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Abstract

We present a general statistical framework for modeling and processing
head pose information in 2D grayscale images: analyzing, synthesiz-
ing, and identifying facial images with arbitrary 3D head poses. As a
basic component, LPCMAP model offers a compact view-based data-
driven model with bidirectional mappings between face views and 3D
head angles. We call a mapping from face to pose analysis mapping
and that from pose to face synthesis mapping. A model matching is
also defined by an analysis-synthesis chain that concatenates the two
mappings. Such a mapping-based model implicitly captures 3D geo-
metric nature of the problem without explicitly reconstructing 3D fa-
cial structure from data. The model is learned by using efficient PCA
and SVD algorithms resulting in linear functional forms. They are
however only locally valid due to the linear design. We further extend
this local model to mitigate the shortcomings. PPLS model extends
the LPCMAP for covering a wider pose range by piecing together a
set of LPCMAPs. Multiple-PPLS model further extends the PPLS for
generalizing over different individuals. These proposed models are ap-
plied to solve pose estimation and animation by using the analysis and
synthesis mappings, respectively. A novel pose-insensitive face recog-
nition framework is also proposed by exploiting the PPLS model to
represent each known person. In our recognition framework, the model
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matching with the PPLS models provides a flexible pose alignment of
model views and input faces with arbitrary head poses, making the
recognition invariant against pose variation. Implementations of the
proposed models are empirically evaluated with a database of various
views of 20 people rendered from Cyberware-scanned 3D face models.
The results demonstrated sub-degree pose estimation and sub-pixel
shape synthesis accuracy, as well as high degree of generalization to
unseen head poses within ±50 degree range of full 3D head rotation.
For recognition and interpersonalized pose estimation, the results also
indicated robustness against unseen head poses and individuals while
compressing the data by a factor of 20 and more.

1 Introduction

Face recognition is one of the most interesting and challenging problems
in computer vision and pattern recognition. In past many aspects of this
problem have been rigorously investigated because of its importance for re-
alizing various applications and understanding our cognitive processes. For
reviews, see [37, 6, 42]. Past studies in this field have revealed that our ut-
most challenge is to reliably recognize people in the presence of image/object
variations that occur naturally in our daily life [32]. Among others, head
pose variation is one of most common variations because humans and their
heads can move freely. Thus, handling of head pose variation is an extremely
important factor for virtually any realistic and practical application scenar-
ios. There have been a number of studies which specifically addressed the
issue of pose invariance in face recognition [2, 31, 23, 20, 38, 3, 1, 13, 11,
16, 12, 15, 41, 30, 40, 5]. Despite the accumulation of studies and relative
readiness of the problem, however, performance of the state-of-the-art has
unfortunately remained inferior to human ability and sub-optimal for prac-
tical use when there is no control over subjects and when one must deal with
an unlimited range of full 3D pose variation.

Our main goal is to develop a simple and generalizable framework which
can be readily extended beyond the specific focus on head poses (e.g., illu-
minations and expressions), while improving the pose processing accuracy
of the state-of-the-art. For this purpose, we propose a general statistical
framework for compactly modeling and accurately processing head pose in-
formation in 2D images. The framework offers means for analyzing, synthe-
sizing, and identifying facial images with arbitrary head poses. The model
is data-driven in a sense that a set of labeled training samples are used to
learn how facial views change as a function of head poses. For realizing the
compactness, the model must be able to learn from only a few samples by
generalizing to unseen head poses and individuals. Linearity is emphasized
in our model design, which simplifies the learning process and facilitates
generalization by avoiding typical non-linear pitfalls such as over-fitting [4].

For pose-insensitive face recognition, previous works can roughly be cat-
egorized into two types: single-view and multi-view approach. The single-
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view approach is based on the person-independent transformation of test
images [23, 20, 16]. The pose invariance is achieved by representing each
known person by a facial image with a fixed canonical head pose and by
transforming each test image to the canonical pose. This forces that head
poses of the tests and gallery entries are always aligned when they are com-
pared for identification. An advantage of this approach is the small size of
the known-person gallery, however their recognition performance tends to
be low due to the difficulty of constructing an accurate person-independent
transformation. On the other hand, the multi-view approach [2, 3, 12, 41]
is based on the multi-view gallery, which consists of multiple views of vari-
ous poses for each known person. Pose-invariance is achieved by assuming
that, for each input face, there exists a view with the same head pose as the
input for each known person in the gallery. These studies have reported gen-
erally better recognition performance than the single-view approach. The
large size of the gallery is, however, a disadvantage of this approach. The
recognition performance and the gallery size have a trade-off relationship;
to improve the performance requires denser sampling of the continuous pose
variation, increasing the gallery size. This increase of the gallery size makes
it difficult to scale the recognition systems to the large number of known
people and makes the recognition process more time-consuming.

One solution to the trade-off problem is to represent each known person
by a compact model. Given the multi-view gallery, each set of views of a
known person can be used as training samples to learn such a personalized
model, reducing the gallery size while maintaining high recognition perfor-
mance. The parametric eigenspace method of Murase and Nayar [25] and
the virtual eigensignature method of Graham and Allinson [13] are success-
ful examples of this approach. These methods represent each known person
by compact manifolds in the embedded subspace of the eigenspace. De-
spite their good recognition performance, generalization capability is their
shortcoming. Both systems utilized non-linear methods (cubic-spline for
the former and radial basis function network for the latter) for parame-
terizing/modeling the manifolds. Such methods have a tendency to overfit
peculiarities in training samples, compromising capability to generalize over
unseen head poses. The proposed solution emphasizes on linearity in model
design, facilitating such generalization, as well as model compactness.

Our investigation explores the model-based solution of pose estimation,
pose animation, and pose-insensitive face recognition using parametric lin-
ear subspace models. As a basic component, we propose LPCMAP model
that offers a compact view-based model with bidirectional mappings between
face views and 3D head angles [27]. We call a mapping from face to pose
analysis mapping and that from pose to face synthesis mapping. A model
matching is also defined by an analysis-synthesis chain that concatenates the
two mappings. Availability of such mappings avoids the necessity of an ex-
haustive search in the parameter space. Its parametric nature also provides
an intuitive interface that permits clear interpretation of image variations
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and enables the model to continuously cover the pose variation thereby im-
proving accuracy of the previous systems. Such a mapping-based model
implicitly captures 3D geometric nature of the problem without explicitly
reconstructing 3D facial structure from data. The model is learned by using
efficient PCA and SVD algorithms resulting in a linear form of the functions.
They are however only locally valid due to the linear design. Therefore this
local model is further extended to mitigate the shortcomings. PPLS model
extends the LPCMAP for covering a wider pose range by piecing together
a set of LPCMAPS [29]. Multiple-PPLS model further extends the PPLS
for generalizing over different individuals [26]. The discrete local models are
continuously interpolated, improving the structurally discrete methods such
as the view-based eigenface by Pentland et al. [31].

These proposed models are successfully applied to solve pose estimation
and animation by using the analysis and synthesis mappings, respectively.
A novel pose-insensitive face recognition framework is also proposed by ex-
ploiting the PPLS model to represent each known person. In our recognition
framework, the model matching with the PPLS models provides a flexible
pose alignment of model views and input faces with arbitrary head poses,
making the recognition invariant against pose variation. As a pure head pose
estimation application, the analysis mapping can also be made to generalize
inter-personally by using the multiple-PPLS model that linearly combines a
set of personalized PPLS models.

The rest of this article is organized as follows. In Section 2, we overview
our framework and introduce some basic terminologies. Section 3 describes
the LPCMAP and PPLS models in details. Section 4 shows how we can ex-
tend the PPLS model inter-personally. In Section 5, we empirically evaluate
effectiveness of the proposed models. In Section 6, we conclude this article
by summarizing our contributions and discussing future work.

2 Problem Overview and Definitions

The problem of our focus is to learn a data-driven statistical model of how
facial appearance changes as a function of corresponding head angles and to
apply such learned models for building a face recognition system that is in-
sensitive to the pose variation. The following introduces formal descriptions
of our problem, as well as terminologies used throughout this paper.

2.1 Statistical Models of Pose Variation

2.1.1 Analysis and Synthesis Mappings

We employ the parametric linear subspace (PLS) model [27, 29] for repre-
senting such pose-modulated statistics. A PLS model consists of bidirec-
tional, continuous, multivariate, mapping functions between a vectorized
facial image ~v and 3D head angles ~θ. We call a mapping AΩ from the image
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to angles analysis mapping, and its inverse SΩ synthesis mapping.

AΩ : ~v
Ω−→ ~θ

SΩ : ~θ
Ω−→ ~v(Ω)

(1)

Ω denotes a model instance that is learned from a set of training sam-
ples. We suppose that a set of M training samples, denoted by M pairs
{(~vm, ~θm)|m = 1, ..,M}, is given where a single labeled training sample is
denoted by a pair of vectors (~vm, ~θm), ~vm is the m-th vectorized facial im-
age, and ~θm = (θm1, θm2, θm3) are the corresponding 3D head angles of a
face presented in ~vm.

An application of the analysis mapping can be considered as pose es-
timation. Given an arbitrary facial image ~v /∈ {~v1, .., ~vM}, AΩ provides a

3D head angle estimate ~̂θ = AΩ(~v) of a face in ~v. On the other hand, an
application of the synthesis mapping provides a means of pose transforma-
tion or facial animation. Given an arbitrary 3D head angle ~θ /∈ {~θ1, .., ~θM},
SΩ provides a synthesized sample or model view ~̂v = SΩ(~θ) whose head is
rotated according to the given angle but its appearance is due to the learned
model Ω.

2.1.2 Personalized and Interpersonalized Models

The type of training samples used for learning a model determines the na-
ture of specific PLS model instance. A model is called personalized when
it is learned with pose-varying samples from a single individual. In this
case, both analysis and synthesis mappings become specific to the person
presented in the training set. Therefore the synthesis mapping output ~v(Ω)
exhibits personal appearance that solely depends on Ω encoding specificities
of the person, while its head pose is given by an input to this mapping.
On the other hand, a model is called interpersonalized when the training
set contains multiple individuals. For pose estimation, this provides a more
natural setting where the analysis mapping AΩ continuously covers not only
the head pose variations but also variations over different individuals.

2.2 Pose-Insensitive Face Recognition

2.2.1 Model Matching

Given an arbitrary person’s face as input, a learned PLS model can be fit
against it by concatenating the analysis and synthesis mappings. We call
this model matching process the analysis-synthesis-chain (ASC) process.

MΩ : ~v
Ω−→ ~θ

Ω−→ ~v(Ω) (2)

The output of ASC is called the model view ~v(Ω). It provides a facial view
~v(Ω) of the person learned in Ω whose head pose is aligned to the input

5



Model 1 Model 2 Model 3 Model N

ANALYSIS

SYNTHESIS

Test Image

Known Person Gallery
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Figure 1: Pose-insensitive face recognition framework with parametric linear
subspace models used to represent each known person.

face in ~v. This process not only fits a learned model to the input but also
gives simultaneously a 3D pose estimate as a byproduct that can be used
for other application purposes.

Note that, when matching a personalized PLS model to different person’s
face, the resulting model view can be erroneous due to the pose estimation
errors caused by the identity mismatch. To overcome this issue, AΩ of an
interpersonalized model [26] can be exploited for reducing pose estimation
error. For the purpose of face recognition, however, these errors actually
serve as an advantage because it makes model views of mismatched individ-
uals less similar to the input helping to single out the correct face. Moreover
such errors are typically small due to the geometrical proximity of different
faces.

2.2.2 Overview of the Proposed Recognition Framework

Figure 1 illustrates our framework for pose-insensitive face recognition. The
framework employs the PLS model as the representation of a known person.
For each known person, a personalized model is learned from the pose-
varying samples of the person. We call a database of P known people, as
a set of learned personalized models {Ωp|p = 1, .., P}, the known-person
gallery. Given a test image of an arbitrary person with an arbitrary head
pose, each model in the gallery is matched against the image by using its
ASC process. The process results in pose-aligned model views of all known
persons. After this pose alignment, the test image is compared against the
model views in a nearest neighbor classification fashion. In this scheme,
the view-based comparison only occurs between views of the same pose
improving the recognition performance.

Figure 2 illustrates the advantage of the proposed model-based method
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Figure 2: An illustrative example of face recognition with pose variation
using the model-based and the example-based systems.

over an example-based multi-view method using a gallery of three known
persons. A set of training samples for each person is used to construct the
multi-view gallery entry. The top row displays model views of three learned
models; the bottom row displays the best views of each known person that
are most similar to the test image. Decimal numbers shown adjacent to the
images denote their similarity to the test. There were no views in gallery
whose head pose was the same as the test image shown in the left. Therefore
head pose of the test and the best matched views are always different. This
results in a mis-identification by the multi-view system. On the other hand,
the model-based solution, constructed by using the exactly same samples as
in the multi-view system, identifies the test image correctly. This is realized
by the model’s ability to generalize to unseen views, resulting in model views
whose head pose is better aligned to the test.

The proposed framework flexibly aligns head pose of the inputs and
model views at an arbitrary pose, exploiting the PLS’s continuous gener-
alization capability to unseen views. Figure 3 and Table 1 illustrate this
advantage in comparison with two other recognition frameworks: the multi-
view (MVS) and single-view (SVS) systems. Given facial images with ar-
bitrary head poses shown in the first raw, a PLS, learned for this face, can
provide model views whose head pose is well aligned to the inputs. MVS
provides the most similar view (best view) to the input among the train-
ing samples used to learn the model, while SVS employs always the same
frontal view that represents the person single-handedly. The figure shows
that the proposed model is appeared to provide better pose-alignment than
the two other systems. Table 1 shows actual facial similarity values between
the inputs and the three different types of model or best view. The stan-
dard deviation shown in the right column indicates the degree of invariance
against the pose variations by each framework. The parametric linear model
provided the smallest standard deviation among the three, demonstrating
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Model
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Best
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by MVS

Best
View
by SVS

Input
Views

Figure 3: Comparison of three recognition frameworks in terms of pose-
alignment ability. Model views shown in the second raw are given by the
proposed method. MVS: example-based multi-view system; SVS: example-
based single-view system. See texts for their description.

Model Type a b c d e std.dev.
Model Views 0.915 0.871 0.862 0.891 0.878 0.0184

Best Views by MVS 0.930 0.872 0.876 0.913 0.897 0.0220
Best View by SVS 0.926 0.852 0.816 0.878 0.862 0.0359

Table 1: Similarity scores between the test input and different types of model
and best views in Figure 3.

the model’s favorable characteristics towards pose-insensitivity.

3 Parametric Linear Subspace Model

This section describes two instances of the PLS model: the linear principal
component-mapping (LPCMAP) model [27] and the parametric piecewise
linear subspace (PPLS) model [29]. The PPLS model employs a set of
LPCMAP models, each of which realizes the continuous analysis and syn-
thesis mappings. For maintaining the continuous nature in a global system,
we consider that local mapping functions cover the whole parameter space,
without imposing a rigid parameter window. Due to the linearity, however,
the range over which each local mapping is accurate is often limited. In or-
der to cover a wide range of continuous pose variation, a PPLS model pieces
together a number of local models distributed over the 3D angle space of
head poses. In order to account for the local model’s parameter-range limi-
tation, each model is paired with a radius-basis weight function. The PPLS
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Training Sample

20 Landmarks Found

Locations of the Landmarks Local Gray-Level Distribution
Captured in 20 Jets

Shape Representation Texture Representation

20
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Figure 4: Shape and texture decomposition process, illustrating parameter
settings used for our experiments in Section 5. The number of landmarks
N = 20 and the length of a texture vector L = 80 with a bank of 5-level
and 8-orientation 2D complex Gabor filters.

then performs a weighted linear combination of local model’s outputs, real-
izing a continuous global function. The following introduces details of these
models.

3.1 Linear PCMAP Model

The LPCMAP is a PLS model that realizes the continuous, but only lo-
cally valid, bidirectional mapping functions. It consists of a combination
of two linear systems: 1) linear subspaces spanned by principal components
(PCs) of training samples and 2) linear transfer matrices, which associate
projection coefficients of training samples onto the subspaces and their cor-
responding 3D head angles. It linearly approximates the entire parameter
space of head poses by a single model.

3.1.1 Shape-Texture Decomposition and Image Reconstruction

The LPCMAP model treats shape and texture information separately in
order to utilize them for different purposes. It has also been shown in lit-
erature that combined feature of shape and shape-free texture improves
recognition performance [38, 7, 21]. Figure 4 illustrates the process of de-
composing shape and texture information in facial images. First, N prede-
fined landmarks are located in each facial image ~vm by a landmark finder
or other means. Using this location information, shape and texture rep-
resentations (~xm, {~jm,n}) are extracted from the image. The shape repre-
sentation ~xm ∈ R2N stands for an array of object-centered 2D coordinates
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Figure 5: Learning processes of the LPCMAP model: (a) PCA subspace
model by Sirovich and Kirby [36], (b) shape and texture models using linear
subspaces, and (c) linear transfer matrices relating different model para-
meters A rectangle in (b) denotes a set of training samples and an ellipse
denotes a PCA subspace model.

of the N landmarks. On the other hand, the texture information is repre-
sented by a set of spatially sparse local features sampled at the N landmark
points. The multi-orientation and multi-scale Gabor wavelet transforma-
tion [8] is used to define such local features. The texture representation
{~jm,n ∈ RL|n = 1, .., N} stands for a set of Gabor jets (L-component com-
plex coefficient vector of the Gabor transform) sampled at the N land-
marks [19, 39, 28]. Let Dx and Dj denote operations of the shape and
texture decomposition, respectively.

~xm = Dx(~vm) ~jm,1, ..,~jm,N = Dj(~vm) (3)

As an inverse operation, a gray-level facial image can be reconstructed ap-
proximately from a pair of shape and texture representations (~xm, {~jm,n}),
following the work by Poetzsch et al. [33]. R denotes this reconstruction
operation.

~vm = R(~xm,~jm,1, ..,~jm,N ) (4)

3.1.2 Learning Linear Subspace Models

As the first step of the model learning process, we extract a small number
of significant statistical modes from training facial images using Principal
Component Analysis (PCA), as illustrated in Figure 5. Given training sam-
ples {(~vm, ~θm)|m = 1, .., M}, a set of extracted shape representations {~xm}
is subjected to PCA [34], solving the eigen decomposition problem of the
centered sample covariance matrix, XXt~yp = λp~yp, where X is a 2N ×M
column sample matrix. This results in an ordered set of 2N principal com-
ponents (PCs) {~yp|p = 1, .., 2N} of the shape ensemble. We call such PCs
shape PCs. The local texture set {~jm,n} at a landmark n is also subjected
to PCA, resulting in an ordered set of L PCs {~bs,n|s = 1, .., L}. We cal such
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PCs texture PCs. Performing this procedure for all the N landmarks results
in a set of local texture PCs {~bs,n|s = 1, .., L; n = 1, .., N}.

The subspace model [36, 31] is defined by a vector space spanned by a
subset of the PCs in decreasing order of their corresponding variances as
illustrated in Figure 5(a). An image ~v is approximated as the sum of the
average image E(~v) and the PCs (~e1, .., ~ep). The weight vector (w1, .., wp) is
defined by orthogonal projection onto the subspace and serves as a compact
representation of the image ~v. Due to the orthonormality of PCs, a linear
combination of the PCs with the above mixing weights provides the best ap-
proximation of an original representation which minimizes L2 reconstruction
error.

As illustrated in Figure 5(b), a shape model Y is constructed by the
first P0 ≤ 2N shape PCs, Y = (~y1, .., ~yP0)

t. And a texture model {Bn}
is then constructed by the first S0 ≤ L texture PCs at each landmark n,
{Bn = (~b1,n, ..,~bS0,n)t|n = 1, .., N}. These subspace models are used to
parameterize and compress a centered input representation by orthogonally
projecting it onto the subspace.

~qm = Y (~xm − ~ux) ~ux =
1
M

M∑

m=1

~xm (5)

~rm,n = Bn(~jm,n − ~ujn) ~ujn =
1
M

M∑

m=1

~jm,n (6)

We call projection coefficient vectors for shape representation ~qm ∈ RP0

shape parameters and those of texture representation ~rm,n ∈ RS0 texture
parameters, respectively. We also refer to these parameters (equivalent to
the weight vector in Figure 5(a)) as model parameters collectively.

~xm ≈ ~ux + Y t~qm (7)

~jm,n ≈ ~ujn + (Bn)t~rm,n (8)

3.1.3 Learning Linear Transfer Matrices

As the second step of the learning process, model parameters are linearly
associated with head pose parameters for realizing direct mappings between
~v and ~θ, as illustrated in Figure 5(c).

Clearly, the model parameters are non-linearly related to the 3D head
angles therefore the intrinsic mapping between them is non-linear. In order
to linearly approximate such non-linear mapping, we first transform the 3D
head angles ~θm = (θm,1, θm,2, θm,3) to pose parameters ~ϕm ∈ RT≥3 such
that the mapping between the pose and model parameters can be linearly
approximated. We consider the following trigonometric function K for this
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purpose.

~ϕm = K(~θm) = (cos (θ̃m,1), sin (θ̃m,1), cos (θ̃m,2), sin (θ̃m,2), cos (θ̃m,3), sin (θ̃m,3))
θ̃m,i = θm,i − uθi ~uθ = (uθ1, uθ2, uθ3) = 1

M

∑M
m=1

~θm

(9)
There exists an inverse transformation K−1 such that

~θm = K−1(~ϕm) = ~uθ + (arctan(
ϕm,2

ϕm,1
), arctan(

ϕm,4

ϕm,3
), arctan(

ϕm,6

ϕm,5
)) (10)

For both the analysis and synthesis mappings, the pose parameters ~ϕm are
linearly related only with the shape parameters ~qm.

~ϕm = F~qm (11)

~qm = G~ϕm (12)

A T×P0 transfer matrix F (denoted as SP in Figure 5(c)) is learned by solv-
ing an overcomplete set of linear equations, FQ = Φ, Q = (~q1, .., ~qM ), Φ =
(~ϕ1, .., ~ϕM ). The Singular Value Decomposition (SVD) [34] is used to solve
this linear system. Moreover, a P0×T transfer matrix G (denoted as PS in
Figure 5(c)) is also learned by solving, GΦ = Q, in the same manner. For
the synthesis mapping, the shape parameters ~qm are linearly related with
the texture parameters ~rm,n at each landmark n.

{~rm,n = Hn~qm|n = 1, .., N} (13)

A set of S0 × P0 transfer matrices {Hn} (denoted as ST in Figure 5(c)) is
learned by solving, HnQ = Rn, Rn = (~r1,n, .., ~rM,n), by using SVD for all
the N landmarks.

3.1.4 Model Definition

As a result of the above two learning steps, we generate a set of data en-
tities which collectively capture facial appearance in a given set of training
samples. A LPCMAP model LM is defined by such data entities that are
learned from training samples

LM := {~ux, {~ujn}, ~uθ, Y, {Bn}, F, G, {Hn}} (14)

where ~ux and {~ujn} are average shape and texture representations, ~uθ is an
average 3D head angle vector, Y and {Bn} are shape and texture models,
F and G and {Hn} are shape-to-pose, pose-to-shape, and shape-to-texture
transfer matrices.
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Figure 6: Analysis and synthesis mapping and analysis-thesis-chain func-
tions. Trigonometric transfer functions K and K−1 are denoted by TFT
and arctan, respectively. SP, PS and ST denote the transfer matrices
shown in Figure 5(c).

3.1.5 Mapping and Chain Functions

The analysis and synthesis mappings are constructed as a function of the
learned LPCMAP model LM , as illustrated in Figure 6. The analysis map-
ping function ALM (~v) is given by combining formulae (3), (5), (11), and
(10).

~̂θ = ALM (~v) = ~uθ +K−1(F · Y · (Dx(~v)− ~ux)) (15)

The analysis function only utilizes the shape information of faces, follow-
ing results of our preliminary experiments in which the head angles are
better correlated with the shape representations than the texture represen-
tations [26]).

The synthesis mapping function S(~θ) is given by relating the 3D head
angles to the shape coefficients and the shape coefficients to the texture co-
efficients, Because the shape and texture decomposition, we address distinct
synthesis processes for shape and texture. We refer to shape and texture
synthesis mapping functions as SS and T S, respectively.

The shape synthesis mapping function SSLM (~θ) is given by combining
formulae (9), (12), and (7), using only the shape information similar to
the analysis function. On the other hand, the texture synthesis mapping
function T SLM (~θ) is given by formulae (9), (12), (13), and (8), utilizing
correlation between shape and texture parameters. The synthesis mapping
function SLM (~θ) is then given by substituting the shape and texture syn-
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Figure 7: A sketch of the PPLS model with seven LPCMAP models. An
input image is shown at the top-left. Model centers of the LPCMAPs are
denoted by circles. Pose estimation is performed by applying the analysis
mapping APM , resulting the global estimate denoted by a block dot. On
the other hand, pose transformation is performed by applying the synthesis
mapping SPM . Model views, shown next to the model centers, are linearly
combined with Gaussian weights, resulting in global synthesis shown at the
bottom-left.

thesis functions to formula (4).

~̂v = SLM (~θ) = R(SSLM (~θ), T SLM (~θ))
~̂x = SSLM (~θ) = ~ux + Y t ·G · K(~θ − ~uθ)

{~̂jn|n = 1, .., N} = T SLM (~θ) = {~ujn + Bn ·Hn ·G · K(~θ − ~uθ)|n = 1, .., N}
(16)

Finally, the ASC function M(~v) is given by concatenating Eq. (15) and
Eq. (16) as shown in Figure 6.

~̂v = MLM (~v) = R(SSLM (ALM (~v)), T SLM (ALM (~v))) (17)

3.2 Parametric Piecewise Linear Subspace Model

3.2.1 Model Definition

The parametric piecewise linear subspace (PPLS) model [29] extends the
LPCMAP model by using the piecewise linear approach [35]. Due to the
linear approximation, LPCMAP model can only be accurate within a limited
range of pose parameters. Piecewise linear approach approximates the non-
linear pose variation within a wider range by piecing together a number of
locally valid models distributed over the pose parameter space. The PPLS
model PM consists of a set of K local models in the form of the above-
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described LPCMAP model.

PM := {LMk|k = 1, ..,K} (18)

We assume that the local models are learned by training data sampled from
appropriately distanced local regions of the 3D angle space: the 3D finite
parameter space spanned by the head angles. Each set of the local training
samples is associated with a model center, the average 3D head angles ~uLMk

θ ,
which specifies the learned model’s location in the 3D angle space. Figure 7
illustrates seven local models distributed in the 3D angle space. Model
centers are denoted by circles and model views of the input are also shown
next to them. Missing components of shape representations due to large
head rotations are handled by the mean-imputation method [22], which fills
in each missing component by a mean computed from all available data at
the component dimension.

3.2.2 Mapping and Chain Functions

The analysis mapping function APM of the PPLS model is given by av-
eraging K local pose estimates with appropriate weights as illustrated in
Figure 7.

~̂θ = APM (~v) =
K∑

k=1

wkALMk
(~v) (19)

Similarly, the synthesis mapping function SPM is given by averaging K
locally synthesized shape and texture estimates with the same weights as
illustrated in Figure 7.

~̂v = SPM (~θ) = R(SSPM (~θ), T SPM (~θ))
~̂x = SSPM (~θ) =

∑K
k=1 wkSSLMk

(~θ)

{~̂jn} = T SPM (~θ) =
∑K

k=1 wkT SLMk
(~θ)

(20)

A vector of the weights ~w = (w1, .., wK) in Eq. (19) and Eq. (20) must
be responsible for localizing the output space of the LPCMAP models, since
their outputs themselves are continuous and unbounded. For this purpose,
we defined the weights, as a function of the input pose, by using a normalized
Gaussian function of distance between an input pose and each model center

wk(~θ) = ρk(~θ−~u
LMk
θ

)∑K

k=1
ρk(~θ−~u

LMk
θ

)
ρk(~θ) = 1√

2πσk
exp(−‖~θ‖2

2σ2
k

) (21)

where σk denotes the k-th Gaussian width. It is set by the standard devia-
tion of the 3D head angle vectors used for learning LMk and determines the

extent to which each local model influences the outputs ~̂θ and ~̂v. The weight
value reaches maximum when the input pose coincides with one of the model
centers; it decays as the distance increases. Outputs of local models that are
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located far from an input pose can become largely distorted because of the
pose range limitation. However, these distorted local outputs do not greatly
influence a global output because their contribution is strongly inhibited by
relatively low weight values.

The ASC function M(~v) is again given by connecting an analysis output
to a synthesis input.

~̂v = MPM (~v) = R(SSPM (APM (~v)), T SPM (APM (~v))) (22)

3.2.3 Gradient Descend-based Pose Estimation

Note that Eq. (19) cannot be solved in closed-form because its r.h.s. include
the weights as a function of an unknown ~θ. To overcome this issue, a gradient
descent-based iterative solution is formulated. Let a shape vector ~x be an
input to the algorithm. Also let ~xi and ~θi denote the shape and angle
estimates by the i-th iteration. The algorithm iterates the following formulae
until the mean-square error ‖∆~xi‖2 becomes sufficiently small.

∆~xi = ~x− ~xi,

∆~θi =
∑K

k=1 wk(~θi)A′LMk
(∆~xi),

~θi+1 = ~θi + η∆~θi,

~xi+1 =
∑K

k=1 wk(~θi+1)SSLMk
(~θi+1),

(23)

where η is a learning rate and A′ is a slight modification of Eq. (15) that
has a shape vector interface. The initial conditions ~x0 and ~θ0 are given by
the local model whose center shape ~uLMk

x is most similar to ~x.
Note that the weighted sum of the analysis mappings in (23) is used as

an approximation of the gradient of ~θ with respect to ~x at the current shape
estimate ~xi. In the PPLS model, such gradients are only available at the K
discrete model centers. The second formula in (23), therefore, interpolates
the K local gradient matrices for computing the gradients at an arbitrary
point in the 3D angle space. The good local accuracy of the LPCMAP model
shown in [27] supports the validity of this approximation. When a sufficient
number of local models are allocated in the 3D angle space, the chance of
being trapped at a local minimum should decrease. In our experimental
setting described in the next section, the above initial condition settings
resulted in no local minimum trappings significantly away from the global
minima. Note also that the algorithm performs pose estimation and shape
synthesis simultaneously since it iterates between pose and shape in each
loop. This gives an alternative for the shape synthesis, although the global
synthesis mapping in (20) remains valid.
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4 Interpersonalized Pose Estimation

As mentioned in Section 2.1.2, a single system should be able to solve the
pose estimation task across different individuals by exploiting geometrical
proximity of faces. In the previous sections, we focused on how to model
pose variations by using an example of personalized PLS models. This
section discusses how to extend the PLS framework to capture variations
due to head pose and individual differences simultaneously. The resulting
interpersonalized model is applied to realize pose estimation across different
people.

There are two approaches for realizing such an interpersonalized PLS
model. The first is simply to train a LPCMAP or PPLS model by using a set
of training samples that contain different-pose views from multiple people.
The generic design of the proposed PLS models allows this straightforward
extension however we must empirically validate if the learned linear model
adequately capture both variations correctly. Numerically after learning,
both LM and PM can be used in the same manner described in Section 3
for exploiting the corresponding analysis synthesis mappings and ASC model
matching. We refer to this type of model as single-PLS model.

The second, on the other hand, is to linearly combine a set of personalized
models in the similar way we constructed PPLS using a set of LPCMAPs.
We refer to this type of model as multiple-PLS model. A multiple-PPLS
model MM consists of a set of P personalized models in the form of PPLS.

MM := {PMp|p = 1, .., P} (24)

We assume that each PPLS model is personalized by learning it with pose-
varying samples of a specific person and that the training samples cover an
adequate range of head poses in the 3D angle space. The analysis mapping
function AMM of the multiple-PPLS model is then defined by a weighted
linear combination of P pose estimates by the personalized models, realizing
an interpersonalized pose estimation.

~̂θ = AMM (~v) =
P∑

p=1

wpAPMp(~v) (25)

The weight vector ~w = (w1, .., wP ) is responsible for choosing appropriate
personalized models and ignoring models that encodes faces very different
from input so as to minimize pose estimation errors. We consider an error of
shape reconstruction errp(~x) by using a shape-only analysis-synthesis-chain
of p-th PPLS model. Then we let a normalized Gaussian function of such
errors, similar to (21), indicate fidelity of personalized models to arbitrary
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Figure 8: 20 frontal views rendered from the 3D face models.

inputs.
wp(~θ) = ρp(errp(~x))∑P

p=1
ρp(errp(~x))

errp(~x) = ~x− ~̂xp = ~x− SSPMp(APMp(~x))
ρp(~θ) = 1√

2πσp
exp(−‖errp(~x)‖2

2σ2
p

)

(26)

where a shape synthesis mapping SSPMp of the multiple-PPLS model is
defined similar to (25) and σp denotes the p-th Gaussian width.

5 Experiments

5.1 Data Set

For evaluating our system’s performance over various head poses, we must
collect a very large number of samples with controlled head poses, which
is not an easy task. For mitigating this difficulty, we use 3D face models
pre-recorded by a Cyberware scanner. Given such data, relatively faithful
image samples with an arbitrary, but precise, head pose can easily be created
by image rendering. We used 20 heads randomly picked from the ATR-
Database [17], as shown in Figure 8.

For each head, we created 2821 training samples. They consist of 7 local
sample sets each of which covers a pose range of ±15 degrees at one-degree
interval. These local sets are distributed over the 3D angle space such that
they collectively cover a pose range of ±55 degrees along each axis of 3D
rotations; their model centers are distanced by ±40 degrees from the frontal
pose (origin of the angle space). We also created 804 test samples for each
head. In order to test the model’s generalization capability to unknown head
poses, we prepared the test samples whose head poses were not included in
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the training samples. Head angles of some test samples were in-between
multiple local models and beyond their ±15 degree range. They cover a
pose range of ±50 degrees. For more details of the data, see our previous
reports [26, 29].

For each sample, the 2D locations of 20 landmarks of inner facial parts,
such as eyes, nose and mouth, are derived by rotating the 3D landmark co-
ordinates, initialized manually, and by projecting them onto an image plane.
The explicit rotation angles of the heads also provide 3D head angles of the
samples. The rendering system provides the self-occlusion information. Up
to 10% of the total landmarks were self-occluded for each head.

5.2 Personalized Pose Estimation and View Synthesis

We compare the PPLS and LPCMAP models learned using the same train-
ing samples described above. The resulting PPLS model consists of 7 local
linear models, each of which is learned from one of the local training sets.
On the other hand, the resulting LPCMAP model consists of a single model
learned from the total 2821 samples. The shape and texture representation
are extracted using the specification N = 20 and L = 80 described in Fig-
ure 4. The PPLS model uses σk set to the sample standard deviation and
the gradient descent-based system with 500 iterations and η set to 0.01. The
learned models are tested with both 2821 training samples themselves and
804 disjoint test samples with unknown poses. We refer to the former by
accuracy test and the latter by generalization test.

Figure 9(a) compares average pose estimation errors of the PPLS and
LPCMAP models in both accuracy and generalization tests. In the accuracy
test, the average angular error with the first 8 PCs was 0.8±0.6 and 3.0±2.4
degrees and the worst error was 5.6 and 18.9 degrees for the PPLS and
LPCMAP models, respectively. In the generalization test, the average error
was 0.9 ± 0.6 and 2.4 ± 1.4 degrees, and the worst error was 4.5 and 10.2
degrees for the two models. Figure 9(b) compares average shape synthesis
errors of the two models in the two test cases. In the accuracy test, the
average landmark position error with the first 8 PCs was 0.8 ± 0.4 and
2.2 ± 1.2 pixels, and the worst error was 3.0 and 7.6 pixels for the PPLS
and LPCMAP models, respectively. In the generalization test, the average
error was 0.9 ± 0.4 and 2.4 ± 0.7 pixels, and the worst error was 2.7 and
5.6 pixels for the two models. Figure 9(c) compares average similarities
of synthesized and ground-truth texture vectors for the two models in the
two test cases. Local texture similarity is computed as a normalized dot-

product (cosine) of Gabor jet magnitudes, JetSim := amp(~jm
n )·amp(

ˆ~jm
n )

‖amp(~jm
n )‖ ‖amp(

ˆ~jm
n )‖

,

where amp extracts magnitudes of a Gabor jet in polar coordinates. The
similarity values range from 0 to 1, where 1 denotes equality of two jets. In
the accuracy test, the average similarity with the first 20 texture PCs was
0.955± 0.03 and 0.91± 0.04, and the worst similarity was 0.81 and 0.73 for
the PPLS and LPCMAP models, respectively. In the generalization test, the
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Figure 9: Comparison of the PPLS and LPCMAP models in terms of pose
estimation and transformation errors. The first and second rows show results
of the accuracy and generalization tests, respectively. Errors (similarities)
are plotted over the number of PCs used to construct a subspace. (a) pose
estimation errors in degrees averaged over 3 rotation angles. (b) shape
synthesis errors in pixels averaged over 20 landmarks. (c) texture synthesis
error by Gabor jet similarity averaged over 20 landmarks.

average similarity was 0.945± 0.03 and 0.88± 0.03, and the worst similarity
was 0.82 and 0.77 for the two models.

For all three tasks, the PPLS model greatly improved performance over
the LPCMAP model in both test cases, resulting in sub-degree and sub-pixel
accuracy. The results also show that the average errors between the two test
cases were similar, indicating good generalization to unknown poses. As a
reference for our texture similarity analysis, we computed average texture
similarities over 450 people from the FERET database [32]. The average
similarity was 0.94± 0.03 for the same person pairs and 0.86± 0.02 for the
most similar, but different, person pairs. The average similarity of the PPLS
model was higher than that of the large FERET database, which validates
the results of our texture similarity analysis.

Figure 10 illustrates model views: images reconstructed from samples
synthesized by formula (20) of the PPLS model. Note that facial images
reconstructed by the Pötzsch algorithm [33] do not retain original picture
quality. This is because a transformation Dj from images to the Gabor jet
representations is lossy due to coarse sampling in both spatial and frequency
domains. Nonetheless, these images still capture characteristics of faces
fairly well. Figure 10(a) compares reconstructed images of original and
synthesized training samples. The left-most column shows frontal views
while the rest of columns show views with ±45 degree rotation along one
axis. Figure 10(b) compares original and synthesized test samples. For
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(a)

(b)

PPLS TEST LPCMAP

(c)

Figure 10: Examples of synthesized model views by the PPLS model. In
(a) and (b), model views in the first and second rows are reconstructed
from ground-truth and synthesized pose-aligned samples, respectively. (a):
training samples with known head pose (accuracy test case); (b): test sam-
ples with unknown head poses (generalization test case); (c): illustrative
comparison of model views synthesized by the PPLS and LPCMAP models.

all three cases, the original and synthesized model views were very similar,
indicating good accuracy and successful generalization to unknown head
poses. Figure 10(c) compares model views synthesized by the PPLS and
LPCMAP models. The PPLS’s model view was more similar to the original
than the LPCMAP’s model view. This agrees with the results of our error
and similarity analyses.

5.3 Pose-Insensitive Face Recognition

For comparison, we constructed four recognition systems with 20 known
persons: 1) the single-view system (SVS), which represents each known
person by a single frontal view, 2) the LPCMAP system with a gallery of
LPCMAP models, 3) the PPLS system with a gallery of PPLS models, and
4) the multi-view system (MVS), which represents each person by various
raw views of the person. The LPCMAP, PPLS and MVS are constructed
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Test Samples Identification Compression
SVS 59.9±10.6% 0.035%

LPCMAP 91.6±5.0% 0.74%
PPLS 98.7±1.0% 5%
MVS 99.9±0.2% —

Table 2: Average correct-identification and relative compression rates for
four different systems.

PPLS LPCMAP
Unknown: M(~v) 98.7±1.0% 91.6±5.0%

Known: S(~θ) 99.3±0.7% 92.4±4.0%

Table 3: Identification rates when head pose of tests is unknown or given as
ground-truth.

by using the same 2821 training samples per person; the SVS serves as a
base-line. For both models, P0 and S0 are set to 8 and 20, respectively. The
PPLS models consist of 7 local models and perform 500 iterations with η
set to 0.01 for each test sample. Each pair of views are compared by an
average of normalized dot-product similarities between the corresponding
Gabor jet’s magnitudes.

Table 2 summarizes the results of our recognition experiments. Identifi-
cation rates in the table are averaged over the 20 persons; the compression
rates represent the size of the known-person gallery in percentage relative
to the MVS. The results show that recognition performance of the PPLS
system was more robust than the LPCMAP system (7% higher rate). Per-
formance of our model-based systems was much better than the base-line
SVS. Identification rates of the PPLS and MVS were almost the same while
the former compressed the data by a factor of 20.

In some application scenarios, head pose information can be indepen-
dently measured by the other means prior to identification. In such a case,
the proposed recognition system can be realized by using only the synthesis
mapping instead of model matching. Table 3 compares average identifica-
tion rates of the two cases: with and without the knowledge of head poses.
The results show that the knowledge of head poses gave a slight increase in
recognition performance, however the increase was minimal.

5.4 Interpersonalized Pose Estimation

For comparison, we test both single-PPLS and multiple-PPLS models for
two test cases: interpolation and extrapolation tests. We use the same data
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Figure 11: Comparison of the single-PPLS and multiple-PPLS models for
the interpolation and extrapolation tests in terms of interpersonalized pose
estimation errors. Baseline plots indicate average pose estimation errors by
the personalized models shown in Figure 9 for reference.

described in Section 5.1. For the interpolation (known persons) test, both
models are trained with all the 56420 training samples (20 people × 2821
samples). A single-PPLS model with 7 LPCMAPs is trained with all the
samples. On the other hand, a multiple-PPLS model is build by training
each personalized model with 2821 samples for a specific person. These
two models are then tested with the same 16080 test samples from the 20
individuals. For the extrapolation (unknown persons) test, each model is
trained with 53599 training samples of 19 individuals, excluding training
samples referring to the person being tested. This assure that the model
does not contain knowledge of testing faces. The two models are trained in
the same way as the interpolation test and tested with the same 16080 test
samples. The same parameter settings of LPCMAP and PPLS models are
used as described in Section 5.2.

Figure 11 compares the single-PPLS model and multiple-PPLS model
in the two test setting. Down-triangles denote the average angular errors of
the single-PPLS model and up-triangles denote those of the multiple-PPLS
model with ∀p σp = 7. As reference, average pose estimation errors of the
personalized model shown in Figure 9 are also included and denoted by
solid lines without markers. Errors are plotted against 6 different sizes of
the shape model. Our pilot study indicated that ∀p σp = 7 is optimal for
both interpolation and extrapolation cases. However ∀p σp = 1 was optimal
when only interpolation test was considered. For this reason, errors with
σp = 1 is also included for the interpolation test.

When σp is set optimally for both test cases, the average errors of the
two models were very similar between two test cases. With the first 8 shape
PCs, the errors of the two models were the same: 2.0 and 2.3 degrees for
the interpolation and extrapolation tests, respectively. For the interpolation
test, standard deviation of the errors and the worst error were 0.9 and 5.5
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degrees for the single-PPLS model and 0.8 and 5.1 degrees for the multiple-
PPLS model. For the extrapolation test, the standard deviation and the
worst error were 0.9 and 5.9 degrees for the former and 0.9 and 5.5 degrees for
the latter. For both tests, the average errors of the two models are roughly
1 to 1.5 degrees larger than the baseline errors. When σp is set optimally for
the interpolation condition, the multiple-PPLS model clearly outperformed
the single-PPLS model, improving the average errors by roughly 1 degree
and becoming similar to the baseline result (only 0.2 degree difference).
These experimental results indicate that both models are fairly accurate,
indicating the feasibility of the proposed approach to generalize over different
persons.

6 Conclusion

This article presents a general statistical framework for modeling and process-
ing head pose information in 2D grayscale images: analyzing, synthesizing,
and identifying facial images with arbitrary 3D head poses. Three types of
PLS model are introduced. The LPCMAP model offers a compact view-
based model with bidirectional analysis and synthesis mapping functions.
A learned model can be matched against an arbitrary input by using an
analysis-synthesis chain function that concatenates the two. The PPLS
model extends the LPCMAP for covering a wider pose range by piecing
together a set of local models. Similarly the multiple-PPLS model extends
the PPLS for generalizing over different people by linearly combining a set
of PPLSs. A novel pose-insensitive face recognition framework is proposed
by using the PPLS model to represent each known person. Our experimen-
tal results of 20 people, covering a wide range of ±50 degree 3D rotation,
demonstrated the proposed model’s accuracy for solving pose estimation and
pose animation tasks and robustness for generalizing to unseen head poses
and individuals while compressing the data by a factor of 20 and more.

The proposed framework was evaluated by using accurate landmark lo-
cations and corresponding head angles computed by rotating 3D models
explicitly. In reality, a stand-alone vision application based on this work
will require a landmark detection system as a preprocess. Gabor jet-based
landmark tracking system [24] can be used to provide an accurate landmark
positions, however it requires the landmarks to be initialized by other meth-
ods. Pose-specific graph matching [18] provides an another solution but with
much lower precision. In general, the landmark locations and head angles
will contain measurement errors. Although our previous studies indicated
robustness to such errors [26], more systematic investigation on this matter
should be performed in future.

Our future goal must address other types of variation such as illumina-
tions and expressions for realizing more robust systems. There have been a
number of progresses on both illumination variations [9, 12] and expression
variations [10, 14]. However, an issue on combining the variation-specific
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solutions into a unified system that is robust against all types of variation
has not fully been investigated. Our simple and general design approach
can be advantageous for extending the presented models towards this goal.
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