensionality prob-
lem [3], which hinders the collection of an appropriate
set of training samples and the extension of the model
to variations other than head pose.

Our investigation explores the model-based solution
of pose-invariant face recognition using parametric lin-



ear subspace models. The parametric nature of our
models, which will be described in the next section,
enables our models to cover the pose variation contin-
uously, thereby improving the accuracy of our models.
On the other hand, the linear nature of our models mit-
igates the problem for generalization of the non-linear
methods. Our previous study [15] proposed a recog-
nition system using the linear PCMAP (LPCMAP)
model that is a simple implementation of the para-
metric linear subspace model. The model's shortcom-
ing was that its accuracy decreases as a wider range
of head poses is considered. Our recent extension of
the LPCMAP, the parametric piecewise linear subspace
(PPLS) model [16], mitigates the pose range limitation
problem by piecing together a number of localized mod-
els for collectively covering a wide range of head poses
accurately. The discrete local models are continuously
interpolated, improving the discrete methods such as
the view-based eigenface by Pentland et al. [17].

This paper describes face recognition systems us-
ing the two parametric linear models and compares
their recognition performance over the wide range of
full 3D head rotation. In section 2, we introduce the
framework of our recognition systems. Sections 3 and 4
briey describe the LPCMAP and PPLS models and
section 5 gives the performance evaluation of the recog-
nition systems.

2. Framework of Our Recognition Sys-

tems

The parametric linear subspace model consists of
bidirectional, continuous, multivariate, mapping func-
tions between a vectorized facial image ~v and 3D head
angles ~�. We call a mapping from the image to angles
analysis mapping, and its inverse synthesis mapping.
An application of the analysis mapping can be con-
sidered as pose estimation and that of the synthesis
mapping as pose transformation or facial animation,

A
 : ~v


�! ~�;

S
 : ~�


�! ~v(
):

(1)


 denotes the model's data entities that are learned
from training samples and also symbolizes a learned
model. Each model is personalized by learning it with
pose-varying samples of a speci�c person. Both anal-
ysis and synthesis mappings become speci�c to a per-
son because they are constructed with the personalized
model 
 that encodes speci�cities of the person's fa-
cial appearance. The synthesis mapping output ~v(
)
exhibits personal appearance that solely depends on

, while its head pose is given by an input. Details
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Figure 1. Recognition framework with parametric lin-

ear subspace models.

of these mappings will be described in the next two
sections.

Given an arbitrary person's face, a learned model
can be �t against it by concatenating the analysis and
synthesis mappings. We call this model matching pro-
cess the analysis-synthesis-chain,

M
 : ~v


�! ~�



�! ~v(
): (2)

The output of the analysis-synthesis chain is called the
model view. It provides a facial view of the person
learned in 
 whose head pose is aligned to the input.
This process not only �ts a learned model to the in-
put but also gives simultaneously a 3D pose estimate
that can be used for other application purposes. Note
that, because the analysis mapping is also personalized,
�tting a model to a di�erent person's face may intro-
duce pose estimation errors, resulting in a sub-optimal
model view. To overcome this shortcoming, A
 needs
to be replaced by a person-independent analysis map-
ping [14]. For the purpose of face recognition, however,
this does not pose serious problems because the errors
are small due to the geometrical proximity of di�erent
faces. Moreover, the sub-optimal model views of dif-
ferent people only help to single out the correct face.

Figure 1 illustrates our framework for pose-invariant
face recognition. The framework employs the paramet-
ric linear model as the representation of a known per-
son. We call a database of P known people, as a set
of learned personalized models f
pjp = 1; ::; Pg, the
known-person gallery. Given a test image of an arbi-
trary person with an arbitrary head pose, each model
in the gallery is matched against the image by using its
analysis-synthesis-chain process. The process results in
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Figure 2. An example of face recognition robust

against pose variation.

pose-aligned model views of all known persons. After
this pose alignment, the test image is subjected to a
nearest neighbor classi�er for identi�cation.

Figure 2 compares our system using a multi-view
system with a gallery of three known persons. The
top row displays model views of three learned models;
the bottom row displays the best views of each known
person that are most similar to the test image. Decimal
numbers shown adjacent to the images denote their
similarity to the test. Because the test image's head
pose was not present in the gallery, the best views do
not have the same head pose as the test, resulting in a
wrong identi�cation for the multi-view system. On the
other hand, our system, in which each model is learned
by the same samples stored in the multi-view gallery,
identi�es the test image correctly. This is realized by
the model's continuous and generalizable nature, which
results in model views whose head pose is better aligned
to the test than the multi-view system.

3. The Linear PCMAP Model

The LPCMAP model [15] is a parametric linear sub-
space model, which covers the whole parameter space
of head poses by a single model. It consists of a com-
bination of two linear systems: 1) linear subspaces

spanned by principal components (PCs) of training
samples and 2) linear transfer matrices, which asso-
ciate projection coe�cients of training samples onto
the subspaces and their corresponding 3D head angles.

A LPCMAP model LM consists of the following
data entities learned from training samples,

LM := f~ux; f~u
n
j g; ~u�; Y; fB

ng; F;G; fHngg; (3)

where ~ux is an average shape representation as an array

of 2D coordinates of N facial landmarks; ~u1j ; ::; ~u
N
j are

average texture representations as a set of Gabor jets
sampled at the N landmarks [21]; ~u� is an average 3D
head angle vector; Y is a shape model as a row matrix
of the �rst P0 � 2N shape PCs; B1; ::; BN are texture

models as row matrices of the �rst S0 � L texture PCs;
and F;G;H1; ::;HN are shape-to-pose, pose-to-shape
and shape-to-texture transfer matrices, respectively.

The analysis mapping function A(~v) is given by re-
lating the 3D head angles only to the shape represen-
tations,

~̂� = ALM(~v) = ~u� + K�1(F � Y � (Dx(~v) � ~ux)); (4)

where K�1 extracts 3D angles from their trigonometric
functions and Dx extracts a shape representation from
a facial image.

The synthesis mapping function S(~�) is given by re-
lating the 3D head angles to the shape coe�cients and
the shape coe�cients to the texture coe�cients,

~̂v = SLM (~�) = R(~̂x; f~̂jnjn = 1; ::; Ng);

~̂x = SSLM (~�) = ~ux + Y t �G � K(~� � ~u�);

f~̂jng = T SLM (~�)

= f~unj +Bn �Hn �G � K(~� � ~u�)jn = 1; ::; Ng;

(5)

where ~̂x and f~̂jnjn = 1; ::; Ng denote synthesized shape
and texture representations, R reconstructs an im-
age from a pair of the shape and texture representa-
tions [19], and K transforms 3D angles to a vector of
their trigonometric functions.

Finally, the analysis-synthesis-chain function M(~v)
is given by concatenating formulae (4) and (5),

~̂v =MLM (~v)

= R(SSLM (ALM (~v)); T SLM(ALM (~v))):
(6)

4. The Parametric Piecewise Linear Sub-
space Model

The parametric piecewise linear subspace (PPLS)
model [16] extends the LPCMAP model by using the
piecewise linear approach [20]. It consists of a set of
local linear models, each of which provides continuous
analysis and synthesis mappings whose accuracy may
be limited to a narrow parameter range due to its lin-
earity. In order to cover a wide range of pose varia-
tion, the model pieces together a number of the local
models distributed over the pose parameter space. The
global mappings are constructed by weighted-averaging
of outputs of the local mappings, maintaining their con-
tinuous nature and enabling them to generalize to un-
known poses by interpolation.
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A piecewise linear subspace model PM consists of a
set of K local linear models in the format of the above-
described LPCMAP,

PM := fLMkjk = 1; ::;Kg: (7)

We assume that the local models are learned by train-
ing data sampled from appropriately distanced local
regions of the 3D angle space: the 3D parameter space
spanned by the head angles. Each set of the local train-
ing samples is associated with a model center, the aver-
age 3D head angles ~uLMk

� , which speci�es the learned
model's location in the 3D angle space. Missing compo-
nents of shape representations due to large head rota-
tions are handled by the mean-imputation method [10],
which �lls in each missing component by a mean com-
puted from all available data at the component dimen-
sion.

The analysis mapping function of the PPLS model
is given by averaging K local pose estimates with ap-
propriate weights,

~̂� = APM (~v) =
KX

k=1

wkA
LMk(~v): (8)

Similarly, the synthesis mapping function is given by
averagingK locally synthesized samples with the same
weights,

~̂v = SPM (~�) = R(~̂x; f~̂jng)

~̂x = SSPM (~�) =
PK

k=1wkSS
LMk(~�);

f~̂jng = T SPM (~�) =
PK

k=1wkT S
LMk(~�):

(9)

A vector of the weights ~w = (w1; ::; wK) in formu-
lae (8) and (9) must be responsible for localizing the
output space of the models, since the model's outputs
themselves are continuous. For this purpose, we use a
normalized Gaussian function of distance between an
input pose and each model center,

wk(~�) =
�k(~��~uLMk

�
)P

K

k=1
�k(~��~uLMk�

)
;

�k(~�) =
1p
2��k

exp(�k~�k2
2�2
k

);
(10)

where �k denotes the k-th Gaussian width. The weight
value reaches maximumwhen the input pose coincides
with one of the model centers; it decays as the distance
increases. �k is set by the standard deviation of the 3D
head angle vectors for LMk and determines the extent

to which each local model inuences the outputs ~̂� and
~̂v.

The analysis-synthesis-chain functionM(~v) is given
by connecting an analysis output to a synthesis input,

~̂v =MPM (~v)

= R(SSPM (APM (~v)); T SPM (APM (~v)))
(11)

Figure 3. 20 frontal views rendered from the 3D face

models.

Note that formula (8) cannot be solved by evalu-
ating its r.h.s. because the weights are computed as
a function of an unknown ~�. To overcome this prob-
lem, we formulate a gradient descent-based solution of
the equation. Let a shape vector ~x be an input to the
algorithm. Also let ~xi and ~�i denote the shape and
angle estimates by the i-th iteration. The algorithm
iterates the following formulae until the mean-square
error k�~xik2 becomes su�ciently small.

�~xi = ~x� ~xi;

�~�i =
PK

k=1wk(
~�i)A

0LMk(�~xi);
~�i+1 = ~�i + ��~�i;

~xi+1 =
PK

k=1wk(
~�i+1)SS

LMk(~�i+1);

(12)

where � is a learning rate and A0 is a slight modi�cation
of formula (4) that has a shape vector interface. The

initial conditions ~x0 and ~�0 are given by the local model
whose center shape ~uLMk

x is most similar to ~x.

5. Experiments

5.1. Data Set

For evaluating our system's performance over vari-
ous head poses, we must collect a very large number
of samples with controlled head poses, which is not an
easy task. For mitigating this di�culty, we use 3D face
models pre-recorded by a Cyberware scanner. Given
such data, relatively faithful image samples with an
arbitrary, but precise, head pose can easily be created
by image rendering [14, 15, 16]. We used 20 heads ran-
domly picked from the ATR-Database [7], as shown in
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Test Samples Identi�cation Compression

Single-View 59.9�10.6% 0.035%
LPCMAP 91.6�5.0% 0.74%
PPLS 98.7�1.0% 5%

Multi-View 99.9�0.2% 100%

Table 1. Average correct-identi�cation and compres-

sion rates for four di�erent systems.

�gure 3. For each head, we created 804 test and 2821
training samples whose head poses range between �50
degrees and �55 degrees along each axis of 3D rota-
tions, respectively. The training samples consist of 7
local training sets each of which covers a pose range
of �15 degrees. Most test samples did not have the
same head pose as any of the training samples. For
each sample, the 2D locations of 20 landmarks of inner
facial parts, such as eyes, nose and mouth, are derived
by rotating the 3D landmark coordinates, initialized
manually, and by projecting them onto an image plane.
The explicit rotation angles of the heads also provide
3D head angles of the samples. The rendering system
provides the self-occlusion information. Up to 10% of
the total landmarks were self-occluded for each head.

5.2. Results

For comparison, we constructed four recognition sys-
tems with 20 known persons: 1) the single-view sys-
tem, which represents each known person by a single
frontal view, 2) the LPCMAP system with a gallery of
LPCMAP models, 3) the PPLS system with a gallery
of PPLS models, and 4) the multi-view system, which
represents each person by various views of the person.
The LPCMAP, PPLS and multi-view systems are con-
structed by using the same 2821 training samples per
person; the single-view system serves as a base-line.
For both models, P0 and S0 are set to 8 and 20, re-
spectively. The PPLS models consist of 7 local models
and perform 500 iterations with � set to 0.01 for each
test sample. Each pair of views are compared by an
average of normalized dot-product similarities between
the corresponding Gabor jet's magnitudes.

Table 1 summarizes the results of our recognition
experiments. Identi�cation rates in the table are av-
eraged over the 20 persons; the compression rates de-
note the size of the known-person gallery relative to
the multi-view system. The results show that recogni-
tion performance of the PPLS system was more robust
against the given pose variation (7% higher rate) than
the LPCMAP system. Performance of our model-based

PPLS LPCMAP

Unknown: M(~v) 98.7�1.0% 91.6�5.0%

Known: S(~�) 99.3�0.7% 92.4�4.0%

Table 2. Identi�cation rates when head pose of tests

is unknown or given as ground-truth.

systems was much better than the base-line and slightly
lower than the multi-view system. The high identi�ca-
tion rate of the multi-view system was perhaps due
to the dense sampling in the 3D angle space and the
virtue of our texture representation and similaritymet-
ric. Nonetheless, identi�cation rates of the PPLS and
multi-view system were almost the same while the for-
mer compressed the data by a factor of 20.

For some applications, head pose information of test
faces can be given as ground-truth prior to identi�ca-
tion. In this case, the pose-aligned model views can
be created by our model's synthesis mapping function
instead of the analysis-synthesis-chain. Table 2 com-
pares average identi�cation rates of the two cases. The
results show that the knowledge of head poses gave a
slight increase in recognition performance, however the
increase was minimal. The fact that the use of ground-
truth pose information did not greatly improve recog-
nition performance supports our assumption about the
usage of personalized pose estimation as described in
section 2.

6. Conclusion

We present a framework for recognizing faces with
large 3D pose variations. It utilizes the parametric lin-
ear subspace model for representing each known person
in the gallery. The analysis-synthesis-chain function of
the models is used to �t them to an arbitrary input,
resulting in pose-aligned model views of each known
person. The continuous and generalizable nature en-
ables our models to provide accurate pose-alignment
and to be compact at the same time. The experimen-
tal results showed the robustness of our recognition
systems against large 3D head pose variations cover-
ing �50 degree rotation along each axis. While sig-
ni�cantly compressing the data size, the PPLS system
performed better than the LPCMAP system and sim-
ilar to an equivalent multi-view system, indicating the
e�ectiveness of our recognition framework. The statis-
tics of our recognition experiments must, however, be
treated carefully because the number of known people
was relatively small and our samples included some ar-
ti�cialities which might accidentally increase the per-
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formance. Although we do not expect that the arti-
�cialities greatly inuence our system's performance,
we must further evaluate our systems with a larger
database of real faces. Our recognition systems uti-
lize pixel-wise landmark locations for representing fa-
cial shape and deriving head pose information. In re-
ality, �nding landmark locations in static facial images
with arbitrary head pose is an ill-posed problem. Ga-
bor jet-based landmark tracking system [12] can be
used to provide an accurate landmark positions, how-
ever it requires the landmarks to be initialized by other
methods. Pose-speci�c graph matching [8] provides an
another solution but with much lower precision. As
future work, we plan to develop a pose-invariant land-
mark �nding system using our parametric linear mod-
els.
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