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Beyond Singularity: AI That Learns, 
Evolves and Acts on Its Own

Presented by . Mohammad Vazeer 
Shah Abul Fazl (924301310)
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AGI to autonomous, ethical, self-aware 
systems

Combining DL + RL - more autonomous 
and intelligent systems.

Inspiration ? 
Inspired by LeCun, Bengio & Hinton (2015) call 
to explore RL as the frontier in the ending parts 
of his paper

Deep learning : gave us pattern recognition . It’s about deciding 
what to do next.

Reinforcement Learning: teaches AI how to act, make choices, 
and learn from trial and error in dynamic environments.

Autonomous agents = Perception(DL) + Decision-making(RL) + 
Adaptation(RL)
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• Contribution: Deep Q-Network (DQN) combined reinforcement learning with 
deep neural nets, achieving human-level performance in Atari games.

• What I’m grabbing: Proof that AI can learn optimal behavior through trial and 
error across thousands of episodes — far faster and more consistently than 
humans.

• Limitation: Struggles with generalization and long-term planning in complex, 
non-game environments.

• Implication: Demonstrates the foundation for objective learning and fast 
feedback-based adaptation — key to replacing emotionally inconsistent 
human decision loops.

“Human-level Control Through Deep 
Reinforcement Learning” (Mnih et al., 2015)

• Contribution: AlphaGo mastered the game of Go by integrating 
policy networks, value networks, and Monte Carlo Tree Search.

• What I’m grabbing: Clear example of AI’s ability to simulate 
thousands of futures and choose the best long-term strategy.

• Limitation: Requires expert demonstrations or heavy compute to 
train; domain-specific.

• Implication: Highlights how AI can override short-term human 
instincts by optimizing long-term success paths with rigorous 
simulations.

AlphaGo: “Mastering the Game of Go with Deep 
Neural Networks and Tree Search” (Silver et al., 
2016)
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• Contribution: MuZero learns how the environment works
(dynamics model) while planning optimal actions — without 
needing to know game rules.

• What I’m grabbing: The power of building adaptable AI 
agents that can plan, learn, and correct themselves in unknown 
or changing environments.

• Limitation: Still data-hungry; not interpretable to humans.

• Implication: Supports the idea of decentralized agents that 
adapt on the fly, unlike rigid human systems (e.g., 
bureaucracies).

MuZero: “Mastering Atari, Go, Chess and Shogi 
by Planning with a Learned Model” 
(Schrittwieser et al., 2019)

• Contribution: The transformer architecture introduced 
attention, enabling models to capture long-range dependencies 
in data.

• What I’m grabbing: These models can “remember” context over 
long sequences — a powerful counter to humans’ selective 
and distorted memory.

• Limitation: Require massive data and compute; outputs can be 
unpredictable or ungrounded.

• Implication: Forms the memory core of autonomous systems —
enabling them to synthesize large amounts of historical input 
into reasoned actions.

Transformers: “Attention Is All You Need” 
(Vaswani et al., 2017)
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• Contribution: Proposed agents that explore by reducing 
prediction error, encouraging them to seek and understand 
unfamiliar situations — even without external rewards.

• What I’m grabbing: When properly constrained, this curiosity 
enables agents to detect weak signals, explore uncertain 
geopolitical dynamics, and take proactive action before crises 
escalate.

• Limitation: Without ethical or task-specific boundaries, agents 
risk fixating on irrelevant or unsafe novelties.

• Implication: With the right design, curiosity-driven agents 
become early warning systems — constantly scanning complex 
environments for hidden instability, without emotional or political 
bias.

Curiosity-Driven Agents: “Curiosity-Driven 
Exploration by Self-Supervised Prediction” (Pathak 
et al., 2017)

Conclusion :

15

16



5/12/2025

9

Sam
p

le Fo
o

ter Text

17

M
ay 12, 2025

Sam
p

le Fo
o

ter Text

18

M
ay 12, 2025

17

18



5/12/2025

10

Sam
p

le Fo
o

ter Text

19

M
ay 12, 2025

Sam
p

le Fo
o

ter Text

20

M
ay 12, 2025

19

20



5/12/2025

11

Sam
p

le Fo
o

ter Text

21

M
ay 12, 2025

Sam
p

le Fo
o

ter Text

22

M
ay 12, 2025

21

22



5/12/2025

12

Sam
p

le Fo
o

ter Text

23

M
ay 12, 2025

Sam
p

le Fo
o

ter Text

24

M
ay 12, 2025

23

24



5/12/2025

13

ADVANCEMENTS IN 
AUDIO GENERATION: 
DIFFUSION & 
CONSISTENCY MODELS
Divya Panchal

• What is Audio Generation?

• It's about creating sound automatically 
using computers.

• This can be from text, images, videos, or 
even just an idea!

• The Core Challenge

• We want sounds that are incredibly realistic 
(high-fidelity).

• AND we want to create them quickly and 
efficiently. This is where the research 
comes in.

• We'll explore how new methods, specifically 
Diffusion and Consistency Models, are 
pushing the boundaries.

The Foundation: Diffusion Models for High-Quality 
Audio
• What are Diffusion Models? 

• Imagine starting with pure noise (like static).

• These models learn to gradually transform 
that noise, step-by-step, into structured, 
meaningful audio. It's like sculpting sound 
from randomness.

• Early Breakthrough: DiffWave (Kong et 
al., 2020)
• It was versatile: handled tasks like creating 

speech from text (vocoding), generating 
sounds based on categories, and even creating 
sounds from scratch.

• Importantly, it matched the quality of older, 
slower methods (like WaveNet) but was non-
autoregressive (faster step-by-step 
generation).
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Practical Diffusion: Latent Spaces & Tackling Data 
Needs

• Challenge with Early Diffusion (like DiffWave): Working directly with raw audio 
(waveforms) is very computationally intensive.

• Solution: Latent Diffusion Models (LDMs)

• Make-An-Audio (Huang et al., 2023b)

• Uses a spectrogram autoencoder: Learns to compress spectrograms (visual representations of sound 
frequencies) into this latent space.

• Uses CLAP embeddings for better understanding the link between text prompts and audio content.

The Speed Bump: Why Diffusion Models Took Time 
to Generate

• The Achilles' Heel of Diffusion Models: That step-by-step refinement 
process we talked about? It's powerful, but it's slow.

• Typically requires hundreds of individual steps to generate one piece of 
audio. Each step needs a full pass through a large neural network.

• The Impact: This slowness was a major barrier for:
• Real-time applications (imagine a game where sound effects lag!).
• Interactive tools.
• Deployment on devices with limited computing power.

• Early attempts to speed things up (like "fast sampling" in DiffWave) 
helped, but a more fundamental solution was needed. This sets the stage 
for our next topic: Consistency Models.
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Need for Speed: Enter Consistency Models
• The Innovation: Consistency Models (CMs) 

(Song et al., 2023)

• A process called "Consistency Distillation,"
where knowledge from a slow, pre-trained 
diffusion model (the "teacher") is distilled 
into a fast "student" model.

• Application to Audio: ConsistencyTTA (Bai et 
al., 2024)

• Key Contribution: "CFG-aware latent 
consistency model." Classifier-Free Guidance 
(CFG) is crucial for making sure the audio 
matches the text prompt well. 
ConsistencyTTA found a way to build CFG 
awareness directly into the distillation 
training.

• Result: Capable of generating audio in a 
single step!

Even Faster, Still High Quality: AudioLCM

• Key Technical Idea: "Guided Latent 
Consistency Distillation" but with a multi-
step ODE solver during the distillation 
training.

• Instead of distilling from single steps of 
the teacher model, it uses k steps (e.g., 
k=20) of an ODE solver to get a more 
refined target for the student.

• Also incorporates architectural 
improvements into their Transformer 
model, inspired by LLaMA ,for better 
stability and performance.
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Specialized Sounds: Physics-Driven Diffusion
• Physics-Driven Diffusion Models (Su et al., 2023)

• Focus: Generating impact sounds (like a 
drumstick hitting different materials) from silent 
videos.

• The Challenge: Visual information alone is often 
not enough to guess the exact sound of an impact. 
The same visual action can sound very different 
based on materials, force, etc.

• Incorporate "physics priors" into the diffusion 
model.

• Estimated physical properties from actual 
sound examples in the training data (like sound 
frequencies, decay rates – "modal parameters").

• Clever Inference: For a new silent video, the 
model retrieves the most similar physics priors 
from its training data based on visual similarity, 
then uses these to guide sound generation.

Key Insights & The Path Ahead 

High-
Quality & 
Fast Audio 
Generation

High-
Quality & 
Fast Audio 
Generation

Diffusion 
Models 
(Quality 

Foundation)

Diffusion 
Models 
(Quality 

Foundation)

Consistency 
Models 
(Speed 

Breakthrough)

Consistency 
Models 
(Speed 

Breakthrough)

Efficient 
Latent Spaces

Efficient 
Latent Spaces

Smart Data 
Strategies

Smart Data 
Strategies

Domain 
Knowledge 
Integration

Domain 
Knowledge 
Integration

Enhanced 
Controllability 

(Future)

Enhanced 
Controllability 

(Future)
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Exploring the Role of CNNs in Enhancing Dental 
Workflows in CBCT Scans

Gabrielle Salamanca

Contents
Slide 2: Why?

Slides 3-7: Chosen Papers
Slide 8: Takeaways
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Deep Reinforcement Learning - André Shannon

Combine RL (great problem solving) with DL (great knowledge representation)

State, s ∈ S

Action, a ∈ A

Policy, π:S →A

Reward, Rt

Time Step, t

Need to calculate cumulative rewards

State Value function:

V(s) = Eπ[Rt+1 + y V(st+1) | st = s]

State Action Value function:

Q(s, a) = Eπ[Rt+1 + y Q(st+1, at+1) | st = s, at = a]
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Let’s Approx Value Funcs/Policy using DL

Wang et al DRL survey

❖ Value Based DRL
➢ Optimize state-action value (Q) function

❖ Policy Based DRL
➢ Optimize policy using policy gradient methods (gradient ascent)
➢ Actor-Critic  

❖ Maximum Entropy DRL
➢ Add entropy term to reward to also maximize entropy
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Deep Q Network

One of the first (successful) integrations of RL with DL

Problem: 

➢ Approximating Q using nonlinear func (NN) was unstable or diverged

Solutions:

➢ Experience Replay buffer
➢ Periodic update of action-values towards target values 

Asynchronous Advantage Actor-Critic (A3C)

Surpassed state-of-the-art models at the time 

Trained in half the time on a multi-core cpu vs on a gpu

Execute multiple agents in parallel on multiple instances of the environment

Don’t need experience replay buffer, multiple agents in parallel decorrelates data

Can also work in continuous action spaces 
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Generative Adversarial Imitation Learning

Imitation Learning seeks to learn from demonstrations from an expert

Previous imitation learning used inverse RL to learn a cost function to explain expert behavior and then 
performed RL on the cost func to get the policy.

Uses structure similar to GANs. Model generates policy and minimizes error w.r.t. the expert policy. 
Discriminator differentiates between generated policy and expert’s and maximizes error.

Takeaways

Still evolving field with many open problems and different solutions already

RL involves a lot of problem formulation: 

➢ Representing the environment
➢ Defining the reward/cost functions
➢ Framing the problem in different ways to apply different solutions and overcome challenges faced by 

other solutions
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A Comparative Study of Kolmogorov-Arnold Networks and 
Multi-Layer Perceptrons in Deep Learning

Atharva Walawalkar

Both MLPs and KANs are universal function 
approximators — but differ in how they learn. This 
project explores how and why.

Goal:
Compare KANs and MLPs in theory and practice
Understand trade-offs in architecture, learning 
behavior, and performance

Introduction to the Perceptron.

MLP vs KAN Introduction to the Perceptron.

● Rosenblatt (1958) proposed the perceptron 

as a brain-inspired learning model.

● It used weighted connections between 
sensory (S), association (A), and response 
(R) units.

● Learning meant adjusting these weights to 

shape recognition and memory.

● A major limitation: it could only solve 
linearly separable problems.
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The MLP: Backpropagation and 
Representation

MLP vs KAN The MLP: Backpropagation and Representation

● Introduced by Rumelhart, Hinton, 

Williams (1986)

● MLPs) use layers of neurons with 
fixed activations.

● Backpropagation tunes weights for 
learning.

● They can approximate any function, 

making them the core of modern 
deep learning.

59

Multi-Layer Perceptrons: The Universal 
Function Approximator

Kolmogorov-Arnold 
Theorem

● Kolmogorov (1957):

● Kolmogorov showed any function of many 

variables can be built from sums of 1D functions.

f(x) = ∑ Φq( ∑ ϕₖⱼ(xⱼ) )

● This laid the theoretical foundation for KANs —
using 1D parts to build complex behavior.

MLP vs KAN Kolmogorov-Arnold Theorem

From Theory to Architecture: The 
Kolmogorov-Arnold Theorem
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Kolmogorov-Arnold 
Networks (KANs)

Kolmogorov-Arnold Networks: 
Architecture Shift

● Proposed by Liu et al., 2024

● KANs (2024) replace weights with spline 

functions on edges.

● Nodes just sum inputs, no activations.

● Inspired by Kolmogorov's formula, 
KANs are more interpretable and often 
outperform MLPs on math-heavy tasks.

MLP vs KAN Kolmogorov arnold networks

No curse of dimensionality (in theory)

B-Splines

Decompositions

61

Theory: Expressivity & 
Spectral Bias

Learning Frequencies: MLPs vs. KANs

MLPs learn smooth patterns first

– Struggle with sharp or wavy functions
– Biased toward low-frequency signals

KANs learn sharp patterns better
– Can handle high-frequency details

– More flexible with complex shapes

Why it matters:
Better performance on formulas, physics, 
signals

MLP vs KAN Theory: Expressivity & Spectral Bias 62
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Empirical Results and Limitations When KANs Win (and When 
They Don’t)

● KANs do well in symbolic 

regression, sharp-function fitting, and 
low-data science tasks.

● But they trail MLPs in NLP, vision, 
and large-scale benchmarks.

● Perform worse on both compute and 

parameter count

MLP vs KAN Results 63

Takeaways and Future Outlook Lessons from KANs vs. MLPs

● MLPs: reliable, versatile, widely 
used

● KANs: theory-aligned, 
interpretable, niche strengths

● Both have their place in modern 
deep learning

● Future: deeper KANs, hybrid 
models, better training

MLP vs KAN Conclusion and future scope

KANMLPAspect

Learnable splines (placed on 
edges)

Fixed (e.g., ReLU, Tanh)Activation Functions

Spline coefficients (function 
parameters)

Weights and biasesLearnable Parameters

High (functions can be 
visualized/analyzed)

LowInterpretability

Matches or exceeds MLP 
efficiency in some tasks

Universal function 
approximator

Expressivity

Also handles high-frequency 
components 

Favors low-frequency 
patterns

Spectral Bias

Stronger (e.g., formula 
fitting, math modeling)

WeakerStrength in Symbolic 
Tasks

Weaker (as of current 
benchmarks)

StrongPerformance in 
NLP/CV/ML
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Deep Learning in 
Natural Language Processing

Veronica Yuen 
CSC 872

NLP over time

Publication volume for core area of NLP

Publication volume for applied area of NLP
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Applying the framework

• Readability Classification
• Automated essay scoring
• Simulation of student's 

writing

Textless training
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Teaching English translation

Challenges - language

• Lexical similarity (with English)
o German

 About 60% similarity

o French
 27 – 45%

o Japanese
 Limited lexical similarity

o Chinese
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Challenges - evaluation

• New technology is that is needed?
o Increased complexity

• Dataset

• Do all the features it make a difference to the end result?

• New methodologies

What's next?
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