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Abstract— Accurate assessment of severity of viral respi-
ratory illnesses (VRIs) allows early interventions to prevent
morbidity and mortality in young children. This paper proposes
a novel imaging biomarker framework with chest X-ray image
for assessing VRI’s severity in infants, developed specifically
to meet the distinct challenges for pediatric population. The
proposed framework integrates three novel technical contribu-
tions: a) lung segmentation using weighted partitioned active
shape model, b) obtrusive object removal using graph cut
segmentation with asymmetry constraint, and c) severity quan-
tification using information-theoretic heterogeneity measures.
This paper presents our pilot experimental results with a
dataset of 148 images and the ground-truth severity scores given
by a board-certified pediatric pulmonologist, demonstrating the
effectiveness and clinical relevance of the presented framework.

I. INTRODUCTION

Viral respiratory infections (VRIs) are a leading cause of
morbidity and mortality in the pediatric population world-
wide [1]. Although most pediatric VRIs only affect the
upper airways (common colds), severe VRIs may involve
the lungs and rapidly lead to life-threatening complications.
Accordingly, robust tools for severity quantification of lung
disease in pediatric VRIs are critically needed to guide
early interventions that prevent mortality in this age group.
In addition, pediatric lung markers of disease progression
in VRIs could also be used as novel phenotypical tools
for research and as end-points in clinical trials [2], [3]. It
is noteworthy that the development of lung biomarkers in
the pediatric population poses distinct challenges because
objective pulmonary function testing (i.e. spirometry) is
not reliable in young individuals given their inability to
follow instructions [4]. Similarly, imaging biomarkers of
lung disease based on chest CT have been successfully
used in adults [2], [5], [6] but CT scans entail heightened
risks for children due to cumulative radiation and need
for sedation [7]. In the literature, we are not aware of
any previous studies that have investigated the use of lung
imaging biomarkers for VRIs in children.

This paper proposes a novel imaging biomarker frame-
work with chest X-ray (CXR) image for assessing VRI’s
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severity in infants. We chose CXR as a non-invasive imag-
ing modality because of its lower radiation dosage and
wider availability than CT [7]. The proposed framework
is designed to quantify the level of heterogeneity between
intensity distributions from different lung areas, caused by
pulmonary air-trapping which is a surrogates of airway
obstruction in VRIs [2], [5], [6]. In X-ray images, air-
trapping commonly appears as irregularly-shaped areas with
intensities darker than surroundings. In order to efficiently
quantify such signatures, our method first segments both lung
fields using weighted partitioned active shape model and sub-
divides each field into quadruple areas automatically. Then
it quantifies the heterogeneity in each area by computing
maximum Kullback-Leibler (KL) divergence of intensity
distributions from the target to the other quadruple areas.
To further improve the accuracy, we propose a graph cut-
based solution with asymmetry constraint to automatically
remove large obtrusive objects, such as mechanical support
devices, which are often included in CXR images of infants
admitted for VRIs. Our implementation is validated by
using a dataset that includes 148 CXR images with ground-
truth segmentation and the severity scores based on manual
assessment of imaging phenotypes due to hyperaeration,
demonstrating the effectiveness and clinical relevance of the
presented framework.

II. METHOD

A. Lung Segmentation with Weighted Partitioned ASMs

Accurate delineation of lung fields from CXR is challeng-
ing due to ambiguous boundaries of lung field, existence of
pathologies, superposition of non-target rib bones and heart,
anatomical variation of lung shapes and size across sub-
jects, and technical variations (rotation, respiratory phase),
especially in children. Previous attempts in the literature
for the segmentation of lung field from CXR struggle to
accommodate large anatomical and pathological variations
found in pediatric CXRs. In addition, state-of-the-art existing
methods, such as [8], [9], do not delineate parts of lung field
behind aortic arch and apex of heart in CXR and therefore
annotate the lung field only partially.

To address these shortcomings, we propose a solution that
extends the weighted partitioned active shape model [10]
to partition a shape into a set of partial shapes by using
the joint shape and appearance sparse learning proposed
in [9]. To increase their robustness, we introduce a two-
tier hierarchy of landmarks placed along the contour of the
lung field border: six primary landmarks defined at salient



locations and secondary landmarks that are automatically
set between the primary ones by equidistance interpolation.
We initialize the active shape models (ASM) by placing
the primary landmarks by using cascade learning classifiers
trained with the histogram of oriented gradients (HOG) and
the local binary patterns (LBP) features, following [9].

To derive local partitions, the lung shape is divided into
overlapping segments with consistent shape variations by
performing soft-thresholding using fuzzy c-means clustering,
extending the shape sparse learning in [9] so that the varia-
tion homogeneous overlapping segments can be derived in a
principled fashion without the heuristic used in [9]. The new
cost function ψi−|νi|−γ |µi| for the i-th landmark is given
with the number of clusters c∗ determined by,

c∗ = argmin
c

n∑
i=1

c∑
j=1

wij ‖ψi − cj‖ (1)

where c and n denote the number of partitions and land-
marks, cj and wij denote the j-th cluster center and the j-th
fuzzy membership for i-th landmark, and νi µi denote spatial
mean and variance of i-th landmark across training shapes.

A local appearance model consisting of three features is
obtained for each landmark: i) normalized derivatives, ii)
tissue intensity probability (second class probability within
three class fuzzy c-mean), and iii) elongated rib structure
probability based on the vesselness filter (lungs are within
the rib cage). Depending upon the image properties, presence
of pathologies, and relevant discriminative information in
the neighborhood, landmark locations may not be reliable;
therefore, each landmark is assigned a weight based on a con-
fidence metric. Landmarks with higher confidence weights
have greater contribution in shape deformation. Primary
landmarks are assigned the maximum confidence of 1. For
secondary landmarks the confidence weight is assigned based
on local covariance of the normalized derivatives, tissue
intensity probability, and vesselness: wi = 1

1+tr(Σi)
. The

model fitting is performed individually for each partition
and the optimal position of each landmark is determined by
minimizing the Mahalanobis distance. The shape parameters
of overlapping landmarks are calculated as mean shape
parameters from the two overlapping partitions.

B. Information Theoretic Heterogeneity Quantification

Given binary masks of segmented lung fields, we apply
a series of mathematical morphology operations to divide
each field into quadruple areas (i.e., upper-proximal (UP ),
upper-distal (UD), lower-proximal (LP ), and lower-distal
(LD)) by deriving horizontal and vertical separating lines.
The lung border is extracted by subtracting an eroded mask
from the original one with a 3-by-3 structuring element. The
horizontal line is determined by finding a line parallel to the
horizontal image axis which goes through the gravity mass
of each field. The vertical line is derived by the thinning
operation, finding a medial axis that is equidistance from
left and right field borders. At the bottom of each field, the
medial axis branches out due to the concavity of diaphragm.
This is corrected by determining the lower end-point of

the major medial axis then connect it to the nearest border
pixel below it. As a result, a pair of the left and right
lung fields are subdivided into 8 regions: S = {Ri} =
{UPL, UDL, LPL, LDL, UPR, UDR, LPR, LDR}.

We assess the heterogeneity of intensity distributions for
each of the 8 regions by using KL divergence DKL(P ||Q) =∑

x P (x)log
P (x)
Q(x) . First, we derive a probability distribution

Pi(x) as a normalized intensity histogram for each region Ri.
We then compare each region against other three regions in
the same field (3-Way) or seven regions from the both fields
(7-Way) by using the KL divergence, resulting in either 3 or 7
divergence values. We consider two versions of heterogeneity
measure Ha(Ri) and Hm(Ri) by computing arithmetic mean
(AVE) and maximum (MAX) of the 3 or 7 divergence values,

Ha(Ri) = mean{DKL(Pi, Pj)|j 6= i, j ∈ Q} (2)
Hm(Ri) = max{DKL(Pi, Pj)|j 6= i, j ∈ Q} (3)

where Q denotes i) {1, .., 8} for the 7-Way measure, ii)
{1, .., 4} for the 3-Way measure when Ri belongs to the
left field, or iii) {5, .., 8} when Ri belongs to the right
field. Additionally, we define three field-wise measures that
aggregate the above region-wise measures over the left field,
right field and both fields,

Ha,m(Left) =

4∑
i=1

Ha,m(Ri) (4)

Ha,m(Right) =

8∑
i=5

Ha,m(Ri) (5)

Ha,m(All) =

8∑
i=1

Ha,m(Ri) (6)

where these measures indicate whether air trapping appears
or not in the left field, the right field, or this patient case
regardless of location, respectively.

C. Large Obtrusive Objects Removal with Asymmetry Con-
straint

CXR images of pediatric VRI patients often include
mechanical diagnostic/treatment devices, such as clips and
wires for cardiorespiratory monitoring, tubes for mechanical
ventilatory support and aerosolized therapies, and surgical
implants (e.g., pacemakers and spinal rods). The following
describes our method to remove, from the segmented lung
fields, relatively large objects that may strongly influence the
quality of the severity quantification to be measured.

Our solution consists of two steps: 1) deriving spatial
likelihood weights of the objects via template matching
with asymmetric constraints and 2) graph cut segmentation
initialized with the weights as its data cost as shown in
Fig1. As our working assumptions, we employ an asymmetry
constraint in that the target object appears only in one of the
two lung fields of a patient, as well as a symmetry constraint
in that left and right lung fields are similar. Let SL and
SR denote respective sets of image coordinates within the
segmented left and right lung fields. Two sets of k by k



(a) (b) (c) (d)
Fig. 1. Illustrative examples of obtrusive object removal. Top row: spinal
rods, bottom row: pace maker. (a) original CXR images, (b) segmented lung
field, (c) asymmetric thresholded weights, (d) graph-cut segmentation.

patch templates {TL(xL)} and {TR(xR)} are first generated
centered at each location xL ∈ SL for the left lung and
xR ∈ SR for the right lung. To account for the symmetry
constraint, we create another sets of templates {T̃L(xL)}
and {T̃R(xR)} by horizontally flipping TL and TR across
their vertical axis. To compute the likelihood for the left
field, each TL(xL) is matched against the set of the flipped
templates from the opposite lung {T̃R(xR)}. The likelihood
weights wL(x) is then given by the Euclidean distance of
the intensity differences with the best matched template,

wL(xL) = d(TL(xL), T̃R(x
∗
R)), (7)

x∗
R = argmin

xR

d(TL(xL), T̃R(xR)),

where d(TL, TR) denotes Euclidean distance between a pair
of k by k intensity arrays. The weights for right lung wR(x)
can then be similarly computed by,

wR(xR) = d(TR(xR), T̃L(x
∗
L)), (8)

x∗
L = argmin

xL

d(TR(xR), T̃L(xL)),

Once these weights are computed, we create an initial
segmentation of the obtrusive objects by thresholding w(x)
exploiting the asymmetry constraint with an empirically
determined value TH = 900. This is then used to set the
data cost of the graph cut segmentation [11] using a matlab
wrapper proposed in [12]. The result of this segmentation
is used to adjust the heterogeneity measures described in
Sec II-B by ignoring pixels within the segmented area for
the intensity histogram construction.

III. EXPERIMENTS

A. Image Data

We prepared a dataset of 148 posterior-anterior CXR
images with 46 patients, having dimensions 1607 x 1320
pixels with 0.143 mm/pixel and 16-bit gray levels. All
images were obtained from a database of cases of acute
viral respiratory illnesses in children (0-12 years of age).
We selected cases with rhinovirus (n=31) and human metap-
neumovirus (HMPV; n=15), which are viral pathogens that
cause significant respiratory morbidity in young children [1].

B. Ground-Truth

A set of ground-truth (GT) is made both for lung field
segmentation and for imaging phenotype scores. For evalua-
tion of lung segmentations, the manual segmentation of lung
fields is performed for all 148 cases under the supervision
of the two expert pulmonologists. In order to quantify sever-
ity of hyperaeration leading to air trapping, basic lucency
differentiation across quadrants, representing proximal and
distal areas of the upper and lower regions, is evaluated by a
board-certified pediatric pulmonologists with expertise in the
phenotypical characterization of viral respiratory infections
in children [13]. A total of the 8 regions (4 each lung)
are independently scored with either 0 (no air trapping), 1
(mild cases), or 2 (severe cases) for a subset of our dataset,
comprising of 60 randomly selected cases. The designed
three-level score follows the primary features of validated
imaging scales for pediatric lung diseases [14], [15].

C. Results

Our weighted partitioned ASM segmentation is evaluated
in comparison with a conventional ASM. Each lung field is
divided into 6 segments using the fuzzy c-means based so-
lution described in Sec II-A. Average overlap scores against
the ground-truth manual segmentation are 0.9091 ± 0.068
and 0.8578± 0.608 for the proposed solution and the ASM
with mean shape, respectively. Similarly, Euclidean distances
of landmark positions between the estimated and manually
annotated ground-truth are 1.8821±0.8612mm and 4.8381±
1.9126mm for our method and the ASM, respectively. For
both metrics, we observed significant improvement by the
proposed method over the ASM with p-value < 0.001.

Our obtrusive object detection/removal is also evaluated
by using the same dataset. Our dataset contained seven
cases that included large mechanical devices (pacemakers
and spinal rods, see Fig1) appeared within the lung fields.
Our method (k = 3) successfully removed 6 out of these
7 cases. Total accuracy out of 148 cases were 89.26% with
85.71% sensitivity and 89.43% specificity.

Finally, we evaluate the proposed severity measures with
the 60 cases that come with the severity GT scores. First
we evaluate linear correlation for each of the 8 regions,
summarized in Table I. Wilcoxon signed-rank test indicates
that MAX measure in Eq(3) significantly improves AVE
measure in Eq(3) for both 3-Way (p < 0.05) and 7-Way
(p < 0.05) configurations, while no statistically significant
improvements are observed between 3-Way and 7-Way mea-
sures. With MAX measures, the best correlation is achieved
at the LD region for both left (0.40 for 7-Way and 0.48 for
3-Way) and right (0.28 for 7-Way and 0.25 for 3-Way) fields,
while the worse is achieved at the UD region with values
indicating no correlations. On average, both 3-Way and 7-
Way MAX measures performed similarly. Low to moderate
correlations are in part due to highly skewed GT labels where
the number of cases without air trapping ranges between 40
to 55 out of 60 total cases across the 8 regions.

We also evaluate aggregating measures shown in Eqs(5-6)
by correlating the GT scores that are also aggregated in the



TABLE I
LINEAR CORRELATION COEFFICIENTS OF THE PROPOSED REGION-WISE

MEASURES.

AVE,3-Way MAX,3-Way AVE,7-Way MAX,7-Way
LUP 0.21 0.24 0.18 0.22
LUD -0.25 -0.15 -0.18 0.05
LLP 0.18 0.23 0.17 0.19
LLD 0.25 0.48 0.18 0.40
RUP 0.18 0.18 0.18 0.18
RUD -0.04 -0.01 -0.06 -0.03
RLP 0.16 0.21 0.15 0.24
RLD 0.12 0.25 0.05 0.28
Mean 0.10 0.18 0.08 0.19

Median 0.17 0.23 0.16 0.20
Stdv 0.17 0.19 0.14 0.13

TABLE II
LINEAR CORRELATION COEFFICIENTS OF THE PROPOSED FIELD-WISE

MEASURES.

Left Right All
3-Way 0.32 0.17 0.31
7-Way 0.28 0.18 0.35

same way over the left, right, and both fields. Each measure
can be interpreted as an indicator for air trapping in specific
lung field. Table II summarizes the results. Overall, the
proposed measure was more effective to detect air trapping
in the left field than the right; and the 7-WayMAX measure
correlated best with the GT at 0.35 when we aggregated
over both fields. In figure 2, illustrative examples of the
air trapping cases that are matched with high values of the
proposed measures are shown for four exemplar regions. The
numbers shown next to the region names are relative region-
wise 7-WayMAX measure normalized by the maximum value
among the 60 cases used. For areas correlated the best (LLD)
to the least (RUD) with GT scores, these examples show
reasonable matches with the measure and the clinical GT
scores.

IV. CONCLUSIONS AND DISCUSSION

This paper proposed an novel imaging biomarker frame-
work to assess severity of VRIs in infants by quantifying
intensity heterogeneity in patients’ CXR images. Our pilot
experimental results show potential of the proposed methods
to offer non-invasive imaging biomarkers that can be used
as diagnostic tool. The exact mechanism by which types
of respiratory viruses induce pro-asthmatic changes is still
largely unknown. This is an important direction of our future
work to improve the proposed methods as end-points for
clinical trials to investigate this further. Our future work also
includes considering more flexible area divisions, evaluat-
ing other heterogeneity measures with different divergence
metrics, applying machine learning classifiers to develop a
predictive system, suppressing non-parenchymal objects in
lungs, and experimenting with larger datasets.

RUP,1.00 RUD,0.91 LLP,0.77 LLD,0.96
Fig. 2. Illustrative examples of severe air trapping cases with high values
of the proposed measures. All cases are rated as level-2 severity except for
LLP whose highest GT severity was 1. The numbers shown next to region
names are relative region-wise MAX measures normalized by the largest
value among the 60 cases used.
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