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Abstract—Down syndrome, the most common single cause of
human birth defects, produces alterations in physical growth
and mental retardation; its early detection is crucial. Children
with Down syndrome generally have distinctive facial
characteristics, which brings an opportunity for the
computer-aided diagnosis of Down syndrome using
photographs of patients. In this study, we propose a novel
strategy based on machine learning techniques to detect Down
syndrome automatically. A modified constrained local model is
used to locate facial landmarks. Then geometric features and
texture features based on local binary patterns are extracted
around each landmark. Finally, Down syndrome is detected
using a variety of classifiers. The best performance achieved
94.6% accuracy, 93.3% precision and 95.5% recall by using
support vector machine with radial basis function kernel. The
results indicate that our method could assist in Down syndrome
screening effectively in a simple, non-invasive way.

I. INTRODUCTION

Down syndrome is a chromosomal condition caused by the
presence of a third copy of chromosome 21. It is the most
common chromosomal abnormality and it affects one out of
every 300 to 1,000 infants worldwide depending on factors
such as prenatal testing and maternal age [1, 2]. Patients with
Down syndrome have an increased risk for developmental
disabilities, heart defects, respiratory and hearing problems
and the early detection of the syndrome is fundamental for
managing the disease.

Down syndrome may be diagnosed before or after birth.
Biochemical screening and cytogenetic diagnostic tests can be
performed prenatally. After birth, Down syndrome is most
commonly identified on the basis of the presence of a number
of minor physical variations and minor malformations
including upslanting palpebral fissures, small ears, protruding
tongue, a flat facial profile, epicanthal fold (texture feature)
and extremity variations. These differences may be subtle and
are influenced by the length of gestation, the effects of labor
and delivery and the geographical backgrounds of the family,
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frequently making a rapid, accurate diagnosis difficult. In
many centers, access to pediatric specialists including
geneticists can provide additional guidance while waiting for
chromosomal confirmation which is still likely to take 48-72
hours. Numerous scoring systems have also been devised to
help with the diagnosis [3]. For infants born in non-academic
centers, more rural settings and internationally, access to
specialists is much more limited or not readily available.
Dysmorphologists estimate that the accuracy of a clinical
diagnosis of Down syndrome prior to cytogenetic results
approximates 50%-60% and is likely to be lower in many
instances[4]. The development and implementation, therefore,
of automated remote image detection for the diagnosis of
Down syndrome and other dysmorphic syndromes has the
potential for dramatically improving the diagnostic rate and
providing early guidance to families and involved
professionals.

Photography and image analysis could serve as a readily
available and powerful tool for automated computer-aided
diagnosis of Down syndrome. Some efforts have been made to
diagnose genetic syndromes using face recognition
techniques. In [5], the authors investigated the disease-specific
facial patterns for ten syndromes, excluding Down syndrome,
using Gabor wavelet features. Their latest study [6] classified
14 syndromes with 21% accuracy, representing a ratio of three
over a random choice. However, their method did not
distinguish the syndromes from a healthy population.
Moreover, the method is not fully automated that requires
manually labeled landmarks. The authors in [7] detected
Down syndrome based on Gabor wavelet transform with high
accuracy. In [8], local binary pattern (LBP) was used to
recognize Down syndrome with template matching based
method. However, both paper in [7, 8] performed
pre-processing manually to standardize the images.

In this study, we propose a novel method to detect Down
syndrome using non-standardized frontal facial photographs
of patients and machine learning techniques. First, facial
landmarks are located automatically using a constrained local
model (CLM). Then geometric features are extracted from
these anatomical landmarks and texture features based on LBP
are extracted around each landmark using size-variant
windows. Down syndrome specific features are selected after
feature extraction. Finally, we compare four classifiers,
support vector machines (SVM) with radial basis function
(RBF) kernel, linear SVM, k-nearest neighbor (k-NN), and
random forest (RF), in terms of accuracy, precision and recall.

II. METHODS

The dataset consists of 100 frontal facial photos with 50
Down syndrome patients and 50 healthy individuals acquired
with a variety of cameras and under variable illumination. The
age of individuals ranges approximately from 0 to 10. The
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dataset includes multiple ethnicities and both genders. Due to
the non-standardized photography acquisition and highly
variable light illumination effects, each image was normalized
to have an average intensity 128 and a standard deviation 20.
The method, a supervised learning scheme, can be divided into
four parts: landmark detection, feature extraction,
classification, and evaluation.

A. Automated Landmark Detection

Dryden and Mardia [9] categorize landmarks into three
categories: anatomical landmarks, mathematical landmarks,
and pseudo-landmarks. We first define 44 anatomical
landmarks. As the error in landmark detection decreases
approximately quadratically as the number of landmarks
increases [10], we add 37 more pseudo-landmarks by
interpolation. It results in the final 81 landmarks as shown in
Fig.1 (a).
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Fig.1.Facial landmarks: (a) Face annotated using 44 anatomical landmarks
and 37 pseudo-landmarks; (b) The illustration of geometric landmarks.

A mathematical representation of an 7 -point shape ink
dimensions could be to concatenate each dimension into a kn

-vector. The vector representation for planar shapes (i.e. k =2
) would then be
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We use a modified CLM [11, 12] to locate landmarks
automatically. Our method optimizes CLM with respect to
2-D coordinates directly instead of optimizing shape
parameters. The process can be subdivided into two parts
which are model building and searching. For the model
building, CLM consists of a shape model and a patch model.
The shape model describes how face shape can vary and it is
built with principal component analysis (PCA). The patch
model describes how the image around each facial feature
point should look like. With these two models, both face
morphology and textures are described.

To study the shape variation of each landmark throughout
the training dataset, all shapes need to be aligned to each other
first. The alignment in this study is done by Procrustes
analysis. Then, each aligned shape of the training set is
represented by the vector X, where Xnow contains the new
coordinates resulting from alignment. Then the shape model is
built using PCA describing shape variations in the training
data. After PCA, we can represent each landmark vector as a
linear combination of the principal components.

x=X+Pb )

where X is the mean shape, P is the eigenvector matrix, and
b=[b bz...bK]T is a shape parameter vector. To obtain
acceptable or allowable shapes, the shape parameters vary in
the range —3\//17/.<b/. <3\//17/. ,j €[LK], where A, is the "
eigenvalue Fig.2 shows the first three principal modes of PCA.

The patch model is built using linear SVM due to its
powerful discrimination and computational simplicity. For
each landmark, we extract m patch samples, some of which
are negative and some are positive examples. All m patches

have the same patch size, N pixels. We concatenate each
patch into a vector. We assign an output value for SVM,

v ={-1,1} i=12,...,m. For CLM, we can write SVM
output as a linear combination of the input vector

YO =w" x40, (3)
where w' = [w1 W, ... Wy, ] represent the weight for each input

pixel, and @ is a bias. The weights matrix could be used as the
patch model to capture the intensity information.
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Fig.2. Mean shape deformation using 1st, 2nd and 3rd principal mode,
b, =-3,/A,,b, =0,b, =3/i..

After building the CLM model, we use it to search each
landmark around their local region. First, we use Viola-Jones
face detector [13] to detect the face, eyes and tip of the nose in
the image. The images are cropped according to the rectangle
that contains the face, and scaled to 512x 512 pixels. Then we
make an initial estimation of each landmark location using
transformed mean shape. The transform matrix is determined
by the detected positions of eyes and tip of nose. Each
landmark is searched in the local region of its current position
using SVM. We denote the SVM response image with

R (x, y) which is fitted with a quadratic function

r(x,y)=a(x—x0)2+b(y—y0)+c, 4)
which can also be written in matrix format

r(x,y)=vEv' —2Fv" +ax)’ +by, +c, 5)

where v=[xy] , H=B 2} and F =[ax, by,]. The

parameters can be solved by minimizing a following objective
function
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o :ar;gmi?Z[R(x,y)—r(x,y)]z. (6)

(a,b,

Finally, the optimal landmark positions are found by
optimizing quadratic functions and shape constraints. The
joint objective function is

X = argmaxxTHx—ZFx—ﬂ(x—PPTx)T (x—PPTx), @)

subjectto —3< P! -x<3 (3)
H - 0

where  H=| i . , F=[F - F]
0o -+ H

P = [pl/\/z...pK/\/ZJ ,and p, is the i" eigenvector.

To make the search more efficient and robust, we perform
a multi-resolution search. Before the search begins, we build
an image pyramid and repeat the CLM search at each level,
from coarse to fine resolution. The start shape for the first
search is the shape generated from the Viola-Jones face
detector. The start shape at each subsequent level is the best
face found by the search at the level below.

B. Feature Extraction

Before the feature extraction, all images are aligned to the
first image using Procrustes analysis, but keeping their own
scales. Thus, the effect of translation and in-plane rotation is
removed, but the image resolution is reserved.

The geometric features consist of three types: horizontal
distances, vertical distances and corner angles. We define four
horizontal distances, seven vertical distances and 13 angles, as
shown in Fig.1 (b). The horizontal and vertical distances are
both normalized by their baselines, respectively. The
horizontal baseline is the distance between left corner of left
eye and right corner of right eye, and the vertical baseline is
the distance between the forehead point and lower lip point.
The normalized geometric features are invariant to scale,
translation and rotation.

The local texture features are extracted based on LBP
histogram [14]. First, a LBP histogram is extracted from the
region of interest (ROI) around each of the 33 inner facial
landmarks, covering important facial features. Then six
first-order statistical measurements are computed from the
histogram, which are the mean, variance, skewness, kurtosis,
energy and entropy, to capture the LBP image property.
Finally, the feature vectors in all ROIs are concatenated to
form the local texture features for the image. Thus, the local
texture features with spatial information characterize both the
local and global facial textures.

The uniform LBP, originated from LBP is a more general
approach, in which the number of neighboring sample points
is not limited:

P-1

- ) LBP, ,)<2
P+1 ,otherwise

©

U(LBPP,R) = |S(g1>-1 —gc)—s(go _gv)

2L (10)

where s() is a sign function, g, corresponds to the grey

s(g,-2)-s(2,1-2)

values of P equally spaced pixels on a circle of radius R , and
g. is the grey value of the central pixel. In this study, we set

P=8and R=1.

We combine the geometric and local texture features by
concatenation. The dimensions for the original geometric and
local texture features were 24 and 198, respectively, adding to
222 combined features. The features are then ranked based on
the area under the receiver operating characteristic (ROC)
curve and the random classifier slope. The optimal dimension
for each type of features is found based on ROC by empirical
exhaustive search.

The SVM [15] with RBF kernel, linear SVM, k-NN [16],
and RF classifiers [17] are compared in this study. In this
study, we set k=3 for k-NN classifier and trained the RF
with 150 trees.

III. EXPERIMENTS

A. Automated landmark detection

Although we built the shape model to include both the
normal and abnormal cases, we also compared the mean shape
of the Down syndrome and healthy groups. Fig. 3 (a) shows
the statistical point distribution of the training data indicating
large variation of our dataset and Fig. 3 (b) shows the mean
shapes of the two groups. They agree with the clinical findings
about Down syndrome including small nose, wide-open
mouth, etc.

Point Distribution Variation Mean Shape Comparison

= = = Healthy group Down syndrome

() (b)
Fig.3. Shape model: (a) point distribution of the training data; (b) mean shape
of Down syndrome and healthy groups.

The performance of landmark detection was evaluated by
a normalized error

xel

(11)

where | is the set of inner face is points, d (i,x) is the

Euclidean distance between inner face points located by the
automatic search and the corresponding manually landmarks,
d ;18 the distance between two pupils, and N is the number

of images. The error is 5.37%+/-1.15%.
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B. Down Syndrome Detection

Leave-one-out validation is performed throughout the
dataset. The performance is evaluated using accuracy,
precision, and recall.

The optimal dimensions of the features were selected with
respect to area under curve of the receiver operating
characteristic curve. These dimensions are 14, 9 and 9 for
geometric, local texture and combined features, respectively.

The experimental results are shown in Table I. We noted
that local texture features and combined features both
achieved the best performance using SVM classifier with RBF
with 94.6% accuracy, and high precision and recall. The high

recall rate of 95.5% is preferable in a clinical setting, as a
screening tool should miss as few syndromes as possible.

The local texture features outperformed the geometric
features by 6.6%, probably due to small errors in landmark
detection. For the geometric features, the highest accuracy and
precision were obtained by linear SVM, while the highest
recall was achieved by kNN.

We performed statistical significance tests using Fisher’s
exact test for different features and classifiers. The difference
between geometric and texture features using SVM with RBF
was significant (p=0.03). The average time for analyzing one
new case was 23.31s using MATLAB on a Windows 8 core
workstation with 12GB RAM.

TABLE L PERFORMANCE COMPARISON OF FEATURES AND CLASSIFIERS
Accuracy Precision Recall

SVM- SVM-li SVM-R SVM-lin SVM-R SVM-lin

RBF near k-NN RF BF ear k-NN RF BF ear k-NN RF
Geometric 0.826 0.880 0.837 0.870 0.818 0.867 0.784 0.864 0.818 0.886 0.909 0.864

Texture 0.946 0.870 0.902 0.891 0.933 0.833 0.889 0.870 0.955 0.909 0.909 0.909

Geometric 0.946 | 0.870 | 0902 | 0.891 0.933 0.833 0.889 | 0.886 0.955 0.909 0.909 | 0.886
+Texture

The performances of geometric, texture and combined features to detect Down syndrome are compared in terms of accuracy, precision and recall. SVM-RBF stands for support vector machine with radial basis
function kernel classifier. SVM-linear stands for linear SVM classifier. And RF stands for random forest. The bold numbers indicate the highest performance for each type of feature set.

IV. CONCLUSION

We introduced a novel method for the automated detection
of Down syndrome using non-standardized facial photos of
patients. Facial landmarks were located using a constrained
local model. Then geometric features, based on anatomical
landmarks, and local texture features, based on local binary
patterns, were extracted. After feature selection, several
classifiers were employed to discriminate between the Down
syndrome and normal cases. The results showed a substantial
improvement of the performance of the method to 94.6%
accuracy when using local texture features over geometric
features. The SVM with RBF kernel was used as classifier.
The results demonstrate the robustness of the technique to
analyze highly variable photographic data, and the potential
for computer-aided diagnosis for Down syndrome from home
photography. Data collection is on-going for more
comprehensive validation of our method. In future work we
will include features from side-view images and investigate
more effective methods for feature fusion.
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