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perature field. We then study the relationship between his-

togram similarity and a diffusion process, showing how dif-

fusion handles deformation as well as quantization effects. _ _ _

As a result, the diffusion distance is derived as the sum of (d) (e) (f)
dissimilarities over scales. Being a cross-bin histogram Figure 1.An example of deformation problem on shape context
distance, the diffusion distance is robust to deformation, histograms. (a), (b) and (c) show three different shapes shown over
lighting change and noise in histogram-based local descrip- log-polar bins. (d), (e) and (f) show the corresponding histograms
tors. In addition, it enjoys linear computational complexity ©f (2). (b) and (c) using the same 2D bins, respectively.

which significantly improves previously proposed cross-bin

distances with quadratic complexity or higher. We tested

the proposed approach on both shape recognition and in- The most often usedin-to-bin distances between
terest point matching tasks using several multi-dimensional HBLDs (e.g. x? statistics, L. distance and Kullback-
histogram-based descriptors including shape context, SIFT,Leibler divergence) assume that the histograms are already
and spin images. In all experiments, the diffusion distance aligned, so that a bin in one histogram is only compared to
performs excellently in both accuracy and efficiency in com- the corresponding bin in the other histogram. These meth-
parison with other state-of-the-art distance measures. In ods are sensitive to distortions in HBLDs as well as quanti-
particular, it performs as accurately as the Earth Mover’s zation effects. For example in Fid, they falsely state that
Distance with much greater efficiency. (b) is closer to (c) than to (a)Cross-bindistances, such as
the Earth Mover’s DistancéEMD) [20], allow bins at dif-
ferent locations to be (partially) matched and therefore alle-
. viate the quantization effect. However, most of the cross-
1. Introduction bin distances are only efficient for one-dimensional his-

Histogram-based local descriptoféiBLDs) are used  tograms (including EMD), which unfortunately limits their
widely in various computer vision tasks such as Shapeapplication to the multi-dimensional HBLDs such as shape
matching I, 22, 12, 2], image retrieval[l4, 15, and tex-  contextll], SIFT [14], etc.
ture analysis9]. HBLDs are very effective for these tasks Targeting this problem, we propose a new dissimilarity
because distributions capture rich information in local re- distance between HBLDsliffusion distance The new ap-
gions of objects. However, in practice, HBLDs often suffer proach models the difference between two histograms as a
from distortion problems due to deformation, illumination temperature field and considers the diffusion process on the
change and noise, as well as theantization effecf20]. field. Then, the integration of a norm on the diffusion field
Fig..1 demonstrates an example with shape conltxflThe over time is used as a dissimilarity measure between the
deformation between (a) and (b) makes their shape contextistograms. For computational efficiency, a Gaussian pyra-
histograms significantly different. mid is used to discretize the continuous diffusion process.

Abstract
In this paper we propose diffusion distance, a new dissim-
ilarity measure between histogram-based descriptors. We
define the difference between two histograms to be a tem-
(a) (b) (c)



The diffusion distance is then defined as the sum of normsthe pyramid matching kerndbr feature set matching. In
over all pyramid layers. The new distance allows cross-bin [3], a pyramid of histograms of a feature set is extracted as
comparison. This makes it robust to distortions such as de-a description of an object. Then the similarity between two
formation, lighting change and noise that often causes prob-objects is defined by a weighted sum of histogram intersec-
lems for HBLDs. Experimentally we observed that the dif- tions 21] at each scale.
fusion distance performs as accurate as EMD. On the other Our work differs from the above works in several ways.
hand, due to the exponentially decreasing layer sizes in theFirst, we model the similarity between histograms with
Gaussian pyramid, the new approach has a linear time coma diffusion process. Second, we focus on comparing
plexity, which is much faster than previously used cross-bin histogram-based local descriptors such as shape cortext [
distances with quadratic complexity or higher. and SIFT[L4], while the above works focus on feature dis-
In summary, the diffusion distance is the main contri- tributions in the image domain. The difference between the
bution of this paper. It is robust to distortion and quanti- proposed approach and the pyramid matching kerné]in [
zation effects in comparing histogram-based local descrip-is studied in Sec3.
tors, while it is much more efficient than previously pro- Previously, we proposed a fast EMD algorithm, EMD-
posed cross-bin approaches. In our experiments on bothr; [13], for histogram comparison. EMID, utilizes the
shape features (shape cont&@f) pnd image features (SIFT  special structure of thé&; ground distance on histograms
[14], shape contextl]] and spin imaged, [7]), our method for a fast implementation of EMD. Therefore it still solves
outperformed other state-of-the-art methods. the transportation problem, which is fundamentally differ-
The rest of the paper is organized as follows. $&c. ent from the motivation of this paper. The diffusion distance
reviews related work. Sed presents the proposed dif- is much faster than EMO-, and performs similarly in the
fusion distance and discusses its relationship to EMD andcase of large deformations. However, in a preliminary ex-
previously proposed pyramid-based approaches. &ec. perimentwith only small quantization errors, EMD)-per-
describes experiments comparing the diffusion distance toformed better than the diffusion distance. More comprehen-
other methods on shape matching and interest point matchsive comparisons between them remains as an interesting

ing tasks. Sed concludes the paper. future work.
Other histogram dissimilarity measures and an evalua-
2. Related Work tion can be found in19. In [19, the authors also de-

scribe two other cross-bin distances: early work by Peleg

Dis/similarity measures between histograms can be cat-et al. [[7] and a heuristic approachuadratic formdistance

egorized into bin-to-bin and cross-bin distances. Our ap-
_ . [16,4].
proach falls into the latter category. In the following, we The diffusi h idelv b d for th
discuss the cross-bin distances that are most related to our € aimusion process has widely been used for the pur-
study, pose of data smoothing and scale-space analysis in the com-
Thé Earth Mover's Distance (EMD) proposed by Rubner puter vision community. Some earlier work introducing this
et al. [20] defines the distance computation between distri- idea can be found irl |. These works axiomatically

butions as a transportation problem. EMD is very effec- dztr_r:)(;n:c;)trr%t_?fd t.r;it a:OIZEE rr?:d%:f thznhggsro?eta;nd:s';
tive for distributions with sparse structures, e.g., color his- patl usion p ss has Lauss volutl s

tograms in the CIE-Lab space iid]. However, the time unutq#e dso_lutllor;. More trecgnt dyvf(fa |I-!<n0\;vn d|(1;fu5|on—bas§d
complexity of EMD is larger tha®(N3) where N is the methods Include anisotropic drtiusion for edge-preseving

number of histogram bins. This prevents its application to data s:pozthll_ngllﬁij 'ancjjfutolTatllc scale Zelecﬂot?] Wﬁ’ht.
multi-dimensional histogram-based descriptors such as the'ormallzed Lapiacian.i J aiso provides a theoreti-
HBLDS cal foundation to other vision techniques such as Gaussian
) pyramids and the SIFT feature detect@d]] Despite its

EMD algorithm by embedding the EMD metric into a ubiquitousness, to the best of our knowledge, this is the first

Euclidean space. The embedding is performed using a p;-2ttempt to exploit the diffusion process to compute a his-

erarchical distribution analysis. EMD can be approximated togram distance.

by measuring thd.; distance in the Euclidean space af- ) ] ) ]

ter embedding. The time complexity of the embedding is 3. The Diffusion Distance Between Histograms

O(Ndlog A), whereN is the size of feature sets,is the

dimension of the feature space af\ds the diameter of the

union of the two feature sets to be compared. The embed-

ding approach is effectively applied to retrieval tagbjssind Let us first consider 1D distributiorig (z) andhs(x). It

shape comparisoi2]. is natural to compare them by their difference, denoted as
Most recently, Grauman and Darrefi] [proposed using  d(z) = hi(x) — hao(z). Instead of putting a metric o

Indyk and Thaperd] proposed a fast (approximative)

3.1. Modelling Histogram Difference with a Diffu-
sion Process



directly, we treat it as an isolated temperature fiEld;, ¢)
attimet = 0, i.e. T(x,0) = d(z). Itis well known that

From [5) and (), it is clear that:(.) and X are monoton-
ically increasing withA. This suggests thdt” indeed mea-

the temperature in an isolated field obeys the heat diffusionsures the degree of deformation between two histograms.

equation
or 0T
o o @)
It has a unique solution
T(x,t) = To(x) * ¢(, t) )
given initial conditionTy ()
T(x,0) = To(z) = d(x) ©)
where¢(z, t) is the Gaussian filter
1 x2
P(z,t) = @m) 2 eXP{*ﬁ} (4)

Note that the mean of the difference field is zero, there-
foreT'(z,t) becomes zero everywhere wheimcreases. In
this senseT(z, t) can be viewed as a process of histogram
value exchange which makeés and h, equivalent. Intu-
itively, the processliffusesthe difference between two his-
tograms, therefore a dissimilarity can be extracted by mea
suring the process. A distance betweégrandh; is defined
as

N 7

Ritnoto) = [ (70t (5)
wheret is a positive constant upper bound of the integra-
tion, which can bex as long as the integration converges.
k(.) is a norm that measures hdi(z, t) differs from 0. In
this paper, we use thie; norm because of its computational
simplicity and good performance in our pilot studies.

Next we will show howK handles deformation with a
simple 1D example.

Assume a simple case whéete(z) = d(x) andhy(z) =
d(x — A), as shown in Fig2 (a) and (b). This means the
histogram is shifted byA > 0. The initial value ofT’(z,t)
is thereforely = 6(x) — §(x — A), as shown in Fig2/ (c).
The diffusion process becomes

T(x,t) (0(z) = 0(x = A)) * ¢(x,1)
Q/)('Ta t) - d)(x - A7t)
Use theL; norm fork(.),

(6)

k(T (2, 1)])

A2 N
= 2 </ o(x,t)dx —[ gi)(x,t)dx)
A2
= 2 <2 ¢(z,t)dx — 1) (7)

5(x) G(x-A)
1 I
0 (@) )
t G{X}—AG{X—A}
’ l (c)

Figure 2.Two histograms with shiftA between them and their
difference. (@h1. (b) ha. (€)d = h1 — ha.

3.2. Relation to the Earth Mover’s Distance

From the above discussion, it is clear tifatis a cross-
bin distance, which allows comparison between bins at dif-
ferent locations. In this subsection we will discuss its re-
lation with EMD [20], which is another effective cross-bin
“histogram distance.

Given two histogram#; andhs, EMD modelsh; as a
set of supplies and, as a set of demands. The minimum
work to transport all supplies to demands is used as the dis-
tance betweer; andhs. In other word, EMD measures
the dissimilarity between histograms with a transportation
problem PR0).

Note that bins of,; andh, share same lattice locations,
which means that it takes zero work to transport supplies
from a bin ink; to the same bin ithy. This leads to an intu-
itive interpretation of EMD with the differencé= hy — ho:
EMD is the minimum work of exchanging values déhto
maked vanish everywhere.

This provides an intuition about the difference between
EMD and K. EMD seeks the exchanging scheme which
has the minimum work, whil&” measures a more “natural”
exchanging scheme, i.e. diffusion process. While EMD
has been successfully applied to several vision tasks (e.g.
[20,12]), the diffusion-based distances have not been evalu-
ated with any vision tasks. Our conjecture is that they may
fit to different tasks. In our experiments (see $8wn the
HBLDs suffering large deformation, both approaches per-
form quite similarly. Below we demonstrate an example, in
which K performs better than EMD.

Consider three one-dimensional histogramsh, and
hs as illustrated in the left of Fig3. hs is shifted fromh,
by A, while hs can not be linearly transformed from.

We want to comparé; to ho andhs. Subtractingh, and
hs from hy, we get the differences$,,, d;3 as shown in the
right of Fig.3. It is clear that the EMD betweée, andh,
are the same as the EMD betwéegnandhs. Perceptually,
however,h; seems to be more similar tg than tohs.
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Figure 3.Left: Three 1D histograms. Right: The differences be-
tween them.

Fig.4 shows the diffusion proce§¥z, t) att = 0, 6, 12.
From the figure we see that(|7(x,t)|) for h; and hq
i§ always smaller than that fot; and h3. Therefore,
K(hy,hy) < K(hy,hs). This is more consistent with our
perception.
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Figure 4. The diffusion process of the differende; (left column)
andd; s (right column). Each row shows the diffusion result at a
different timet. k(|T'|) is measured using thie; norm; the values
show thatd;» decays faster thadh ;.

3.3. Diffusion Distance

It is straightforward to extend previous discussions to
higher dimensions. Consider twm-dimensional his-
togramsh, (x) andhy(x), wherex € R™ is a vector. The
definition of K (1, h») is the same as in SeB.1, except
that equations1) and @) are replaced by8) and 0), re-
spectively.
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Now the problem is how to compuf%. Direct computa-
tion of equation[{) is expensive. Instead, we use an alterna-
tive distance function based on the Gaussian pyramid. The
Gaussian pyramid is a natural and efficient discritization of
the continuous diffusion proce§gx,t). It is justified be-

cause smoothing allows subsampling without aliasing. With
this idea, we propose thffusion distances (hq, hy) as

L
K(h1,hg) = k(|di(x (10)
=0
where
do(x) = hi(x)— ha(x) (11)
dl(x) = [dl71<x) * ¢(X7U)] i2 l= 17 7L (12)

are different layers of the pyramid. The notatiojp™ de-
notes half size downsamplingL is the number of pyra-
mid layers andr is the constant standard deviation for the
Gaussian filtet.

Note that as long ak(.) is a metric,K (hy, ha) forms a
metric on histograms. In particular, in this paper we choose
k(.) as theL; norm, which makes the diffusion distance a
true metric. Equationl() is then simplified as

Z di(a

The computational complexity oK (hy, he) is O(N),
whereN is the number of hitogram bins. This can be eas-
ily derived by two facts. First, the size df exponentially
reduces. Second, only a small Gaussian filtés required
which makes the convolution take time linear in the size of
d; for each scalé.

hl 9 h2 (13)

3.4. Relation to the Pyramid Matching Kernel

The diffusion distancell(3) is similar to the pyramid
matching kernel (PMK) recently proposed by Grauman and
Darrell [3] in that both methods compare histograms by
summing the distances over all pyramid layers.

As mentioned in the related work section, our approach
focuses on histogram-based local descriptors, while PMK
focuses on feature set matching. The two methods have the
following differences.

First, when comparing each pyramid layer, PMK counts
the number of newly matched feature pairs via the differ-
ence of histogram intersectio2l]. This is particularly
effective for handling occlusions for feature set matching.
However, this is not an effective strategy for HBLDs be-
cause they are usually normalized. In contrast, we employ
the L, norm to compare each pyramid layer.



Second, PMK uses varying weights for different scales

by emphasizing finer scales more. This is reasonable for Y y O{) Y Y Y A n
feature set matching as mentioned @j. [However in the

diffusion distance, uniform weights are used - this seems Y y Cyo Y [X) Y /\ n
more natural and performs better than non-uniform weights Y y y‘xyf\A

in our preliminary experiments.
Third, the diffusion distance uses Gaussian smoothing Q/ f: O O

before downsampling according to the underlying diffusion 1><o w% ; i ‘ A

process. y . SO r— r\
Fourth, PMK requires random shifting when extracting > ><>

histograms from feature sets to alleviate quantization ef- Figure 5.Articulated shape database. This dataset contains 40 im-
fects. The proposed method avoids such a strategy by usingges from 8 objects. Each column contains five images from the
the intuitive cross-bin referencing imposed by the diffusion. same object with different articulation.

. Table 1.Retrieval result on the articulated dataset with shape con-
4. Experiments text [1]. The running time (in seconds) of using was not re-
ported in [L2].

Distance | Top1l| Top2 | Top3 | Top4 | Time
x° [12] 20/40 | 10/40 | 11/40| 5/40 | N/A
EMD [20] | 37/40 | 33/40 | 24/40 | 16/40 | 1355s

Diffu. Dist. | 34/40| 27/40 | 19/40 | 14/40| 67s

In this section the diffusion distance is tested for two
kinds of vision tasks using HBLDs. The first experiment
is for shape features, where the diffusion distance is used
to compare shape contex] [in a data set with articulated
objects. The second experiment is for interest point match-
ing on a data set W'th synthetic def?’rma“on- illumination Table 2.Retrieval result on the articulated dataset with the inner-
change and heavy noise. Both experiments demonstrate thalisiance shape conte. The running time (in seconds) of us-
the proposed method is robust for quantization problems. jng 2 was not reported irfl[Z].

Distance | Topl | Top2 | Top 3| Top4 | Time
4.1. Shape Matching with Shape Context 2117 40/40 | 34/40 | 35/40 | 27/40 | N/A
EMD [20] | 39/40| 38/40| 26/40| 28/40 | 1143s
Diffu. Dist. | 40/40 | 36/40 | 37/40 | 23/40 | 68s

This subsection compares the diffusion distance for
shape matching with shape context (S@)dnd the inner-
distance shape context (IDSC12]. Shape context is a

shape descriptor that captures the spatial distribution Ofprogramming matchings are used to compute distances be-

!andmark po!nts around every interest key poiljt [!DSC . tween pairs of shapes. The recognition result is evaluated
is an extension of SC using the shortest path distance in-

) : as following: For each image, the 4 most similar matches
stead of Euclidean _d|stan(_:e. i, SC _and IDSC are used are chosen from other images in the dataset. The retrieval
for contour comparison with a dynamic programming (DP) result is summarized as the number of 1st, 2nd, 3rd and 4th

scheme. We use the same framework, except for replac- . :
. : . e N most similar matches that come from the correct object. Ta-
ing the x2 distance with the diffusion distance and EMD )

ith Rubner’ 5 ina dissimilarity bet ble1 shows the retrieval results using the shape context. It
(W' ubners coas) for measuring dissimilarity between demonstrates that the diffusion distance works much better
(inner-distance) shape contexts.

. . _ than they? distance.
The experiment is conducted on an articulated shape 1,107 shows the results for inner-

database tested ii2]. The database contains 40 images
from 8 different objects. Each object has 5 images artic-
ulated to different degrees (see Figli)e This data set is
designed for testing articulation, which is a special and im-
portant case of deformation/13] shows that the original
shape context witly? di_stance does n_ot wo_rk well forthese 4 o Image Feature Matching
shapes. The reason is that the articulation causes a large
deformation in the histogram. This subsection describes the experiment for interest
We use exactly the same experimental setup as used iP0int matching with several state-of-the-art image descrip-
[12]: 200 points are sampled along the outer contours of tors. The experiment was conducted on two image data sets.
every shape: 5 log-distance bins and 12 orientation binsThe first data set contains ten image pairs with synthetic

are used for shape context histograms. The same dynamiéé€formation, noise and illumination change, see Bifpr
some examples. The second one contains six image pairs

Lhitp://ai.stanford.edefrubner/emd/default.htm with real deformation and lighting changes, some of them

distance shape con-
text. In this case, though the inner-distance is already in-
sensitive to articulation, the diffusion distance stillimproves
the result. From the tables we also see that the diffusion dis-
tance works similarly to EMD, while being more efficient.




tion focusing on un-normalized histograms extracted from
feature sets.

Interest point. We use Harris corner$] for the match-

ing experiments. The reason for this choice is that, due to
the large deformation, noise and lighting change, it is hard
to apply other interest point detectors. On the other hand,
we focus more on comparing descriptors than the interest
points. For the synthetic data set, we pick 200 points per im-
age pair with the largest cornerness responses. To compute
the descriptors, a circular support region around each inter-
est point is used. The region diameter is 41 pixels, which is
similar to the setting used ifi§]).

Descriptors. We tested all the distances on three different
histogram-based descriptors. The first one is SIFT proposed
Figure 6.Some synthetic image pairs with synthetic deformation, PY [14]. It is a weighted three-dimensional histogram, 4
illumination change and noise. bins for each spatial dimensions and 8 bins for gradient ori-
entation. The second one is the shape configxfifhe shape
context for images is extracted as a two-dimensional his-
togram counting the local edge distribution in a similar way
to [15]. In our experiment, we use 8 bins for distance and 16
bins for orientation. The third one is the spin ima@z1]
which measures the joint spatial and intensity distribution
of pixels around interest points. We use 8 distance bins and
16 intensity bins.

Evaluation criterion. For each pair of images with their in-
terest points, we first find the ground-truth correspondence.
This is done automatically for the synthetic data set and
manually for the real image pairs. Then, for efficiency we
removed those points in Image 1 with no correct matches
(this also makes the maximum detection rate to 1). After
that, every interest point in Image 1 is compared with all in-
Figure 7.Some real image pairs containing deformation and light- terest points in Image 2 by comparing the SIFT extracted on
ing change. Two pairs of images with large lighting change them. The detection rate among the ft¥gmatches is used

are not shown here due to copyright issues. They are availableto study the performance. The detection ratis defined
at http://www.cs.umd.edu/"hbling/Research/Publication/data/RD- ;i __ # correct matches
cvpr06.zip. similarly to [15] asr = # possible matches

Experiment results. A Receiver Operating Characteristic
(ROC) based criterion is used to show the detection rates
are shown in Figi/. The experimental configuration and versusN that is the number of most similar matches al-
results are described below. lowed. The ROC curves on synthetic and real image pairs
Dissimilarity measures. We tested the diffusion distance are shown in Fig8. In addition, the running time of each
along with several popular bin-to-bin distances, as well as method is recorded. The average running time over real im-
cross-bin distances. The bin-to-bin distances include theage pairs is summarized in Talfie From these results, we
x? statistics, the symmetric Kullback-Leibler divergence see that the cross-bin distances work better than bin-to-bin
(KL), symmetric Jensen-Shannon(JS) divergerid#, [L- distances. EMD, EMDE; and the diffusion distance per-
distance and Bhattacharyya distance (BT). Cross-bin dis-form consistently better than the quadratic form distance.
tances include EMD, EMDO-; and quadratic form(QF). For  For efficiency, it is clear that the diffusion distance is much
EMD, we use Rubner’s online code with, ground dis- faster than all three other cross-bin distances - this is due to
tance. The quadratic form distance is implemented accord-its linear computational complexity.
ing to [20]. For the diffusion distance, we set the Gaussian
standard deviatioa = 0.5 and use a window of siz& x 3 5. Conclusion and Future Work
(3 x 3 x 3 for 3D histograms). We did not compare with
PMK [3] because it requires random shifting when building ~ We model the difference between two histograms as an
a initial histogram (zero-th layer) and it uses the intersec- isolated temperature field. Therefore the difference can
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Figure 8.ROC curves for interest point matching experiments. Left column is for synthetic image pairs and right for real image pairs. First
row is for experiments with SIFT1H], second row for shape contei][ and third row for spin image9; 7]

be studied with a diffusion process. Combining this idea scriptors since it alleviates deformation problems as well as
and the connection between a diffusion process and thequantization effects that often occur in real vision problems.
Gaussian pyramid, we proposed a new distance betweern the experiments on both shape features and image fea-
histograms, diffusion distance. We show that the diffusion tures, the proposed approach demonstrates very promising
distance is robust for comparing histogram-based local de-performance in both accuracy and efficiency in comparison
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