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Abstract

This paper proposes a new variational bound optimization framework for
incorporating spatial prior information to the mean shift-based data-driven
mode analysis, offering flexible control of the mean shift convergence. Two
forms of Gaussian spatial priors are considered. Attractive prior pulls the
convergence toward a desired location. Repulsive prior pushes away from
such a location. Using a generic variational optimization formulation via
construction of quadratic lower and upper bounds, we show that the prior-
constrained mean shift step can be interpreted as an information fusion of the
data and prior terms in the sense of the best linear unbiased estimator. This
approach is used to propose a mode parsing algorithm using the inhibition-
of-return principle. The proposed algorithm is used for a semi-automatic 3D
segmentation of lung nodules in CT data for evaluating its effectiveness. Our
experiments demonstrate that the proposed solution can successfully segment
challenging wall-attached cases.

1 Introduction
Mean shift is a popular data-driven technique for analyzing the mode structure of kernel-
smoothed function surfaces. It is an adaptive gradient-ascent algorithm with automatic
step-size selection and is convergent to a mode of the kernel-smoothed function. This
framework provides an efficient solution to the general data clustering problem in the
Parzen windows setting [7, 1, 4]. The mode-seeking property of the mean shift algorithm
has also been successfully applied to a wide range of vision problems such as tracking [5,
2] and segmentation [3, 4, 13]. From an optimization-theory perspective, mean shift is a
variational bound optimization algorithm [18, 4, 16, 6]. For a class of kernels with convex
profiles, the convexity property yields quadratic lower-bounds of the smoothed function.
These quadratic lower-bounds can then be readily optimized to define the next location,
or mean shift, and its iteration is guaranteed to converge to a local maximum from any
given point in the data space without adjusting the step sizes.

In this paper, we propose a variational optimization-based extended mean shift frame-
work that incorporates spatial probabilistic priors in order to control where the mean shift
converges. This paper focuses on Gaussian scale space [20, 9, 17] used as a positive
kernel-smoothed function and on Gaussian model used as a spatial prior. However our
contributions are generic beyond these choices of the scale-space and the prior. We de-
rive such a convergent modified mean shift step by i) constraining the kernel-smoothed
(density) function with the spatial priors, ii) deriving quadratic lower-bounds of the new
constrained function, and iii) deriving the modified mean shift as the optimizer of the
bounds. We demonstrate that the resulting formula takes a form of an information fu-
sion of the data-driven and prior terms in the Best Linear Unbiased Estimator (BLUE)
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Figure 1: Conceptual illustration of the prior-constrained mean shift with a synthetic
bimodal case. A: repulsive (negative) prior. B: attractive (positive) prior. Solid: data-
driven convergence. Dashed: prior-constrained convergence.

sense [12, 21]. This framework offers a principled way to exploit independent informa-
tion sources other than given data, such as i) user-interaction through a graphical user
interface and ii) prior knowledge of domain-experts.

A key advantage of the proposed formulation is to detect hard-to-discover weak modes
in multimodal data. By construction, mean shift assumes kernel-smoothing of objective
functions. Such smoothing can mask smaller modes located close to larger ones. How-
ever, the small or weak modes can represent something important depending on specific
application context. In Figure 1, we illustrate such a situation using a bimodal function
with a pair of weak and strong modes/peaks located nearby. Although initialization is
placed closer to the desirable mode, the data-driven convergence can fall to the farther
but stronger mode, shown by the solid arrow. We propose two different types of pri-
ors: i) repulsive prior, depicted as an ellipse at point A, which pushes the convergence
away from the data-driven convergence and ii)attractive prior, depicted at point B, which
pulls the convergence toward the small target mode. The dashed arrow schematizes the
convergence path to the desired weak mode by the prior-constrained mean shift.

In some application scenarios, furthermore, it is of great interest to automatically
determine the spatial priors from the data itself for recursively parsing the multimodal
data. To address this task, we present anInhibition Of Return(IOR) algorithm which
sequentially seeks data modes using the above prior-constrained mean shift together with
convergence diagnostics. At each convergence, we fit a Gaussian to the local mode for
constructing a repulsive prior using techniques proposed in [13]. This enables the IOR
algorithm to sequentially visit all the data modes near the initialization point. This algo-
rithm is conceptually similar to the well-known visual attention model in [8].

The effectiveness of the proposed algorithms are evaluated in a real world problem
of semi-automatic 3D segmentation of lung tumor nodules. As pointed out by Okada et
al. [14], the segmentation of the juxtapleural (wall-attached) tumor poses difficult chal-
lenges to the state-of-the-art [11, 13] because the target convex-shaped tumor, attached
to large wall-like or tubular structures, appear as a weak mode surrounded by stronger
non-target modes. They proposed a resampling-based approach for realizing the repul-
sive prior similar to our approach. We offer here a comprehensive theoretical framework
to ground these ideas in more general probabilistic settings. Using the similar experimen-
tal setting in [14], we show that we can successfully segment such difficult wall-attached
cases.

2 Scale-Space Mean Shift
Mean shift framework [7, 1, 4] was first introduced for iteratively seeking modes of
kernel-based non-parametric density function, such as kernel density estimate of the form
f̂ (x) = 1

n ∑n
i=1Kh(x− xi), given a sample setSn = {xi |i = 1· · ·n} and the kernel band-

width h. Let < x1,x2 >H= xT
1 H−1x2 denote the inner product of two vectors whereH



is a symmetric positive definite matrix. The associated norm is then denoted by‖ · ‖H or
by ‖ · ‖h when a diagonal bandwidth matrixH = hI is considered. ThenKH(·) denotes

a density kernel defined with its 1-dimensional profilek(·) via KH(x) = |H|− 1
2 k(‖x‖2

H).
Also Kh(·) denotes a radially-symmetric kernel with a diagonal bandwidth matrix. For the
Epanechnikov kernel, the well-known mean shift algorithm is resulted [7]. For other ker-
nels (e.g., the Gaussian kernel), the following mean shift step with a weighted arithmetic

mean is definedm(x,h) = ∑n
i=1xig(‖x−xi‖2

h)
∑n

i=1 g(‖x−xi‖2
h)
−x, whereg(x) = k′(x).

Beyond the above original formulation, the mean shift framework can be derived for
a general class of functions constructed using kernel-smoothing [19]. Since the Gaus-
sian scale-space [17] can also be interpreted as a family of kernel-smoothed functions,
it is possible to derive a mean shift algorithm in this domain [13, 2]. This provides a
powerful robust tool for vision problems such as visual tracking [2] and medical image
segmentation [13].

Let I(x) ∈ R+ denote the positive-valued image data to be analyzed wherex ∈ Rd is
the d-D coordinate indicating data (pixel/voxel) location. Gaussian scale-spaceL(x;h)
of I(x) is a solution to the diffusion equation∂hL = 1/2∇2L with an initial condition
L(x;0) = I(x). It takes the form of convolution of the image data with a Gaussian kernel
Kh having bandwidthH = hI ,

L(x;h) = I(x)∗Kh(x) =
∫

I(x′)Kh(x−x′)dx′ (1)

whereKh = |2πhI |− 1
2 exp(− ‖x‖2

h
2 ). Scale-space mean shiftis then derived by maximizing

the quadratic lower-bound ofL(x;h) constructed using the convexity ofKh’s profile. This
results in the form proportional to the spatial gradient of the scale-space∇L(x;h),

m(x,h) =
∫

x′Kh(x−x′)I(x′)dx′∫
Kh(x−x′)I(x′)dx′

−x = h
∇L(x;h)
L(x;h)

(2)

An iterative procedure over the discretized data spacexi is then defined analogous to the

density mean shift:yk+1 = m(yk,h) + yk = ∑i xiKh(yk−xi)I(xi)
∑i Kh(yk−xi)I(xi)

with y1 = x0. The scale-
space mean shift (2) can be understood as a mean shift with positive-valued weights of
intensity because∀i, I(xi) > 0 by construction. Its convergence to the local maximum of
the scale-spaceL is also guaranteed following the result in [4].

3 Mean Shift Constrained by Gaussian Priors
We can interpret the original density mean shift in the following Maximum Likelihood
(ML) sense. Given data samplexi from a random variableX, a kernel density estimate
is used to represent the likelihood distribution ofX. Mean shift algorithm can then be
understood as an ML estimator if the distribution is unimodal. In case of a multimodal
distribution ofX, each locally-maximum likelihood location can be parsed andthe ML
estimate can be found. Mode parsing will be discussed later in Section 4.

Suppose now that we have another source of information forX. Under the condition
of independence, the likelihood from this source can then be multiplied to constrain the
likelihood from the kernel density estimator. The following derives the constrained mean
shift formulae for Gaussian scale-space by treatingL(x;h) as a pseudo-likelihood. In this
setting, peaks in a scale-space image corresponds to the density modes. The results in the
scale-space can be readily extended to the general true likelihoods in the ML sense.



3.1 Attractive Prior
Let such a prior forX be given by a Gaussian distribution,

Q(x) = |2πS|− 1
2 exp(−‖x−a‖2

S

2
) (3)

with meana and bandwidthS. We exploit this prior tobiasor attract the solution toward
a pre-selected pointa in the data space. Hence we call it anattractive prior.

By treating the Gaussian scale-space withI(xi) > 0 as a pseudo-likelihood, we multi-
plicatively modify the scale-space with the prior in (3), resulting in the constrained scale-
space functioñL1(x;h),

L̃1(x;h) = L(x;h)Q(x) (4)

whereL(x;h) = ∑N
i=1 I(xi)Kh(x− xi) is the original scale-space defined over discretized

data domain andN is the number of data points (pixels/voxels). When there are multiple
independent priors, the likelihood function can be written asL̃1(x;h) = L(x;h)∏mQm(x).

Now letzi(x) = 1
2

[‖x−xi‖2
h +‖x−a‖2

S

]
. Then we can rewrite the constrained scale-

space as̃L1(x;h) = A∑i I(xi) exp(−zi(x)) whereA = |2π(hI)|−1/2× |2πS|−1/2. Using
the convexity of the exponential function yields a lower-boundLb

L̃1(x;h)− L̃1(x0;h) ≥ Lb(x) = A∑
i

I(xi)exp(−zi(x0)) [zi(x0)−zi(x)] (5)

It is trivial to see thatLb(x) has a unique maximum since it is quadratic inx and∇2Lb(x) =
− A∑i I(xi) exp(−zi(x0))

[
H−1 +S−1] < 0 1. Thus, solving∇Lb(x) = 0 gives the desired

constrained mean shift step denoted byma(x,H,Q)

ma(x0,h,Q)+x0 = (H−1 +S−1)−1


H−1 ∑i xi exp(− ‖x0−xi‖2

h
2 )I(xi)

∑i exp(− ‖x0−xi‖2
h

2 )I(xi)
+S−1a




= (H−1 +S−1)−1[
H−1(m(x0,h)+x0)+S−1a

]
(6)

The convergence of the associated mean shift procedure is guaranteed by construction [4].
Note that derived iterative step is equivalent to a BLUE fusion [12, 21] of the Gaus-
sian priorN (a,S) and the data-driven scale-space mean shiftN (xms,H) wherexms =
m(x0,h) + x0. The confidence level we associate with the prior can be controlled by
varying S. As we decrease‖S‖, the confidence in the prior increases. With the highest
confidence, i.e.S= 0, the solution reduces toa: the most likely spatial point indicated by
the prior. On the other hand, as‖S‖ increases, the confidence in the prior decreases. With
‖S‖→ ∞, the mean shift step converges to the original scale-space mean shift stepxms.

3.2 Repulsive Prior
In some situations, the available prior information can take a form of a negation. For
example, it might beunlikelyfor a certain parameter to take some specific values. Such a
prior can be used torepelor push awaythe convergence from a pointa. Thus we call it a
repulsive prior. We represent such a prior by an inverted Gaussian

Q̄(x) = |2πS|− 1
2 −Q(x) (7)

1< 0 is used as a shorthand for negative definiteness of the Hessian.



whereQ(·) is the positive Gaussian prior defined in (3). We treatQ̄(x) as a likelihood
function by appropriately truncating and imposing a normalization over a finite domain.
Then we can use it to multiplicatively constrain the scale-space as in Section 3.1, resulting
in the following constrained scale-space

L̃3(x;h) = L(x;h)Q̄(x) = |2πS|− 1
2 L(x;h)−L(x;h)Q(x) (8)

Variational bound optimization of̃L3(x;h) is not straightforward. Our strategy is to derive
a quadratic lower-boundLc(x) of L̃3(x;h) and derive the modified mean shift by solving
∇Lc(x) = 0. This construction assures the convergence of the resulting procedure. Now
the convexity property of the exponential kernel, used for the positive case, similarly
provides a lower-bound of the first positive term ofL̃3. However, it cannot lower-bound
the second negative term because of the negation. In fact a quadraticupper-boundof the
exponential is required for deriving the desired variational lower-boundLc.

We derive an analytic expression of such a quadratic upper-bound using Taylor se-
ries expansion of the kernel function. First we consider the exact 1st-order Taylor series
expansion aboutx0 of a differentiable functionf (x) as a sum of the 1st-order Taylor

polynomialT1 and Lagrange remainderR1 so that f (x) = ∑1
|k|=0

f (k)(x0)
k! (x− x0)k + R1

wherek is a multi-index. The remainder is defined by using the mean value theorem with

ζ ∈ [x0,x] so thatR1 = f (2)(ζ )
2! (x−x0)2 ∃ζ ∈ [x0,x]. The desired quadratic upper-bound

of f (x) is then given by maximizing the Lagrange remainder over the free variableζ such
that f (x) = T1(x)+R1(x,ζ ) ≤ T1(x)+maxζ R1(x,ζ ). For a Gaussian with mean0 and

width Σ, this procedure results in the following quadratic upper-bound

exp(−‖x‖
2
Σ

2
) ≤ exp(−‖x0‖2

Σ
2

)+exp(−‖x0‖2
Σ

2
)[−Σ−1x0]T(x−x0)

+ exp(−3
2
)‖x−x0‖2

Σ (9)

We apply this upper-bound (9) to the function of formexp(−1
2z) wherez = ‖x−xi‖2

h +
‖x−a‖2

S, resulting in a quadratic lower-bound to the negative term in (8). The complete
lower-boundLc is given by combining this result with the one for the positive term. After
some algebra, we can show that solving∇Lc(x) = 0 results in the following constrained
mean shift step denoted bymr(x0,h,Q)

mr(x0,h,Q)+x0 =
[
H−1 +α0(H−1 +S−1)

]−1

[H−1[(1− Q̃0)xms+ Q̃0a]+α0(H−1 +S−1)[(1+
Q̃0

α0
)x0− Q̃0

α0
a]]

(10)

whereα0 = 2exp(− 3
2)∑i I(xi)

∑i I(xi)exp(− 1
2‖x0−xi‖2

h)
andQ̃0 = |2πS| 1

2 Q(x0). The derived optimization step

can be again interpreted as a BLUE fusion of two Gaussian sources with more com-
plex mean and covariance terms than the attractive case:N ((1− Q̃0)xms+ Q̃0a,H) and

N ((1+ Q̃0
α0

)x0− Q̃0
α0

a,(H−1+S−1)−1/α0). Note that when the current pointx0 is asymp-
totically far from the prior located ata, the mean-shift step reduces to be the BLUE fusion
of xms andx0 sinceQ̃0 −→ 0.

3.3 Synthetic Example
Figure 2 shows 1D simulation of the prior-constrained mean shift algorithms with the
attractive and repulsive priors. The 1D bimodal image data isI(x) = max [exp(−(x+
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Figure 2: Prior-constrained mean shift with 1D bimodal data. The input data (solid blue)
consists of two Gaussian components centered at−1 and3. The solid red curve with a 0.5
vertical bias show the function to be optimized for each case. ”x”: iterations initialized
at xp=−3. ”+”: convergence. Top-left: scale-space mean shift (SSMS) in (2) withh=1.2.
Top-right: SSMS withh=0.2. Bottom-left: variational attractor-constrained mean shift
with h=1.2 and (a,S)=(−1,1), L(x,h): dashed,Q(x): dot-dashed,̃L1(x;h): solid red.
Bottom-right: variational repeller-constrained mean shift withh=1.2 and (a,S)=(3,4),
L(x,h): dashed,Q̄(x): dot-dashed,̃L3(x;h): solid red.

1)2/4),3exp(−(x−3)2/4)], illustrating a situation similar to Figure.1. As shown in the
figure, the scale-space mean shift initialized atxp = −3 converges to the stronger right
peak (top-left), missing the weaker left peak that can be found with a smaller analysis
bandwidth (top-right). Using the same bandwidth, the prior-constrained mean shift algo-
rithms are controlled to converge to the weaker peak by setting the attractive (bottom-left)
and repulsive (bottom-right) priors appropriately (shown in dot-dashed curves).

4 Local Data Parsing by Inhibition of Return
Automatic data and mode parsing algorithms are useful for representing and processing
structures in multimodal data. However they suffer from the same inability to detect weak
data modes as was discussed in the introduction. To solve the parsing problem with the
presence of weak modes, we propose a novelinhibition of return (IOR)framework using
the prior-constrained mean shift. The main idea is to sequentially perform the negative
prior-constrained mean shift procedure by setting repulsive priors at each consecutive
convergence point of the constrained mean shift. We use the robust multiscale Gaussian
fitting solution [13] for setting the priors. At each convergence, weimplicitly fit a 3D
Gaussian intensity modelI(x)' [αN (x;u,Σ)+β ]x∈Ω to the data, by using scale-space
mean shift (2), whereα,β > 0 andΩ denotes the basin of attraction. Then the center
and the approximate 3D shape of a blob-like peak at the convergence are characterized by
the meanu∗ and the covarianceΣ∗ of the fitted Gaussian. We set a negative prior (7) by
inverting the fitted Gaussian with(u∗,Σ∗).

This procedure traverses from mode to mode starting from an arbitrary initial point,
parsing all the blob-like data structures located nearby.This parsing process is efficient
because each detected mode is inhibited from being revisited by setting a repulsive prior.
This IOR concept was first proposed for a computational model of visual attention [8].
However, their neural network-based implementation differs greatly from our approach,



although we share their basic concept. The following describes the algorithm.

Initialization dataI(xi), initial point xp, andQm=0=NIL:

Loop overmuntil no structure is found nearxp:

1. Perform Gaussian fitting with the prior-constrained mean shiftmr(x,h) con-
strained by repellers{Qm′ |m′ = 1, ...,m} → (u∗,Σ∗).

2. Set them-th parsed structure Strm← (u∗,Σ∗).
3. Set them+1-th priorQm+1 ← (a,S)=(u∗,Σ∗).

This IOR-based algorithm results in a set of blob structures{Strm} located nearxp.

5 Experiments
To evaluate the effectiveness of the proposed framework, we apply a 3D implementation
of the IOR-based local data analysis to the semi-automatic segmentation of lung nodules.

5.1 Lung Nodule Segmentation
In the past decades, a large amount of work has been done in computer-aided detection
and segmentation of lung nodules toward improving mortality rate of lung cancers [15].
Recently, more sophisticated solutions [11, 10, 13] for this purpose have been proposed by
taking advantage of increased image quality and resolution with the enhanced CT scan-
ners. Despite the improvements, however, the problem remains open due to the data’s
natural complexity. For example, many lung nodules are attached or located nearby other
non-target structures such as lung wall and vessels [10, 14]. Because the intensity val-
ues of these structures can be similar to those of the nodules, separating them from such
structures is not trivial. The robust solution by Okada et al. [13] approached this issue by
incorporating geometric constraints, however it still fails to segment many nodules located
near or attached to neighboring structures. These failures are caused because the target
nodules are located near rib bones which have much higher intensity values than nodules,
thus falsely attracting the scale-space mean shift convergence. This is precisely the situ-
ation, as illustrated in Figure 1, in which the prior-constrained mean shift framework is
designed to be effective. Therefore we will extend the Okada’s approach by replacing
the scale-space mean shift with its prior-constrained counter part, improving the perfor-
mance for the attached cases. Figure 4 compares the results of the original and extended
solutions.

An IOR-based solution is proposed for this purpose as described in Section 4. After
the first iteration, we perform a goodness of fit test based on chi-square measure [13] after
the step 2. If the initial fit is verified as a good fit, no further process is performed. When
the initial fit fails according to the measure, however, a repulsive prior is set as in Section
3.2 and the next iteration of the IOR algorithm is carried out. In this study, we use two
iterations.

5.2 Toy Data
For testing the feasibility, we first evaluated a 2D version of the system on synthetic data
as shown in Figure 3. Emulating the wall-attached nodule case, the data is constructed
with a step function (lung wall), a large Gaussian with higher intensity (bone), and a small
truncated Gaussian with lower intensity (wall-attached nodule). The results demonstrate
that our solution correctly finds and segments the difficult target structure in spite of the
presence of a stronger mode, white noise, and variation in the initialization.
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Figure 3: Two-step IOR-based data analysis evaluated with 2D synthetic data. From
top-left to bottom-right: A) input data, B) initial Gaussian fit from the initialization at
”+”, C) initial weights, D) second step with the prior-constrained MS capturing the tumor
correctly, E) second step with the same data with white noise and different initialization,
F) weights constrained by the repulsive prior.

5.3 Chest HRCT Data
We use a clinical data set of the thin-section (1.25 mm slice thickness) chest high-resolution
computed tomography (HRCT) images including 39 patients with a total of 1310 nodules.
The data is recorded with Multislice CT scanners and anonymatized. Each volumetric im-
age consists of 12-bit positive values over an array of 512x512 lattices. The implementa-
tion of the Gaussian fitting algorithm follows the settings described in [13]. This resulted
in 106 verified failure cases. Most of these failures were the wall-attached cases and they
were correctly segmented by our data parsing solution with the prior-constrained mean
shifts. Figure 4 shows 8 illustrative examples for such cases. The left three columns show
the original failed segmentation results in three orthogonal cross-sections respectively
while the right three columns show the segmentation results with the prior constraints.
Note that the original and our results are shown in different cross sections of the same
volumes thus they appear differently. See the caption for details.

6 Conclusions
This paper proposes a novel framework for incorporating attractive and repulsive spatial
priors in the Gaussian form to the mean shift-based data-driven mode analysis. Using
the variational bound optimization scheme, we derived two convergent optimizers for the
constrained Gaussian scale-space functions, resulting in a BLUE fusion of two indepen-
dent Gaussian sources. Further, we proposed a mode parsing algorithm based on the
IOR approach using the prior-constrained mean shift. This algorithm is then successfully
applied to the semi-automatic 3D lung tumor segmentation problem to segment difficult
wall-attached cases.

We consider the presented work as a step toward deriving a general framework for
combining data-driven statistical analysis with prior information in order to provide ef-
fective and efficient vision solutions. We believe that our contribution is general and
the proposed formulation can be extended in the following ways: i) exploiting the prior-
constrained mean shift in the kernel density estimate domain, ii) applying to problems
other than segmentation such as tracking, iii) adapting the IOR-based mode parsing algo-
rithm to more flexible visual search [8] by updating the initialization at each convergence.
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Figure 4: Eight examples of 3D tumor segmentation results with and without the repulsive
prior. Each row shows the results for each example. Left 3 columns: failure segmentation
due to false data-driven convergence at rib bones shown in 3 orthogonal cross sections.
Right 3 columns: corresponding segmentation results using the failed fit as a repelling
prior. ”+”: initialization markerxp. ”x”: estimated centeru. Ellipses: image-plane
intersection of 35% confidence ellipsoid of the estimated Gaussian.Note that the original
and our results are shown in different cross sections thus they appear differently.
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