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Abstract

A unified approach for treating the scale selection prob-

lem in the anisotropic scale-space is proposed. The

anisotropic scale-space is a generalization of the classical

isotropic Gaussian scale-space by considering the Gaus-

sian kernel with a fully parameterized analysis scale (band-

width) matrix. The “maximum-over-scales” and the “most-

stable-over-scales” criteria are constructed by employing

the “ -normalized scale-space derivatives”, i.e., response-

normalized derivatives in the anisotropic scale-space. This

extension allows us to directly analyze the anisotropic (el-

lipsoidal) shape of local structures. The main conclusions

are (i) the norm of the - and -normalized anisotropic

scale-space derivatives with a constant =1/2 are maxi-

mized regardless of the signal’s dimension iff the analy-

sis scale matrix is equal to the signal’s covariance and

(ii) the most-stable-over-scales criterion with the isotropic

scale-space outperforms the maximum-over-scales crite-

rion in the presence of noise. Experiments with 1D and

2D synthetic data confirm the above findings. 3D im-

plementations of the most-stable-over-scales methods are

applied to the problem of estimating anisotropic spreads

of pulmonary tumors shown in high-resolution computed-

tomography (HRCT) images. Comparison of the first- and

second-order methods shows the advantage of exploiting

the second-order information.

1. Introduction

Gaussian scale-space theory [12, 5, 2, 7, 9] offers a general

paradigm for analyzing various local image features of arbi-

trary size. One of its useful attributes is the maximum-over-

scales property of the -normalized derivatives [7], i.e., the

characteristic scale of a feature located at the local spatial

maximum corresponds to the bandwidth of the Gaussian

kernel that provides the local maximum of the normalized

derivatives over the varying bandwidths. This is a solution

to the general scale selection problem: given a set of analy-

sis scales (bandwidths), find the analysis scale that provides

the best estimate of the local feature’s scale or other proper-

ties. The theory has been studied extensively and applied to

various problems. However, the main focuses have been on

the scale-space functions which model either the isotropic

homogeneous [12, 5] or anisotropic inhomogeneous [11]

diffusion processes.

This paper introduces anisotropic scale-space as a so-

lution to the anisotropic homogeneous diffusion equation.

The anisotropic scale-space is characterized by a fully pa-

rameterized analysis scale matrix and is a generalization of

the classical isotropic Gaussian scale-space. This extension

allows us to directly analyze the anisotropic (ellipsoidal)

shape of the local structures, i.e., the scale-space analysis

can be interpreted as the covariance estimation of signals

locally modeled by a Gaussian-based function. Such an

anisotropic scale-space construction has scarcely been stud-

ied in the context of the scale selection problem.

We propose two novel scale selection frameworks,

maximum-over-scales and most-stable-over-scales criteria,

constructed from -normalized scale-space derivatives

that are response-normalized derivatives in the anisotropic

scale-space. For practical consideration, the isotropic scale-

space is employed for constructing the most-stable-over-

scales criterion. By considering local Gaussian-like (blob-

like) structures, we derive a number of scale selection so-

lutions from the first- and second-order normalized deriva-

tives. In many applications, the second-order blob feature

provides essential information of target structures such as

tumors in medical imaging or faces in surveillance appli-

cations. Its usefulness has also been discussed in a recent

study by Lillholm et al. [6].

The main conclusions of this paper are (i) the norm of

the - and -normalized anisotropic scale-space derivatives

with a constant =1/2 exhibit the maximum-over-scales

property regardless of the signal’s dimension for both the

use of the first- and second-order derivatives and (ii) the

most-stable-over-scales criterion with the isotropic scale-

space outperforms themaximum-over-scales criterion in the

presence of noise. Additionally, we discuss the relationship

and equivalence of some of the proposed methods to the

previously proposed covariance estimation methods [4, 1].

Experiments with 1D and 2D synthetic data are conducted
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to validate these findings. Finally, we apply 3D implemen-

tations of the proposed methods to the problem of estimat-

ing anisotropic spreads of pulmonary tumors shown in high-

resolution computed-tomography (HRCT) images. Com-

parison of the first- and second-order methods indicates the

advantage of exploiting the second-order information. The

results of these experiments are given in Sec. 5.

2. Anisotropic Scale-Space

This section provides definitions of the anisotropic scale-

space and its derivatives. Given a -variate continuous pos-

itive signal (x), the local region of forming a Gaussian-

like structure around a spatial local maximum u can be ap-

proximated by a product of a -variate Gaussian function

and a positive multiplicative parameter,

(x) ' × (x;u )|x S (1)

where S is a set of data points in the neighborhood of u,
belonging to the basin of attraction of u, and (x;u ) =
(2 ) 2| | 1 2 exp( 1

2(x u) 1(x u)). The co-
variance of describes the spread of the local Gaussian-

like structure. Its anisotropy can be specified only by a fully

parameterized covariance.

The Gaussian scale-space is a one-parameter family of

a -variate continuous signal provided by a convolution

with isotropic Gaussian kernels (x;0 H = I) with
varying analysis scales (bandwidths) 0.

(x;H) (x) (x;0 H) (2)

Such a linear scale-space is known to be a solution of the

isotropic diffusion equation = 1 2 2 [12, 5].

We define the anisotropic scale-space as a generalization

of Eq.(2) by considering a fully parameterized symmetric

positive definite analysis scale matrixH SPD R × ,

where SPD denotes the set of symmetric positive definite
matrices. The anisotropic scale-space is a solution to the

anisotropic homogeneous diffusion 1 H = 1 2 .

2.1. Scale-Space Derivatives

The th-order derivatives of (x;H) can be derived by
convolving the signal (x) with the th-order Gaussian

derivative kernels since the differential operators commute

across the convolution operations. Thus scale-space gradi-

ent vector (x;H) R and scale-space Hessian matrix

P(x;H) R × are defined by,

(x;H) (x;H)

= (x) (x;H)H 1( x) (3)

P(x;H) (x;H)

= (x) (x;H)H 1(xx H)H 1 (4)

1It should not be confused with the well-known anisotropic diffu-

sion [11] which models inhomogeneous diffusion processes.

On the other hand, by substituting Eq.(1) to Eq.(2), Eq.(3),

and Eq.(4), analytical formula of the scale-space and its

derivatives and P are derived as functions of a Gaussian

with a covariance matrix +H,

(x;H) = (x;u +H) (5)

(x;H) = (x;u +H)( +H) 1(u x) (6)

P(x;H) = (x;u +H)( +H) 1 (7)

[(u x)(u x) ( +H)]( +H) 1

2.2. -normalized Scale-Space Derivatives

We introduce -normalized derivatives defined by the

point-wise division of the scale-space derivatives by the cor-

responding scale-space. -normalized scale-space gradient

vector and Hessian matrix P are defined by,

(x;H)
(x;H)

(x;H)
= ( +H) 1(u x) (8)

P (x;H)
P(x;H)

(x;H)
(9)

= ( +H) 1(u x)(u x) ( +H) 1

( +H) 1

They are response-normalized derivatives in the scale-

space and vanish both the multiplicative parameter and

the exponential term from the derivative formulae. Both

-normalized scale-space gradient and Hessian are com-

putable since (x;H) is non-zero within a finite range with
positive (x).

3. Maximum-Over-Scales Criterion

The maximum-over-scales criterion was proposed by Lin-

deberg [7] by using the -normalized derivatives. Given

a Gaussian scale-space, some scale-space derivative func-

tions normalized by the analysis scale raised to the power

of an upper-bounded real value assume their local maxi-

mum at the characteristic scale of the target feature. For the

d-variate local Gaussian-like structures, the -normalized

Laplacian with = ( + 2) 4 evaluated at a spatial lo-

cal maximum, tr(H( +2) 4P(u;H)), is locally maximized
over scales when the analysis scale is equal to the signal’s

variance 2, where “tr” denotes the trace of a × matrix,

H = I, and = 2
I. Our pilot study showed that this

maximum-over-scales property holds for the anisotropic

scale-space with fully parameterizedH and .

We develop a new maximum-over-scales criterion con-

structed with the norm of the -normalization of the -

normalized scale-space derivatives. Note that in the Lin-

deberg’s criterion depends on the dimension of the signal
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Figure 1: Examples of the maximum-over-scales methods.

A centered 1D Gaussian signal with 2 = 2 is used as
target. (a) the first-order method with Eq.(10), (b) the -

normalized Laplacian, (c) the second-order method with

Eq.(11), (d) the second-order method with Eq.(12). Curved

lines in each plot display the norm computed at 21 locations

x=0 0 1 2 over 291 analysis scales =0 1 0 11 3.
Dash lines denote the ground-truth scale. “°” and “×” in-
dicate the maximum-over-scales for the spatial maximum

(x = 0) and for the non-maximum (x 6= 0), respectively.

for assuming the maximum-over-scales property. The pro-

posed criteria provide an elegant solution, in which a con-

stant = 1/2 gives rise to the maximum-over-scales prop-

erty regardless of the signal’s dimensions for both the first-

and second-order cases. The spatial local maximum loca-

tionu is assumed to be known hereafter. For notational sim-

plicity, the function arguments of (x;H) and P (x;H)
are omitted unless they are evaluated at a specific location.

Fig.1 illustrates the proposed criteria with a synthetic 1D

Gaussian signal.

3.1. First-Order Method

Using Eq.(8), a -normalization of the -normalized scale-

space gradient vector with =1/2 is expressed by H1 2

= H1 2( +H) 1(u x). We consider 2 norm of the

normalized gradient,

kH1 2 k2 = kH
1 2( +H) 1(u x)k2 (10)

Rewriting this equation with the mean shift vectorm(x;H)

H [1, 10] results in kH1 2 k2 = kH
1 2mk2. This

demonstrates that the 2 norm is equivalent with the mag-

nitude of the bandwidth-normalized mean shift vector intro-

duced in Theorem 1 of [1, p.282]. The theorem states that

such magnitude exhibits the maximum-over-scales property

withH = . The proof is provided in [1, p.287]. Thus the

2 norm of the - and -normalized scale-space gradient

vector possesses the maximum-over-scales property. This

criterion holds at arbitrary locations x S except at u as
shown in Fig.1a.

3.2. Second-Order Methods

Two types of second-order scale selection methods are con-

sidered. First, a solution only with the Hessian matrix is

examined. Using Eq.(9), the -normalization of the -

normalized scale-space Hessian matrix with =1/2 is ex-

pressed byH1 2P =H1 2 H1 2( +H) 1. When

evaluated at the spatial maximumu, the normalized Hessian

is reduced to the following form since becomes zero:

H1 2P (u;H) = H1 2( +H) 1. The Frobenius matrix

norm of this derivative matrix function is given by,

kH1 2P (u;H)k = kH1 2( +H) 1k (11)

The following maximum-over-scales method is obtained

using Eq.(11),

Proposition 1 The Frobenius norm of the - and -

normalized scale-space Hessian matrix with = 1/2

is maximized when the fully parameterized analysis

scale matrixH SPD is equal to .

Proof given in Appendix A.

Proposition 1 is true only at the spatial maximum u as

shown in Fig.1c. The -variate -normalized Laplacian

can be expressed as a matrix trace: tr(H( +2) 4P(u;H))

= (u;H)tr(H( +2) 4( +H) 1). Also the Frobenius

norm in Eq.(11) can be expressed by kH1 2P (u;H)k2

= tr(( + H) 1H( + H) 1). As compared in Fig.1b
and Fig.1c, both methods behave similarly despite the dif-

ference in their functional forms.

Second, a solution that includes both gradient and Hes-

sian is examined. From Eq.(9), the - and -normalization

of a derivative function P with =1/2 is given by

H1 2( P ) = H1 2( +H) 1. And its Frobenius

norm is,

kH1 2( P )k = kH1 2( +H) 1k (12)

Consequently, we obtain the following maximum-over-

scales method,

Proposition 2 Consider a scale-space derivative matrix

function of a sum of the outer-product of the -

normalized scale-space gradient vector and the negated

-normalized scale-space Hessian matrix. The Frobe-

nius norm of the -normalization of this matrix func-

tion with = 1/2 is maximized when the fully parame-

terized analysis scale matrixH SPD is equal to .

Proof given in Appendix B.

As shown in Fig.1d, this solution is invariant against the

locations and its maximum-over-scales property holds for

all the locations x S.
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4. Most-Stable-Over-Scales Criterion

We develop the most-stable-over-scales criterion con-

structed again by employing the -normalized scale-space

derivatives. This approach exploits the fact that the scale

selection with the anisotropic scale-space can be seen as

fully parameterized covariance estimation. Each derived

method consists of two steps: 1) least-squares estimation

of the signal’s covariance ( ) for each isotropic analy-
sis scale and 2) divergence-based stability test for obtain-

ing the most stable estimate over the scales ˆ = ( =
argmin div{ ( )}).
The maximum-over-scales criterion becomes impracti-

cal when high-dimensional anisotropic structures are con-

sidered. Such cases require a dense sampling of a multi-

variate product space, resulting in prohibitively large search

space. For this practical reason, this criterion employs

isotropic analysis scales H = I ( R 0). This is
possible because the direct covariance estimators described

in the next section are valid with arbitrary scale matricesH.

Furthermore, estimation errors due to noise can be reduced

by combining a set of estimates derived from different lo-

cations within the basin of attraction of u since the direct

estimators are also satisfied at arbitrary locations x S.
For the stability test, a form of the Jensen-Shannon di-

vergence proposed in [1] is employed given a set of ordered

analysis scales forming a geometric sequence { | =

1 ; +1 = },

( ) =
1

2
log

| 1
2 +1

P + ( )|

2 +1

qQ +
| ( )|

(13)

+
1

2

+X
(u( ) u) (

+X
( )) 1(u( ) u)

where u = 1
2 +1

P +
u( ) and is a neighborhood pa-

rameter.

4.1. Direct Covariance Estimators

This section derives explicit estimators of the signal’s co-

variance used for constructing the stability-based scale

selection criterion. The -normalized scale-space deriva-

tives can be numerically computed from the given signal

(x) by using Eq.(2), Eq.(3), and Eq.(4). The resulting
equations are satisfied with any given anisotropic analysis

scale matricesH SPD.
A covariance estimator with the normalized gradient

is derived by manipulating Eq.(8) while maintaining its

equality,

= u x H (14)

The resulting equation of an unknown is under-complete,

requiring at least two independent samples for the unique

solution. Given a sufficient number of independent sam-

ples, an over-complete normal equation can be formed

and solved by a constrained least-squares method. This

equation can also be expressed as a function of the fixed-

bandwidth mean shift vectorm(x;H) H (x;H) pro-
posed in [1, 10], i.e., H 1m = u x m. This assumes

exactly the same form as the constrained least-squares for-

mulation proposed in [10]. Both equations become singular

when goes to zero at x = u.
Another covariance estimator with the normalized Hes-

sianP is derived by manipulating Eq.(9) while maintaining

its equality,

= ( P ) 1 H (15)

This equation exploits both first- and second-order deriva-

tives. Unlike the first-order equation, the equality holds at

arbitrary locations x S.
At the spatial maximum u, Eq.(15) collapses into the

form only with the Hessian matrix,

= ( P (u;H)) 1 H

= (u;H)( P(u;H)) 1 H (16)

The resulting form is similar to the well-known Hessian-

based covariance estimator [4, 8], except the second nega-

tive term included due to its scale-space nature. Note that,

for the second-order case, the magnitude parameter can

be expressed analytically. The analytical form of the scale-

space Hessian matrix evaluated at the spatial maximum u is

given by: P(u;H) = (2 ) 2| +H| 1 2( +H) 1.

This equation can be solved for since H + SPD,

i.e., =
2
+2 |2 ( P(u;H)) 1|

1
+2 ( P(u;H)) 1 H.

Since this and Eq.(16) must be equivalent, the following for-

mula is obtained after some algebra,

=
q
|2 ( P(u;H)) 1| (u;H) +2 (17)

The scale-space Hessian P(x;H) is symmetric negative
definite if x is at a stable critical point of (x;H). When
P(u;H) is numerically computed by using Eq.(4), it must
be assured that u satisfies this condition so that the esti-

mated by Eq.(16) satisfies the positive definite constraint

and Eq.(17) remains as real-valued.

4.2. First-Order Method

The first-order most-stable-over-scales method exploiting

the direct covariance estimator of Eq.(14) takes the same

procedure as our previously proposed mean shift-based so-

lution [10], Following briefly describes the method.

Given the spatial maximum locations u( )
in (x; I), we sample a set of measure-

ment pairs {(x (x ; I))| = 1 } within
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Figure 2: Examples of the most-stable-over-scales methods.

A centered 1D Gaussian signal of 2 = 2with additive ran-
dom noise ( 0 01) is used as target. At each analy-
sis scale, the variance of the target is estimated from a set of

samples within: (a)±0.1 , (b)±1.0 , and (c)±3.0 . Dash
lines: the ground-truth scale. Dot lines: the first-order es-

timates by Eq.(14). Solid lines: the second-order estimates

by Eq.(15). “+” and “×” denote the most stable estimates
by the first- and second-order methods, respectively.

the basin of attraction of u. These samples are

used to construct an over-complete normal equa-

tion A = B where A ( 1 ) and

B (u x1 1 u x ) . The

constrained least-squares solution of the normal equation

for the unknown SPD is given by finding the mini-
mizerY of an area criterion kAY BY k2 whereY is
Cholesky factorization of = YY . The closed-form of

this solution is expressed by a function of symmetric Schur

decompositions of P A A and Q̃ U QU

givenQ B B,

=U 1U ˜ ˜U ˜
1U

P = U 2 U

Q̃ = U ˜
2
˜U ˜

(18)

Applying these equations to a given set of analysis scales

results in a set of estimates {(u( ) ( ))}. The most sta-
ble estimate is found by the stability test with the Jensen-

Shannon divergence in Eq.(13).

4.3. Second-Order Method

The second-order most-stable-over-scales method exploits

the direct estimator of Eq.(15) or Eq.(16). Similar to the

first-order method, we sample a set of measurement pairs

{( (x ; I) P (x ; I))} within the neighborhood of u.
A least-squares covariance estimator is given by averaging
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Figure 3: 1D synthetic data with noise. The target is the

centered 1D Gaussian with 2 = 2. (a) a Gaussian centered
at u = 5 with 2 = 0 5 superimposed to the target. (b)
the target with additive random noise ( 0 04). (c)
the data (a) with the same additive noise in (b).

the local estimates,

=
1 X

=1

{( (x ; I) (x ; I) P (x ; I)) 1
I}

(19)

The second-order equation provides a full covariance esti-

mate for each sample location. Thus a valid estimator with

a single sample at the spatial local maximum location u can

be obtained by using Eq.(16). The stability-based scale se-

lection is achieved by the same manner as the first-order

method,

û = u( )

ˆ = ( )

= argmin (u( ) ( )) (20)

Fig.2 compares the first- and second-order most-stable-

over-scales methods with the 1D synthetic Gaussian data

with additive random noise. Three different sampling

ranges were evaluated. Both methods achieve accurate

scale estimation given an appropriate choice of the sam-

pling range. The results also suggest that the first-order

method favors a larger sampling range while the second-

order method prefers a smaller one. When using the data

without the noise, both methods resulted in estimates with

no errors.

5. Experiments

5.1. Synthetic Data with Noise

The proposed scale selection methods are studied with 1D

synthetic data with the presence of noises. The target fea-

ture is the centered 1D Gaussian with 2 = 2. As shown in
Fig.3, three types of additive noise are used: (a) neighbor-

ing structure, (b) strong random noise, (c) the combination

of (a) and (b).

Fig.4 illustrates the results by the proposed maximum-

over-scales criterion. In general, we find that (i) the

maximum-over-scales criterion is susceptible to the noises,

(ii) the first-order method is more sensitive to the random

noise, (iii) the second-order methods are more sensitive to
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Figure 4: Variance estimation by the maximum-over-scales

criterion for the signals shown in Fig.3. 1st row: the first-

order method with Eq.(10). 2nd row: the second-order

method with Eq.(11). 3rd row: the second-order method

with Eq.(12). The legend is the same as Fig.1.

the neighboring structure. These observations can be ex-

plained by the fact that the support of the Gaussian deriva-

tive kernels is larger for the higher order derivatives. Thus

the second-order methods are naturally more sensitive to the

neighboring structure or the signal truncation than the first-

order method. The most accurate estimate was obtained by

the first-order method when the data without the random

noise were evaluated at points far from the non-target struc-

ture, as shown in the top-left of Fig.4.

Fig.5 illustrates the results by the most-stable-over-

scales criterion. The first-order (dot lines) and second-order

(solid lines) methods are compared by using the same data

as Fig.4. At each analysis scale, the target’s variance is esti-

mated from samples within three different sampling ranges:

±0.1 , ±1.0 , and ±2.0 . The crosses “+” and “×” de-
note the estimates by the first- and second-order methods,

respectively. The results demonstrate that the most-stable-

over-scale criterion are more accurate than the maximum-

over-scales criterion if the sampling range is chosen cor-

rectly. For the data (a), both methods were accurate using

only samples within the basin of attraction. For the data

(b), the first-order (second-order) method gave better results

with a larger (smaller) range. For the data (c), the second-

order method with a very small sampling range was most

accurate. The first-order estimate in b(1) and the second-

order estimates in a(3) and c(3) were out of range. With the

large sampling range, the scale estimates for data (a) and

(c) were corrupted because of the samples located near the

edge of or out of the target’s basin of attraction. The second-

order method with the very small sampling range resulted in

the overall best accuracy across the different types of noise.
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Figure 5: Variance estimation by the most-stable-over-

scales methods for the signals in Fig.3. At each analysis

scale, the variance of the target is estimated from samples

within: 1st row: ±0.1 , 2nd row: ±1.0 , 3rd row: ±2.0 .
The legend is the same as Fig.2.
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Figure 6: Average variance estimation errors of the most-

stable-over-scales methods over 100 independent tests. The

same types of data in Fig.3 with different random noise are

used for each test. The errors are plotted against varying

sampling ranges. Dot and solid lines denote errors by the

first- and the second-order methods, respectively.

Fig.6 shows average estimation errors of the most-stable-

over-scales methods over 100 tests. The errors are plot-

ted against continuously varying sampling ranges and com-

pared with the aforementioned three data types. It demon-

strates that both the first- and second-order methods achieve

much higher accuracy than the maximum-over-scales crite-

rion within the ±2 2 sampling range that roughly corre-

sponds to the target’s basin of attraction. Also observed

was a tendency that the first-order (second-order) method is

more accurate with a larger (smaller) sampling range.

Fig.7 illustrates 2D examples comparing the proposed

scale selection methods. The test data consists of a centered

target Gaussian with additive random noise and a neighbor-

ing structure as shown in Fig.7a. Fig.7b-e show results with

the maximum-over-scales methods. We use a set of 144

analysis scale matrices sampled along the two eigenvec-

tors of the ground-truth matrix by setting the correspond-
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Figure 7: Examples with 2D synthetic data consisting of

a target centered Gaussian with a neighboring structure

centered at (-3,3) and additive random noise as shown in

(a). From (b) to (e): the maximum-over-scales methods.

(b) first-order method evaluated at (2,-2), (c) second-order

method at the non-maximum location, (d) second-order

method evaluated at (0,0), (e) -normalized Laplacian at the

maximum location. From (f) to (h): the most-stable-over-

scales methods. (f) first-order method, (g) second-order gra-

dient and Hessian method, (h) second-order Hessian only

method. The ground-truth and scale estimates are denoted

by 90% confidence ellipses with dash and solid lines, re-

spectively.

ing eigenvalues to (1 2 12). Fig.7f-h show results with
the most-stable-over-scales methods. We use a set of 26

isotropic analysis scales from 0.1 to 7.6 with a constant

geometric ratio 21 4. The sampling range is set to one

Mahalanobis distance. The results suggest that the most-

stable-over-scales methods outperform the maximum-over-

scales methods, confirming the finding from the 1D case.

The three most-stable-over-scales methods resulted in sim-

ilar accuracy. The second-order case (g) with both gradient

and Hessian, however, gave the best accuracy in terms of

the Frobenius norm of the error (0.69).

5.2. Lung CT Data

3D implementations of the most-stable-over-scales methods

are applied to the problem of estimating anisotropic spreads
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Figure 8: Examples of the 3D spread estimation of lung tu-

mors in 3DHRCT data by using the most-stable-over-scales

scale selection methods. “+” denotes the marker locations.

The local spatial maxima and 3D spread estimates are de-

noted by “×” and 2D intersections of 50% confidence el-
lipsoids, respectively. Cases (a)-(d) show the results by the

first-order method. Cases (e)-(h) show those by the second-

order (Hessian only) method.

of pulmonary tumors shown in high-resolution computed-

tomography (HRCT) images. Each volumetric image con-

sists of 12-bit positive values over an array of 512×512
lattices. We compare the first-order and the second-order

(Hessian only) methods. For both methods, a set of 14

isotropic analysis scales = (0 502 4 752) with a geo-
metric ratio 21 4 are used. The locations of the local spatial

maxima u( ) are estimated by using the mean shift-based
mode seeking algorithm with the extended mean shift vec-

tor [1, 10]. Markers indicating rough tumor locations are

given a priori. The convergence point of the majority of

data points sampled around the marker provides the spa-

tial maximum estimate u( ). The neighborhood width of
the divergence formula is set to = 1. The system is

implemented in C language and process a 32x32x32-voxel
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volume-of-interest by an average of two seconds with a 2.4

GHz Intel CPU.

HRCT data of 14 patients displaying the total of 77 pul-

monary tumors were used for this evaluation. The second-

order method resulted in less failures (10 cases) than the

first-order method (14 cases). All the solitary tumors were

correctly estimated by both methods. Most of the failures

were due to small nodules that are attached to the lung wall

(i.e., on-the-wall cases).

Fig.8 shows examples of the estimation results. The left

columns illustrate part- or non-solid nodule cases which are

more likely to become malignant than solid ones [3]. The

right columns show the on-the-wall cases. Both methods

resulted in similar estimates for many cases (e.g., (a)-(e) and

(c)-(g)). However, the second-order method often provided

more accurate spread estimates (e.g., (b)-(f)). Furthermore,

some cases failed by the first-order method were correctly

estimated by the second-order method (e.g., (d)-(h)).

6. Conclusions

We propose a unified approach for treating the scale se-

lection problem in the anisotropic scale-space evaluating

the local Gaussian-like structures, resulting in a number of

the first- and second-order solutions. The maximum-over-

scales criterion with the -normalized anisotropic scale-

space derivatives offers elegant scale selection solutions

with the constant value, exploiting the analytical simplic-

ity of the Gaussian function. For realistic application sce-

narios with the presence of noise, our experimental results

demonstrate that the second-order most-stable-over-scales

methods with the isotropic scale-space outperform others.

For our future work, we plan to consider different types of

features and formally analyze the proposed criteria with the

arbitrary order of the -normalized derivatives. The 3D tu-

mor spread analysis system developed in this work provides

the estimation of the tumor volumes and contours. We also

plan to further improve the estimation accuracy by consid-

ering domain-specific hybrid models.
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A. Proof of Proposition 1

We define (H) kH1 2P (u;H)k . The proposition
must be true if ( )2 (H)2 is greater or equal to zero

with equality iffH = . Recall that andH are symmet-

ric positive definite matrices. Thus we have,

( )2 (H)2

= k 1 2( + ) 1k2 kH1 2( +H) 1k2

= 1
4 tr(

1 2 1 2) tr(( +H) 1H( +H) 1)
= 1

4 tr(
1 4( +H) 1H( +H) 1)

= 1
4 tr(( +H) 1(H 1

I)2 ( +H) 1)
(21)

Since andH are positive definite, all the matrices in-

side the trace in Eq.(21) are also positive definite. Since

the trace of a positive definite matrix is positive valued, we

have ( )2 (H)2 0. Trivially, the equality holds iff
H = . 2

B. Proof of Proposition 2

For all x S, kH1 2( P )k = kH1 2( +
H) 1k = (H). From the proof of Proposition 1, we
have ( )2 (H)2 0 with equalityH = . 2
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