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Abstract

A framework for learning an accurate and general

parametric facial model from 2D images is proposed

and its application for analyzing and synthesizing fa-

cial images with pose variation is demonstrated. Our

parametric piecewise linear subspace method covers a

wide range of pose variation in a continuous manner

through a weighted linear combination of local linear

models distributed in a pose parameter space. The lin-

ear design helps to avoid typical non-linear pitfalls such

as over�tting and time-consuming learning. Experi-

mental results show sub-degree and sub-pixel accuracy

within �55 degree full 3D rotation and good generaliza-

tion capability over unknown head poses when learned

and tested for speci�c persons.

1. Introduction

2D images of faces change their appearance due to
variations of both intrinsic property of faces and ex-
trinsic condition of surrounding environment. These
variations are entangled, and are encoded implicitly in
the images. Only after disambiguating these variations
and making them explicit, does the extrinsic variation
source information become available for correct under-
standing and intuitive manipulation of the face (e.g.,
pose and expression) and the environment (e.g., illu-
mination) in 2D images.

One solution is to parameterize facial images di-
rectly by explicit variation information. Such parame-
terization enables explicit analysis of variation source
information in the images and synthesis of images with
speci�c variation conditions. These processes can be
formalized as bidirectional multivariate mapping func-
tions that directly associate vector representations of
facial images with their corresponding variation pa-
rameters. This study focuses on head pose variation,

among other types of variation. Accordingly, the anal-
ysis mapping function provides a means for pose esti-

mation; the synthesis function provides a procedure for
pose transformation or facial animation.

This paper presents a novel framework for realizing
this parameterization, which meets three design crite-
ria: extendibility, accuracy and simplicity.

An extendible system is the one which can ac-
count for multiple variation sources. For pose varia-
tion, many previous studies [6, 11, 19] demonstrated
variation-speci�c solutions utilizing analytical knowl-
edge of 3D Euclidean rotation and assuming availabil-
ity of 3D facial structure information. Our frame-
work avoids this pitfall by learning the mapping func-
tions solely from 2D sample-statistics instead of man-
ually formulating the functions from variation-speci�c
knowledge. This data-driven approach will, however,
face the curse of dimensionality problem [3] as variation
parameter dimensionality increases. A fundamental so-
lution to this problem is generalization which alleviates
the necessity to populate the entire dot-product space
of the parameters. Our framework takes a linear func-
tional form to emphasize this generalization capability.

Accuracy is another important criterion when con-
sidering the practical usefulness of a system. Most pre-
vious studies of facial pose variation [1, 8, 9, 12, 20]
failed to achieve high accuracy because they treated
the continuous variation discretely. Such representa-
tions require a prohibitively large number of samples
to cover the variation smoothly. Our framework avoids
this shortcoming by using continuous mapping func-
tions, given by the framework's parameterization na-
ture, instead of the discrete one.

The simplicity criterion is also supported by the lin-
earity of our framework. While we choose a linear func-
tional form for emphasizing the generalization, a non-
linear form may be used to increase accuracy, given
the intrinsic non-linearity of pose variations. Such a
non-linear solution, however, complicates learning, re-
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quiring time-consuming iterative processes, and faces
over�tting, thus compromising its generalization capa-
bility. Our framework utilizes a linear form, which not
only facilitates the extendibility but also simpli�es the
learning process and avoids over�tting. A shortcoming
of this linear framework is oversmoothing [5], which de-
creases accuracy. Therefore, a systemmust be designed
carefully to meet the accuracy criterion.

The LPCMAP model [14] is an implementation of
the above framework for the pose variation problem.
This data-driven, parametric, continuous, linear model
has demonstrated good generalization capability over
unknown head poses. However, the model was shown
to be accurate only within a limited head pose range
because of the oversmoothing caused by the frame-
work's linearity. This shortcoming is not tolerable since
it severely limits the model's overall accuracy and prac-
tical usability.

In this paper, we propose the Parametric Piecewise

Linear Subspace Method (PPLS), which overcomes the
accuracy range problem of the LPCMAP model while
maintaining its positive properties. The method uses
a set of LPCMAP models as local linear models which
collectively cover the non-linear data variations. PPLS
improves overall accuracy by continuously covering a
wide range of pose variation, even though each local
model can be accurate only within a small parameter-
range. PPLS also maintains the model's linearity, thus
avoiding the pitfalls of a non-linear function approxi-
mation and facilitating its simplicity and extendibility
to other types of variation.

Our proposed method is related to a number of
previous studies. Beymer [2] presented an analy-
sis and synthesis mapping system using RBF net-
works. Murase and Nayar [13] proposed the paramet-
ric eigenspace method for generic objects with pose
and illumination variations. Although both meth-
ods realize a continuous parameterization of facial
and object images, their generalization capability is
questionable due to their non-linearity. In the past,
the piecewise linear approach has been used in var-
ious domains [18, 22]. Pentland's modular eigenface
method [15] utilized local linear models in the form
of a linear subspace spanned by principal components
similar to the LPCMAP model. However, this work
did not address the continuous parametric subspace of
our focus. Overall, most studies did not conduct sys-
tematic accuracy evaluations, especially for generaliza-
tion. Only few reported quantitative pose estimation
accuracy, the best of which achieved 3 degree error on
average [4]. Moreover, no studies to our knowledge
demonstrated a system for full 3D rotation within a
wide head pose range.

2. Parametric Piecewise Linear Subspace
Method

The parametric piecewise linear subspace (PPLS)
method consists of a set of local linear models, each of
which realizes continuous analysis and synthesis map-
pings. Due to the linearity, however, the range over
which each local mapping is accurate is often limited.
In order to cover a wide range of continuous pose vari-
ation, this method pieces together a number of local
models distributed over the pose parameter space. For
maintaining the continuous nature in a global system,
we consider that local mapping functions cover the
whole parameter space continuously, without imposing
a rigid parameter window. In order to account for the
local model's parameter-range limitation, each model is
paired with a radius-basis weight function. The PPLS
then performs a weighted linear combination of local
model's outputs, realizing a continuous global function.

2.1. Problem De�nition

Let a pair of vectors (~vm; ~�m) denote a training
sample of our model, where ~vm is the m-th vector-
ized facial image and ~�m = (�m1 ; �

m
2 ; �

m
3 ) are the 3D

head angles of a face presented in ~vm. A problem
of our focus is to learn bidirectional mapping func-
tions between ~v and ~� from M given training samples
f(~vm; ~�m)jm = 1; ::;Mg,

A : ~v 7! ~�

S : ~� 7! ~v
: (1)

We call A an analysis mapping and S a synthesis map-
ping. Given an arbitrary facial image ~v =2 f~v1; ::; ~vMg,

A provides a 3D head angle estimate ~̂� = A(~v) of a
face in ~v. On the other hand, given an arbitrary 3D
head angle ~� =2 f~�1; ::; ~�Mg, S provides a synthesized

sample or model view ~̂v = S(~�) whose head is rotated
according to the given angle. In this study, we assume
that these functions are personalized: each function is
learned from and tested by samples from the same spe-
ci�c individual.

2.2. Local Linear Model

The local linear model is implemented by the
LPCMAP model [14]. It provides bidirectional, con-
tinuous mapping functions between facial images and
their corresponding 3D head angles. Each function
consists of a combination of two linear systems: 1) lin-
ear subspaces spanned by principal components (PCs)
derived from training samples and 2) linear trans-

fer matrices, which associate projection coe�cients of
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training samples onto the subspaces and their corre-
sponding 3D pose angles.

The model treats shape and texture information sep-
arately. After locating N landmarks in each facial im-
age ~vm by a landmark �nder or other means, shape and
texture representations are extracted from the image.
The shape representation stands for object-centered 2D
coordinates of the N landmarks while the texture rep-
resentation stands for a set of N Gabor jets sampled at
the N landmarks [21]. Let 2N -component vector ~xm

and a set of L-component vectors f~jm;njn = 1; ::; Ng
denote the shape and texture representation of the ~vm,
respectively. Dx and Dj denote operations of the shape
and texture decomposition,

Dx(~vm) = ~xm;

Dj(~vm) = ~jm;1; ::;~jm;n; ::;~jm;N ;
(2)

and R denotes an operation of reconstructing an image
~v from shape and texture representations ~x; f~jng in the
form of a Gabor jet graph representation [21] using an
algorithm developed by P�otzsch [17],

~v = R(~x;~j1; ::;~jN): (3)

A LPCMAP model LM includes the following data
entities learned from training samples,

LM = f~ux; f~unj g; ~u�; Y; fB
ng; F;G; fHngg; (4)

where ~ux and ~u1j ; ::; ~u
N
j are average shape and texture

representations, ~u� is an average 3D head angle vec-
tor, Y is a shape model represented as a row matrix
of the �rst P0 � 2N shape PCs, B1; ::; BN are texture
models represented as row matrices of the �rst S0 � L
texture PCs, and F;G;H1; ::;HN are shape-to-pose,
pose-to-shape and shape-to-texture transfer matrices,
respectively.

Relating the 3D head angles only to the shape rep-
resentations, the analysis mapping function A is given
by,

~̂� = A(~v) = K�1(F � Y � (Dx(~v) � ~ux)); (5)

where K�1 extracts 3D angles from their trigonometric
functions, and the shape synthesis mapping function
SS is given by,

~̂x = SS(~�) = ~ux + Y t �G � K(~�); (6)

where K transforms 3D angles to pose parameters, a
vector of trigonometric functions of the angles. The
texture synthesis mapping function T S is given by syn-
thesizing texture from the synthesized shape,

f~̂jnjn = 1; ::; Ng= T S(~�) =

f~unj +Bn �Hn �G � K(~�)jn = 1; ::; Ng:
(7)

Finally, the synthesis mapping function S is given by,

~̂v = S(~�) = R(SS(~�); T S(~�)): (8)

2.3. Global Piecewise System

2.3.1. Weighted Linear Combination

Suppose K local linear models
fLM1; ::; LMk; ::; LMKg are learned from local
training sample sets, each of which includes samples
within a limited pose range. We assume that average
3D head angles of each local training set ~uLMk

� are
appropriately distanced from each other so that the
local models cover a wide range of a 3D parameter
space spanned by the head angles. We call this
parameter space 3D angle space and the ~uLMk

� , the
model center of LMk.

The global analysis mapping function is given by
averaging K local pose estimates with appropriate
weights,

~̂� =
KX

k=1

wk~̂�k =
KX

k=1

wkALMk
(~v): (9)

Similarly, the global synthesis mapping function is
given by averaging K locally synthesized samples with
the same weights,

~̂v = R(~̂x; f~̂jng)

~̂x =
PK

k=1wk~̂xk =
PK

k=1wkSSLMk
(~�);

f~̂jng = f
PK

k=1wk
~̂jnk g =

PK
k=1wkT SLMk

(~�):

(10)

Functions (9) and (10) require a weight vector ~w =
(w1; ::; wk:::; wK) to be set with appropriate values.
These weights must be responsible for localizing the
model's outputs because the LPCMAP model covers
the whole 3D angle space despite the fact that it is ac-
curate only within a limited pose range. For this pur-
pose, we use a normalized Gaussian weight function in
the 3D angle space,

wk(~�) =
�k(~��~uLMk�

)P
K

k=1
�k(~��~uLMk�

)
;

�k(~�) =
1p
2��k

exp(�k~�k2
2�2
k

);
(11)

where �k denotes the k-th Gaussian width. Function
(11) computes the weights as a function of distance be-
tween an input pose and each model center. A weight
value reaches its maximum when the input pose co-
incides with one of the model centers; it decays as the
distance increases. The Gaussian width �k is set by the
standard deviation of 3D head angle vectors in training
samples for LMk and determines the extent to which

each local model in
uences the global outputs ~̂� and ~̂v.
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Figure 1. Sketch of the global piecewise system.

We formulate an analysis-synthesis-chain function
by connecting an analysis output to a synthesis input,

~̂v = R(~̂x; f~̂jng)

~̂x =
PK

k=1wkSSLMk
(
PK

k=1wkALMk
(~v));

f~̂jng =
PK

k=1wkT SLMk
(
PK

k=1wkALMk
(~v)):

(12)

This auto-associative mapping realizes a process of �t-
ting a learned model to an arbitrary input face, result-
ing in a facial image whose pose is aligned to the input
and whose appearance is derived from the model.

Figure 1 illustrates the global piecewise system. The
numbers next to local model views are weight values for
the test input. Note that the local views become more
distorted as their model centers deviate further from
an input pose, illustrating the pose range limitation
of our local model. However, these largely distorted
local outputs do not greatly in
uence a global output
because their contribution is strongly inhibited by rel-
atively low weight values.

2.3.2. Gradient Descent System

The global analysis mapping function (9) cannot
provide a pose estimate by evaluating its r.h.s. be-
cause the weights are computed as a function of an
unknown ~�. Next, we formulate a gradient descent-
based algorithm which solves this problem by using a
pose estimate from a previous iteration step.

Let a shape vector ~x be an input to this iterative
algorithm. Let a shape vector ~xi and a 3D angle vector
~�i denote the shape and angle estimates by the i-th
iteration. In order to �nd an initial condition ~x0 and
~�0, we �rst �nd a local model whose center shape ~uLMk

x

is most similar to ~x. Then, ~x0 and ~�0 are set by,

~x0 = ~u
LMkmin

x ;
~�0 = ~u

LMkmin

� ;

kmin = index(minKk=1 k~x� ~uLMk

x k2):

(13)

The following de�nes iteration rules of the algorithm,

�~xi = ~x� ~xi; (14)

�~�i =
KX

k=1

wk(~�i)A
0
LMk

(�~xi); (15)

~�i+1 = ~�i + ��~�i; (16)

~xi+1 =
KX

k=1

wk(~�i+1)SSLMk
(~�i+1); (17)

where � is the learning rate and A0 is a slight modi-
�cation of (5) that has a shape vector interface. This
algorithm iterates through the loop of equations from
(14) to (17) until the mean-square error k�~xik

2 be-
comes su�ciently small.

Note that the shape-to-pose analysis mapping A0 in
(15) is used as an approximation of the gradients of ~�

with respect to ~xi at a current pose estimate ~�i. In

PPLS, such gradients �~�
�~x are only available at the lo-

cations of K discrete model centers. Therefore, (15)
interpolates the K local gradient matrices to compute
gradients at an arbitrary point. Note also that this
algorithm performs pose estimation and shape synthe-
sis simultaneously since it iterates between pose and
shape in each loop. This gives an alternative way for
the shape synthesis although the global synthesis map-
ping in (10) remains valid.

2.3.3. Self-Occlusion Handling

As a head rotates, some landmarks become hidden
behind other facial parts. This problem is called land-

mark self-occlusion. Our systemmust handle this prob-
lem because it is designed to cover a wide pose range,
in which such occlusion occurs naturally.

This problem su�ers principal component analysis
(PCA) used for learning the shape model because PCA
requires a data set with constant dimensionality. Land-
mark self-occlusion introduces uncertainties in shape
vectors, resulting in missing values for certain vector
components. This causes an erroneous bias to result-
ing PCs because samplemoments, such as samplemean
and variance, cannot be computed correctly from such
incomplete data. This problem is known as the missing

data problem [10].
We handled this problem by applying the mean-

imputation method [10] which �lls in each missing com-
ponent by a mean computed from all available data
at the component dimension. This method has been
shown to perform well when the number of missing
components is relatively small. Because it makes the
data complete, the straight forward procedure of PCA
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Figure 2. Seven local training sample sets.

becomes feasible. However, it causes an underestima-
tion of sample covariance, which introduces a bias that
is not related to the true nature of the data. Because
of this, the method does not usually perform well when
there are a large number of missing components.

3. Toy Data Experiments

In order to assess our method's correctness and to
investigate its optimal setting, an implementation of
the PPLS, which we call the PPLS system, is evaluated
with a toy data set.

3.1. Data Set

We created arti�cial shape representations, each of
which consists of 2D orthographic projections of 25 3D
landmark points on a 5 by 5 square grid, pasted onto
the surface of a rotating 3D unit sphere. 2D coordi-
nates of the projected points are scaled and translated
for �tting into a 128 by 128 image coordinate space. 3D
rotation angles for each shape representation are given
by explicit rotation angles of the sphere. Texture rep-
resentations are not considered in this experiment. The
toy data di�er from realistic facial data in that their
depth pro�le is much more regular than that of faces
and that there are no measurement errors of landmark
locations and rotation angles.

As training samples, we created 7 local training sam-
ple sets distributed over the 3D angle space as illus-
trated in �gure 2. Around each of 7 model centers,
(0,0,0),(�40,0,0),(0,�40,0), and (0,0,�40), we rotate
the sphere along each rotation axis at a time and two
axes simultaneously within �15 degrees from the cen-
ter. 403 samples are recorded in one degree intervals for
each local set. In total, there are 2831 training samples,
which cover a range of �55 degree 3D rotation. Note
that �gure 2 uses facial images for describing the model
centers, instead of the actual toy data, for facilitating
an intuitive understanding of the di�erent rotation an-
gles. As test samples, we created 804 samples whose

rotation angles are di�erent from those of the train-
ing samples. This test sample set covers a range of
�50 degree 3D rotation. It includes two types of pose
distribution: one is between several local training sets
and the other is within a sparsely populated region of a
local set. The former poses a more di�cult testing sit-
uation than the latter, which requires a smooth inter-
polation between neighboring local models. Landmark
self-occlusion is simulated by introducing an occluding
plane, z = c (c: constant, kck � 1), which is parallel
to the image plane. A landmark point is considered as
occluded when it goes below the occluding plane.

3.2. Results

Two types of test are used for evaluating the PPLS
system. An accuracy test evaluates the system's ac-
curacy by testing a learned system with the training
samples; a generalization test evaluates the system's
generalization by testing the system with the test sam-
ples described above.

First, we studied the average errors of the one-shot
pose estimation (9) and shape synthesis (10) in the
most controlled condition, in which all landmarks are
considered to be visible (c = �1), shape vectors have

oat precision, and the trigonometric transformation
K includes pairwise products of the trigonometric func-
tions. Results of the accuracy test showed that average
pose estimation error in degrees over 3 rotation dimen-
sions and 2831 samples, and average shape synthesis
error in pixels over 25 landmarks and 2831 samples
became approximately zero after including the �rst 6
shape PCs (12%). This result strongly supports our
system's correctness. The di�erence of the errors be-
tween the 
oat and integer precision was small, indicat-
ing the system's robustness against small measurement
errors in landmark locations. This system setting, how-
ever, resulted in over�tting with poor performance for
the generalization test. K, without the pairwise prod-
ucts, provided the best balance between the system's
accuracy and generalization.

Next, we investigated the in
uence of landmark oc-
clusion on our system's performance. We compared
average errors of the two one-shot processes with (c =
0:1) and without (c = �1) occlusion. At most, 10%
of the total landmarks in a local set were occluded in
the occlusion data set. Results of the generalization
test with integer precision showed that the error di�er-
ence of the two data sets was very small (0.2 degrees
and 0.1 pixels with the �rst 8 PCs), supporting the ef-
fectiveness of our missing data handling by the mean-
imputation method. The average errors were roughly
0.7 degrees and 1.1 pixels for pose estimation and shape
synthesis.
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Figure 3. PPLS and LPCMAP systems.

Lastly, we evaluated the gradient descent iterative
algorithm in section 2.3.2 in the most realistic con-
ditions with integer accuracy and 10% landmark self-
occlusion. We iterated the gradient descent loop 500
times and set the learning rate � to 0.01. Results of
the generalization test were compared with those of the
one-shot system. They showed that the error di�erence
of the two systems was again very small (0.1 degrees
and 0.1 pixels), supporting the feasibility of our sys-
tem. The average errors were roughly 0.8 degrees and
1.0 pixels, indicating good accuracy and generalization.

4. Cyberware Scanned Face Data Exper-
iments

In order to assess our system's feasibility in more
realistic scenarios, the PPLS system is evaluated with
samples derived from actual faces. For rigorous analy-
ses, however, we must collect a large number of samples
with speci�c head poses for many people, which is not
an easy task. To mitigate this di�culty, we use 3D face
models pre-recorded by a Cyberware scanner. Given
such data, relatively faithful image samples with arbi-
trary, but precise, head poses can easily be created by
image rendering [7]. In order to assess our method's
improvement in performance, we compare the PPLS
and LPCMAP systems learned from the same training
samples. The former consists of 7 local models, while
the latter is a single local model learned from the total
training samples, as shown in �gure 3.

4.1. Data Set

We used 20 face models randomly picked from the
ATR-Database [7], as shown in �gure 4. The same
pose distributions used for the toy data experiments in
the previous section are also used for creating training
and test sample sets of these experiments. As a result,
for each individual, we have 804 test samples and 2821
training samples consisting of 7 local training sets, each
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Figure 4. 3D face models and facial landmarks.

of which includes 403 samples. The test set, total train-
ing set and each local training set covers a pose range
of �50, �55 and �15 degrees along each rotation axis,
respectively. Figure 4 also shows the de�nition of the
20 facial landmarks. These landmarks were manually
placed on the surface of the 3D model. For each 2D
sample, the 2D landmark locations are then derived
by rotating the 3D landmark coordinates and project-
ing them onto an image plane. 3D head angles are
also given by the explicit rotation angles of the mod-
els. The self-occlusion information is provided from
the rendering system. 5 to 10% of the total landmarks
were self-occluded in each local training set.

4.2. Results

For the following experiments, both PPLS and
LPCMAP systems use integer shape precision, K with-
out the pairwise products, and the gradient descent
system with 500 iterations and � set to 0.01.

4.2.1. Average Error and Similarity Analyses

Figure 5 compares average pose estimation errors
of the PPLS and LPCMAP systems in both accuracy
and generalization tests. The errors were averaged
over 3 pose dimensions, 804 samples and 20 persons
for 6 di�erent shape model sizes. The up- and down-
triangles denote the errors of the PPLS and LPCMAP
systems, respectively. In the accuracy test, the aver-
age error with the �rst 8 shape PCs was 0:8� 0:6 and
3:0� 2:4 degrees for the PPLS and LPCMAP systems,
respectively. In the generalization test, the average was
0:9� 0:6 and 2:4� 1:4 degrees for the two systems.

Figure 6 compares average shape synthesis errors of
the two systems in the two test cases. In the accuracy
test, the average error with the �rst 8 PCs was 0:8 �
0:4 and 2:2 � 1:2 pixels for the PPLS and LPCMAP
systems, respectively. In the generalization test, the
average was 0:9� 0:4 and 2:4� 0:7 pixels for the two
systems.
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Figure 5. Pose estimation errors in degrees.
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Figure 6. Shape synthesis errors in pixels.

Average similarities between synthesized and
ground-truth textures are also studied for the two sys-
tems in the two test cases. Texture similarity is com-
puted as a normalized dot-product of Gabor jet mag-
nitudes:

JetSim :=
amp(~jmn ) � amp(

^~jmn )

kamp(~jmn )k kamp( ^~jmn )k
;

where amp extracts magnitudes of a Gabor jet in polar
coordinates. These similarities are averaged over the
number of landmarks, test samples, and persons. In
the accuracy test, the average similarity with the �rst
20 texture PCs was 0:955 � 0:03 and 0:91 � 0:04 for
the PPLS and LPCMAP systems, respectively. In the
generalization test, the average was 0:945 � 0:03 and
0:88� 0:03 for the two systems.

For all three tasks, the PPLS system greatly im-
proved performance over the LPCMAP system in both
test cases, resulting in sub-degree and sub-pixel accu-
racy. The average errors between the two test cases
were similar, indicating good generalization to un-
known poses. The errors with the toy data and the fa-
cial samples were also similar, suggesting our system's
robustness against irregular depth variation of faces.
As a reference, we computed average texture similar-
ities over 450 people from the FERET database [16].
The similarity was 0:94�0:03 for the same person pairs
and 0:86�0:02 for the most similar, but di�erent, per-
son pairs. The average similarity of the PPLS system
was higher than that of the FERET database, which

PPLS

TEST

PCMAP

Figure 7. Synthesized test samples (large angle).

PPLS

TEST

PCMAP

Figure 8. Synthesized test samples (far from center).

validates the results of our texture similarity analysis.

4.2.2. Synthesized Samples

Figures 7 and 8 illustrate model views of test sam-
ples whose head poses are not known to the learned
system. The analysis-synthesis chain (12) was used to
derive these model views. Their corresponding ground-
truth is shown in the middle rows. Figure 7 shows
test samples whose pose is close to a model center, but
with a large angle along one dimension. In contrast,
�gure 8 shows samples whose pose is in-between sev-
eral model centers. For both cases, the ground-truth
and the PPLS's model views were very similar, indi-
cating our system's successful generalization capabil-
ity. The LPCMAP's model views were only slightly
more distorted than those of the PPLS system. How-
ever, human visual perception may be insensitive to
the di�erence, which is clearly shown in the similarity
di�erence described in section 4.2.1.

5. Conclusion

We present a novel framework for parameterizing fa-
cial images continuously by their 3D head poses. Our
method uses piecewise linear PC-based subspaces for
realizing an accurate, general and simple solution to
the problem of head pose estimation and facial im-
age synthesis as a function of pose. An implementa-
tion of our framework has shown sub-degree and sub-
pixel accuracy within �55 degree 3D head rotation,
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while displaying good generalization to unknown poses.
The data-driven and continuous nature of the pro-
posed method provides the basis for an on-line visual
learning system which simpli�es an otherwise labor-
intensive data collection procedure. The explicit vari-
ation parameters provide a common reference frame
which may be used to interface di�erent functional
modules of multi-modal systems. We have recently ex-
tended this framework to accommodate interpersonal
variations and to realize a pose-insensitive face identi�-
cation system. This work, however, is outside the scope
of this paper. The proposed system utilizes pixel-wise
landmark locations for representing facial shape. In re-
ality, �nding landmark locations in facial images with
arbitrary head pose is an ill-posed problem. We plan
to apply the proposed framework to solve this prob-
lem. We also plan to extend our method to include
other types of variation, such as illumination variation,
in the future.
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