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Abstract. This preliminary study explores novel methods using diffu-
sion weighted(DW) MR images as a biomarker to detect early GBM
brain tumor response to treatment. Apparent diffusion coefficient(ADC)
map, calculated from DW-MR images, can provide unique information
of tumor response at cellular level. In this study, we investigate whether
changes in ADC histograms between two scans, taken 5-7 weeks apart
before and after treatment, could predict treatment effectiveness before
lesion size changes are observed on later scans. The contribution of our
work is to exploit quantitative pattern classification techniques for the
prediction. For both pre- and post-treatment scans, we first compute
the histogram from the ADC values covered within the tumor. Then
we apply supervised learning on features extracted from the histogram
for classification. We evaluated our approach with pool data of 86 pa-
tients with GBM under chemotherapy while 40 responded and 46 did
not respond based on tumor size reduction. We compared Fisher’s lin-
ear discriminant analysis, AdaBoost and random forests classifier using
leave one out cross validation(LOOCV), resulting in the best accuracy
of 67.44%.

1 Introduction

Glioblastoma multiforme(GBM) is the most common and aggressive type of
primary brain tumor. There are many clinical trials underway to assess the
ability of new drugs and strategies to treat glioblastoma and extend the duration
of patient survival. The traditional way of assessing treatment response is to
measure the size of the tumors after the treatment. However, efficacy can only
be evaluated weeks or months after treatment.

Diffusion weighted MRI has tremendous potential for monitoring early changes
in tumor cellularity that are thought to be reflective of treatment response [1].
It provides image contrast determined by microscopic motion of water molecules
in the tissue. The mobility of water molecules is highly related to cell density
within tumors.



Apparent diffusion coefficient(ADC) is the parameter to measure water molecule

motions. In general, water movement inside cells is more restricted than outside.
Thus, increasing cell density tends to lower ADC, whereas increased edema(more
interstitial water) results in higher ADC values. Therefore, ADC values in treated
brain tumors could not only theoretically increase due to cell kill(and thus re-
duced cell density), but also decrease due to inhibition of edema.

A number of related studies have investigated methods to overcome the
overall complicated situation and separate the competing effects. In [2], they
observe the shift of ADC histogram and conclude that the mean ADC value
increases when tumor cells are killed. In [3], they calculate pixelwise the ADC
value changes along with time and display it as a functional diffusion map for
correlation with clinical response.

In this paper, we investigate statistical techniques and pattern classification
methods to predict tumor responses using ADC map. We extract statistical fea-
tures from the histogram of tumor ADC values, compare the feature differences
between pre- and post-treatment scans, and compare three machine learning-
based classification methods. By doing this, we explore the effectiveness of the
machine learning approaches in this clinical context.

This paper is organized as follows. The next section describes the image
analysis of the ADC map, histogram features and the three classifiers that we
compared. In the following result section, we report the results of our compara-
tive study for the different classifiers. The final section offers our discussion on
the experimental results as well as our future work.

2 Method

2.1 Image Protocols and Image Analysis

ADC map is calculated from diffusion weighted(DW) images. DW images can
be acquired with echo-planar pulse sequences plus DW gradients. The signal
intensity of DW images is equal to the signal intensity on a T2-weighted(T2w)
image decreased by an amount dependent on the rate of diffusion. [4]

SI = SI « e b*APC (1)

with b being the diffusion sensitivity factor, ADC being the apparent diffusion
coefficient, and S1j being the signal intensity when b=0 sec/mm?2. With b known,
ADC maps are calculated from DW images by equation 1.

Three steps are as follows to get the tumor contour on ADC maps. First of all,
radiologists contoured tumors on post-contrast T1-weighted(T1w) images using
a semi-automated segmentation tool [5]. Next, tumor contours were mapped
from T1w to ADC using rigid body transformation. The mapping was performed
using DICOM header information, i.e. image position and image orientation, to
compute transformation parameters. Finally, radiologists visually evaluated the
contours on ADC images and manually corrected the tumor contours on ADC.
An example of the mapping from T1w to ADC is shown in figure 1.



Fig. 1. Examples of the tumor region mapping from post-contrast T1lw to ADC map:
on the left is the post contrast T1lw image with manually contoured tumor; on the
right is the ADC map with mapped tumor.

Afterwards, the histogram of the ADC value within the tumor region was
obtained. Figure 2 shows two examples of tumor ADC histograms for both pre-
and post-treatment. The upper histogram shows the ADC value distribution
before the drug treatment, while the lower one shows the ADC value distribution
after the drug treatment. On the left is an example of non-responding tumors,
while on the right is an example of responding tumors.

2.2 Feature Extraction and Classification

The difference of the features extracted from pre- and post-treatment histograms
are used as the input to a tumor response classifier.

According to the clinical studies [2,6, 1,7, 3], the ADC value should change
after treatment. In our data set, we observe the histograms for both responding
and non-responding tumors. We find out that histograms change not only in
mean, but also in shapes. Therefore, we bring in the idea of finding the patterns
in ADC histogram changes by use of statistical classification methods.

The features we get from histograms are statistical features of the distribu-
tion of the ADC values within the tumor: mean, standard deviation, skewness,
kurtosis, median, IQR(interquartile range), 25% percentile, and 75% percentile.

We obtain 8-dimensional feature vectors for both pre- and post-treatment
tumor histograms. Afterwards, we calculate the difference between pre- and post-
treatment tumor histogram by calculating both the absolute change and the
change rate of the features. Therefore, we have 16-dimensional vector as the
difference feature vector. Besides, we apply the earth mover’s distance(EMD) [8,
9] as a metric to directly evaluate the distance between the histograms. The
calculated EMD value is appended as the 17th element in the difference feature
vector.



Fig. 2. Examples of histograms from two tumors and two time points of pre-(top row)
and post-treatment(bottom row). (a):example of non-responding tumors. (b):example
of responding tumors.

The 17-dimensional difference feature vector will be the input to the classifier.
For classification, we investigate three classification techniques with different
characteristics: fisher linear discriminant analysis, AdaBoost and random forests
classifier. We will discuss the reasons why we choose these three classifiers in the
results section.

Fisher’s linear discriminant analysis(FLDA)[10] is a classification method
that projects high-dimensional data onto a line, and perform classification in
one dimensional space. The criterion for classification is to maximize the distance
between the projected mean between classes and minimize the projected variance
of each class. For our two-class case, the cost function and the solution are:

i =me® 4
maxJ(w) = —5——5— with solution: w =28, "(m2—m1) (2)
s1 + 55

where S, stands for the within-class scatter matrix, m represents a mean, s>

represents a variance, and the subscripts denote the two classes. As for classifica-
tion criteria, assuming we have the projected class means well separated, we can
choose the average of the two projected means as a threshold for classification.

y(z) = wlz — 0.5 xwh (my +my) (3)

The AdaBoost algorithm, introduced by Freund and Schapire [11], is a boosting
algorithm that can combine simple and moderately accurate classifiers into a
final strong classifier to improve the final accuracy. It is iterative algorithm. In



each iteration, a weak classifier is selected to minimize the average training error.
Afterwards, the weights on training samples are redistributed in such a way that
the weight of accurately classified samples will be reduced while the weight of ill
classified samples is raised. Therefore, AdaBoost “focuses in” on the informative
or “difficult” ones [10]. The final classifier aggregates the selected weak classifier
from each iteration, and the vote for each weak classifier is a function of its
accuracy.

Random forests(RF) [12] is a classifier that combines many decision trees.
Each tree depends on values of a random vector sampled independently and
with equal distribution. Each tree casts a unit vote for the most popular case
at input, and random forests outputs the class that is the mode of the classes
output by individual trees. Breiman [13] suggests the generalization error for
forests converges to a limit as the number of trees in the forest becomes large.
The error of a forest of tree classifiers depends on the strength of the individual
trees in the forest and the correlation between them. Using a random selection of
features to split each node yields error rates that compare favorably to Adaboost
but are more robust with respect to noise.

3 Results

3.1 Experimental Design

We included a total of 86 patients with GBM in our preliminary study. Tumors
were diagnosed by board-certified radiologists as responding or non-responding
to drugs based on the size change according to later scans. All the ones that
present over 50% increase in volume is defined as non-responders, whereas the
rest are defined as responders. The baseline scans and follow-up scans were 5-7
weeks apart. The DWI was performed in three or six orthogonal directions and
diffusion weighting is b=1000 sec/mm?. The axial plane resolution for DWI has
0.9375mm by 0.9375mm or 1.797mm by 1.797mm pixel size. The slice thickness
for DWI is 3,5, or 7mm.

The statistical features were extracted from histograms of ADC values within
the tumor region for both pre- and post-treatment scans. The difference between
pre- and post-treatment features was calculated as the input to the classifiers.
FLDA, AdaBoost, and RF tree classifiers were applied to the data, and results
from the three classifiers were compared. We implemented FLDA in Matlab,
while we used AdaBoost and RF classifier implemented in the open source data
mining software Weka [14]. We validated the performance by LOOCV method.

3.2 Classification Performance

FLDA was evaluated with all permutations of 2-feature pairs for our ten-dimensional
feature space. Among all the 136 combinations of feature pairs, the best classi-
fier was with kurtosis ratio and 75 percentile difference, resulting in a correctly
classified rate of 67.44%. Figure 3 shows the scatter plot of the data samples
with the two features.
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Fig. 3. The feature pair with the highest accuracy: * denotes responding samples, while
o denotes non-responding samples.

Table 1. Comparison between AdaBoost and random forests classifier

Classifier Sensitivity Specificity Accuracy

AdaBoost 67.5% 63% 65.12%
Random forests 67.5% 63% 65.12%

Visual inspection on Figure 3 promptly reveals that our data is not linearly
separable even in the feature space with the best classification rate. This indi-
cates that non-linear classifiers may be more effective in solving our problem. For
this reason, we also considered AdaBoost and RF classifiers. Our LOOCYV exper-
iments with the Weka implementation of AdaBoost resulted in 65.12% correct
classification rate with 10 learning iterations in average. Not only the resulting
accuracy is worse than the one for FLDA, but AdaBoost also selected the me-
dian difference, kurtosis ratio, 25 percentile difference, STD difference, skewness
ratio, and kurtosis difference, which are different from the ones selected by the
FLDA.

Next we evaluated the RF classifier as another non-linear classification ap-
proach. The report [15] suggests that RF classifier performs quite well, even in
the presence of noise in training data, while AdaBoost is susceptible to the noise
in training data in comparison with the bagging algorithm [16]. The results of
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Fig. 4. The ROC curve drawn from Weka on leave-one-out cross validation, with green
line for random forests classifier and red line for AdaBoost classifier.

our experiment with the Weka implementation show that the final random forest
is composed of 10 trees, each of which is constructed considering five random
features. The LOOCV accuracy of the resulting system was 65.12%, the same
as AdaBoost classifier.

In table 1, the sensitivity, specificity, and accuracy drawn from Weka re-
port for AdaBoost and RF classifier are compared. With the current dataset,
AdaBoost and RF classifier report the same results, yet worse than FLDA.

4 Discussion

In our preliminary study, we exploited statistical pattern classification approaches
towards early detection of treatment response using an ADC map.

Cell density and edema may be reflected in ADC values before size changes
are apparent on standard MRI sequences. Therefore ADC holds promise as a
biomarker, both in determining which tumors are more likely to respond to
treatment, and to determine which tumors are actually responding. This will
have major implications for clinical trials.

With our current dataset, we obtain comparable performance between all
three classifiers tested. More future work will be to use mixture models to quan-



titize the tumor part and edema part since they show different patterns in his-
togram changes.
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