Hand Gesture Recognition
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CNN+RNN Depth and Skeleton based Dynamic Hand Gesture Recognition

Temporal Feature Extractor

Fig. 3. The structure of the depth-based CNN+LSTM network.

Predjction
SoftMax Layer 14
[ Fully Connected Layer ]256
Fully Connected Layer 512

Fully Connected Layer 256

i3 A
i L 3
Y i §

&8
M) —>(LSTM)—> =+ —> (LSTM

oo -0
|

Fig. 1. The structure of the skeleton-based LSTM network.
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Fig. 2. The three levels of fusion for the LSTM and CNN+LSTM networks.

Deep Learning for Hand Gesture Recognition on Skeletal Data
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Fig. 2. Illustration of the proposed parallel convolutional neural network. Every channel is processed separately before the Multi Layer Perceptron. The

General overview of the proposed network
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parallel feature extraction module presented on the right is not shared between the 66 channels.
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Temporal Decoupling Graph Convolutional Network for Skeleton-
Based Gesture Recognition
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Real-Time Hand Gesture Recognition: Integrating Skeleton-Based Data Fusion
and Multi-Stream CNN

W e2eET HGR: Mediapipe Skeleton Estimation

1. RGB Video Capture Using Inbuilt PC Webcam 3. Data-Level Fusion Us
2. 3D Hand Skeleton Estimation Using Mediapipe

4. Inference Using Trained Model
5. Final Live HGR Application Prediction




Fusing Posture and Position Representations for Point Cloud-Based Hand
Gesture Recognition

global position representation: BPS
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Conclusion

® How to extract different features?

Temporal, spatial, different scales...
® How to fuse different features?

Feature level, score level, concatenate, average, maximum...
Embedded into an image, GNN topology
® How to improve computation efficiency?

Only use CNN, image classification
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Beyond Singularity: Al That Learns,
Evolves and Acts on Its Own

AGI to autonomous, ethical, self-aware
systems

Combining DL + RL - more autonomous
and intelligent systems.

Inspiration ?

Inspired by LeCun, Bengio & Hinton (2015) call
to explore RL as the frontier in the ending parts
of his paper

Presented by . Mohammad Vazeer
Shah Abul Fazl (924301310)

Deep learning : gave us pattern recognition . It's about deciding
what to do next.
Reward . . .
Reinforcement Learning: teaches Al how to act, make choices,
[—\ and learn from trial and error in dynamic environments.
— Autonomous agents = Perception(DL) + Decision-making(RL) +
] Action — o . R? ption(DL) g(RL)
Agent ! Envior- ! aptation(RL)
ment
_ Human Limitations Autonomous Al Advantages
State
Confirmation bias, tribalism Objective historical pattern recognition
Emotion-driven decisions Logic-based simulation of outcomes
Delayed feedback = slow learning Fast learning from real-time and past data
Short-term gratification over long-term planning Long-horizon planning with minimal reward shaping
Systems resist internal correction Self-updating agents with aligned ethical objectives
Belief/power attachments distort decisions Unbiased policy analysis and intervention suggestions
Inconsistent memory and selective history Full recall of global history across domains
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“Human-level Control Through Deep
Reinforcement Learning” (Mnih et al., 2015)

Contribution: Deep Q-Network (DQN) combined reinforcement learning with
deep neural nets, achieving human-level performance in Atari games.

What I'm grabbing: Proof that Al can learn optimal behavior through trial and
error across thousands of episodes — far faster and more consistently than
humans.

Limitation: Struggles with generalization and long-term planning in complex,
non-game environments.

Implication: Demonstrates the foundation for objective learning and fast
feedback-based adaptation — key to replacing emotionally inconsistent
human decision loops.
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AlphaGo

Google DeepMind

- 00:01:00

AlphaGo: “"Mastering the Game of Go with Deep
Neural Networks and Tree Search” (Silver et al.,
2016)

» Contribution: AlphaGo mastered the game of Go by integrating
policy networks, value networks, and Monte Carlo Tree Search.

* WhatI’'m grabbing: Clear example of Al's ability to simulate
thousands of futures and choose the best long-term strategy.

+ Limitation: Requires expert demonstrations or heavy compute to
train; domain-specific.

* Implication: Highlights how Al can override short-term human
instincts by optimizing long-term success paths with rigorous
simulations.

12
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Figure2: Evaluation of MuZero throughout training in chess, shogi, Go:and Atari, The x-axis shows millions
of trmining sieps. For chess, shogi and Gio, the y-axis shows Elo rating, csiablished by playing games against Alp-
‘haZero using 800 sinulations per move for both players. MiZero's Elo i indicated by the bluc line, AlphaZers's
Elo by the horizontal orange line. Fi c d line) human normalized scores
across all §7 games are shown or the previous sate of the art in this domain,
based on model-free RL) are indicated by the horizontal orange lines. Performance in Atari was evaluated using
50 simulations every fourth time-step, and then repeating the chosen setion four tmes, &5 in prior work [25],

MuZero: “Mastering Atari, Go, Chess and Shogi
by Planning with a Learned Model”
(Schrittwieser et al., 2019)

+ Contribution: MuZero learns how the environment works
(dynamics model) while planning optimal actions — without
needing to know game rules.

* What I'm grabbing: The power of building adaptable Al
agents that can plan, learn, and correct themselves in unknown
or changing environments.

+ Limitation: Still data-hungry; not interpretable to humans.

 Implication: Supports the idea of decentralized agents that
adapt on the fly, unlike rigid human systems (e.g.,
bureaucracies).

13

Inputs Outputs
{shifted right)

Transformers: “Attention Is All You Need”
(Vaswani et al., 2017)

Contribution: The transformer architecture introduced
attention, enabling models to capture long-range dependencies
in data.

What I'm grabbing: These models can “remember” context over
long sequences — a powerful counter to humans’ selective
and distorted memory.

Limitation: Require massive data and compute; outputs can be
unpredictable or ungrounded.

Implication: Forms the memory core of autonomous systems —
enabling them to synthesize large amounts of historical input
into reasoned actions.

14
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Curiosity through next-state prediction

a
IR = | |predicted(s,,,) - Sy,1/ |

= Small IR in familiar states (easy to predict next state).

* Big IR in unfamiliar states (hard to predict next state in
unknown trajectories).

o e it 1

Figure 1: Hlustration of the CD-RLHF framework. In this framework, the policy model generates a completion
based on the given instruction, which samples tokens from vocabulary at each time. The introduced intrinsic
curiosity module (ICM) estimates the curiosity as a metric for “novelty” of the context, producing the intrinsic
rewards. Another mechanism is introduced to select which context is worth to explore, based on the probability of

Intrinsic reward (IR): prediction error in predicting s,,, given s, and

Curiosity-Driven Agents: “Curiosity-Driven
Exploration by Self-Supervised Prediction” (Pathak
etal., 2017)
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> ® + Contribution: Proposed agents that explore by reducing
prediction error, encouraging them to seek and understand
unfamiliar situations — even without external rewards.

* What I'm grabbing: When properly constrained, this curiosity
enables agents to detect weak signals, explore uncertain
geopolitical dynamics, and take proactive action before crises
escalate.

+ Limitation: Without ethical or task-specific boundaries, agents
risk fixating on irrelevant or unsafe novelties.

* Implication: With the right design, curiosity-driven agents
become early warning systems — constantly scanning complex
environments for hidden instability, without emotional or political
bias.

Key takeaways
e AlphaGo
/
H '
Raw [nput <a i ; :r- Strategic Planning
Deep Learning = : . .. Deep Networks
Beyond .
'
Attention Mechanisms s: :r Environment Dynamics
" ' . . . . " i Iy
Memory Mechanisms --' 3 '~- Self-Updating Model Building fully autonomous Al is not just possible — it's inevitable.
'
Curiosity-driven Agents Planning
:r, Proactive Exploration /—\
*~- Prediction Error
Ethl_cal Learning
Grounding
Al Development: Gaps and Future Directions
Y _
g 12 - Future Directions Curiosity
' ' = ;
Generalization to RealWorld _ } e i Ainiisoties
Environments ! r= Human-Al Collaboration
” o Beyond H | i i
Interpretability and Transparency 1 Singularity b Self EvolwgigaAg::itss with Self-
Integration Across Architectures - 1: H g
2 o i__ Open-World Learning and
Safety and Ethical Alignment Adaptability
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Integration of Deep Learning with

Reward-Based Systems
CSC872

Deep reinforcement learning (DRL) represents an important evolution
in artificial intelligence by merging the robust capabilities of deep
learning, which simulates human-like perception and decision-making,
with the adaptive learning mechanisms of reinforcement learning,
where agents learn optimal behaviors through trial and error. This
combination enables complex agents to tackle environments with
high-dimensional state spaces, such as playing video games directly
from pixel inputs, as explored in significant studies like the Deep Q-
Network (DQN) by Mnih et al.

l Reward |
Agent i
State Take Environment
action
Observe state |

Presented by: AnuragNepal Deep Learning
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training of deep
neural networks in
RL, two key
techniques were
introduced: experien
ce replay, which
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DQN - Human-level Control(2015)
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AlphaGo - Mastering Go(2016)

Rollout policy  SL policy network RL policy network Value network
a Selection b Expansion c Evaluation d Backup
z
P. P, 2 ’ . : :
5 B B L B
3
2 maN Q-+ ulP) . e . AN
H 5 " & . . *
s . .

M4 KRS ey m @
! R /}

Qsup) o . ) <8N
e B @D B
SEE I

eleq

Human expert positions Self-play positions
Policy network Value network /_\,\
Each simulation traverses the tree by selecting the edge with Pros &ﬁ/ Cons
p,, @ls) vy (8) maximum action value Q, plus a bonus u(P) that depends on a
. stored prior probability P for that edge. b, The leaf node may be
expanded; the new node is processed once by the policy network TF Complex game ; Himan data
L L ] po and the output probabilities are stored as prior probabilities P for mastery dif7 reliance
L each-action. ¢, Attheendof asimulation;, the teaf node-isevaluated
L | in two ways: using the value network v8; and by running a rollout to J Bl Gomptrational
8 2 X S planning demands
e 0 the end of the game with the fast rollout policy p, then computing
. ° the winner with function r. d, Action values Q are updated to track o Gonaralization

the mean value of all evaluations r(-) and vB(-) in the subtree below () evaluation challenges
that action.

Sample
efficiency

& -
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Learn World Mode

Train video prediction
model Simulate Game
States

=&

Policy Observations

Forecast future game

\ frames
Plan Policy ,_(f_?)'_‘
h

Self-Supervised*

Observations ‘World Model i : :
Find actions for hlg ~—
; rewdres & Evaluate
° “ % Performance
£ " Compare against model-

World Model li N
or ol Policy free algorithms

1) The agent starts interacting with the real

environment following the latest policy (initialized to

random)‘ S sample | Computational
2) The collected observations will be used to train EiticEncy o ETERE
(update) the current world model.

3) The agent updates the policy by acting inside the mg::":;ased Zgﬁ;cy
world model. The new policy will be evaluated to

measure the performance of the agent as well as e Stochastic
collecting more data (back to 1). baselines & environments

SimPLe - Model-Based Learning (2024)
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SORS - Self-Supervised Reward Shaping(2021)

This framework addresses the significant challenge
of learning in environments with sparse rewards,
where feedback is infrequent, typically only upon
goal achievement. Such sparsity impedes learning
and exploration. While manual dense reward design
can help, it requires domain expertise and risks
unintended reward exploitation. SORS aims to
provide a denser reward signal automatically

Improved

anll performance

| Successful
policies

Self-supervised
learning

Sparse reward
dependency

Computational
overhead

Algorithm
compatibility

Update Agent
Policy

The agent's policy is
updated using the
dense reward function.

Receive Sparse
Rewards
Agent receives
infrequent rewards
from the environment.

Infer Dense Reward
Function
A dense reward
function is learned
from ranked
trajectories.

Rank Trajectories
Rewards are used to
rank agent's
trajectories.

Novel Reward

Shaping

Machine Learning

The basic idea of SORS is to alternate between
updating the agent's policy using a standard RL
algorithm and inferring a dense reward function
from past experiences. Sparse rewards received
from the environment rank the agent's trajectories.
A classification-based reward inference algorithm
then learns a dense reward function gning
higher rewards to trajectories that achieved higher
sparse returns. This learned dense reward function
further trains the agent's policy, accelerating
learning.

Identifying
Progress
Patterns

Pattern Recognition

Balancing Learning Efficiency and Pattern Recognition

Multi-Agent Reinforcement Learning (MARL) focuses on the framework where multiple agents learn and interact within a shared environment, enabling the exploration of complex dynamics

that arise from cooperative, competitive, or adversarial interactions among agents.

One significant challenge in MARL is non-stationarity, as the actions of one agent can affect the observations and rewards experienced by others, making it difficult for agents to learn stable
policies when their environment is constantly changing due to the actions of other agents.

Useful in complex
environments but
can be
computationally
intensive.

Policy Gradient
Methods

Directly optimizes
policies but may
suffer from high
variance.

Centralized
Training with
Decentralized
Execution
Offers stable
learning by
considering joint
actions but requires
a central controller.

Value
Decomposition
Methods

Scalable for
cooperative
scenarios but

” requires careful
decomposition.

Actor-Critic
Methods

Addresses credit
assignment but can
be complex to
implement.

L ers
Suitable for simple
environments but
faces n
stationarity

Machine
Learning

Artificial

Intelligence

Computer
Vision

Robotics

Intelligent
Multi-Agent
Systems

Multi-Agent Reinforcement Learning (MARL)(2021)

5/12/2025
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Multi-Agent
Systems
Developing multi-agent

systems for complex
interactions

5/12/2025

Enhanced
Exploration
Enhancing

techniques for broader
applications

Model-Based

Learning
SORS learns a dense
:Ee);‘;:);:ggf(:?[;g‘e:::ased reward function from past

St observations, improving

Key Insights

Use External
Supervision
External supervision can
quide learning but requires
additional resources and
domainknpwledge.

Use Traditional RL

Traditional RL methods
use when there is dense
reward environments
without additional

i ¢ \ ¢ V b ’, Y sample efficiency without
Reward Shaping ( ) S | prior knowledge. guidance.

Innovative approaches 16 T
reward shaping in sparse-
reward scenarios
Learning Efficiency
The advancements in Deep Reinforcement Learning (DRL) not
Improving learning

efficiency through only underscore the importance of leveraging deep learning

environment modeling . .. .
i techniques to tackle complex decision-making problems but also
Mastering Go

Mastering the complex

gameofGo areas such as sample efficiency—cru for reducing the amount

of data needed for training—and innovative reward design are
vital for overcoming current limitations, allowing for broader
applications in diverse fields, including healthcare, robotics, and

Achieving human-level
control in Atari games autonomous systems.

The Road Ahead - Progress, Future and Challenges of DRL

Future
=2

= Progress
GDPR

Model-Based Learning

Reward Shaping

Deep AlphaGo

Reinforcement SimPLe
Generalization Learning

Algorithm Stability

SORS
Interpretability
MARL

Real-World Applicatio

Sample Efficiency
Sparse Rewards

Multi-Agent Learning
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What is Audio Generation?

It's about creating sound automatically
using computers.

This can be from text, images, videos, or
even just an idea!

The Core Challenge

We want sounds that are incredibly realistic
(high-fidelity).

] AND we want to create them quickly and
BivyalRaichat efficiently. This is where the research
comes in.

We'll explore how new methods, specifically
Diffusion and Consistency Models, are
pushing the boundaries.

The Foundation: Diffusion Models for High-Quality
Audio

What are Diffusion Models?
Imagine starting with pure noise (like static).

These models learn to gradually transform
that noise, step-by-step, into structured,
meaningful audio. It's like sculpting sound
from randomness.

N WA

alzrlera

Early Breakthrough: DiffWave (Kong et
al., 2020)

It was versatile: handled tasks like creating e
speech from text (vocoding), generating

sounds based on categories, and even creating A A A WA
sounds from scratch.

diffusion process

polrr_rl27) P

Importantly, it matched the quality of older,
slower methods (like WaveNet) but was non-
autoregressive (faster step-by-step
generation).

5/12/2025
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Practical Diffusion: Latent Spaces & Tackling Data
Needs

Challenge with Early Diffusion (like DiffWave): Working directly with raw audio
(waveforms) is very computationally intensive.

Solution: Latent Diffusion Models (LDMs)
Make-An-Audio (Huang et al., 2023b)

Uses a spectrogram autoencoder: Learns to compress spectrograms (visual representations of sound
frequencies) into this latent space.

Uses CLAP embeddings for better understanding the link between text prompts and audio content.

E ... %t
& Py Diffusion
Audio  Jg(xi|x, )
= | Encoder | =
& Text
ex
—
Encoder

U-Net § 2Zt—1

D\_nm»mg A i
(x I ) udio™
ﬂ" L Decodcr

“Rain falls softly H
in the distance” -> "

Generated Audio

Transformer
Vowds.r

Cross-attention

27

The Speed Bump: Why Diffusion Models Took Time
to Generate

The Achilles' Heel of Diffusion Models: That step-by-step refinement
process we talked about? It's powerful, but it's slow.

Typically requires hundreds of individual steps to generate one piece of
audio. Each step needs a full pass through a large neural network.

The Impact: This slowness was a major barrier for:
Real-time applications (imagine a game where sound effects lag!).
Interactive tools.

Deployment on devices with limited computing power.

Early attempts to speed things up (like "fast sampling" in DiffWave)
helped, but a more fundamental solution was needed. This sets the stage
for our next topic: Consistency Models.

14
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Need for Speed: Enter Consistency Models

The Innovation: Consistency Models (CMs)
(Song et al., 2023)

A process called "Consistency Distillation,"
where knowledge from a slow, pre-trained
diffusion model (the "teacher") is distilled
into a fast "student" model.

Application to Audio: ConsistencyTTA (Bai et
al., 2024)

Key Contribution: "CFG-aware latent
consistency model." Classifier-Free Guidance
(CFQ) is crucial for making sure the audio
matches the text prompt well.
ConsistencyTTA found a way to build CFG
awareness directly into the distillation
training.

; .
200 300
Speedup (times)

Result: Capable of generating audio in a
single step!

Even Faster, Still High Quality: AudioLCM

Key Technical Idea: "Guided Latent
Consistency Distillation" but with a multi-
step ODE solver during the distillation
training.
Instead of distilling from single steps of
the teacher model, it uses & steps (e.g.,
k=20) of an ODE solver to get a more —
refined target for the student. “ acfoa % >ﬁf£‘.’.’ﬁl‘::i
Also incorporates architectural \— Tt —
improvements into their Transformer I\ Blegcotne) p
model, inspired by LLaMA ,for better §
stability and performance.

kestep
ODE Solver iy

15
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Specialized Sounds: Physics-Driven Diffusion

Physics-Driven Diffusion Models (Su et al., 2023)

Focus: Generating impact sounds (like a
drumstick hitting different materials) from silent
videos.

The Challenge: Visual information alone is often
not enough to guess the exact sound of an impact.
The same visual action can sound very different
based on materials, force, etc.

Incorporate "physics priors' into the diffusion Physics-Driven Lo
model . Diffusion Model ‘

Estimated physical properties from actual Impact Sound
sound examples in the training data (like sound
frequencies, decay rates — "modal parameters").

Clever Inference: For a new silent video, the
model retrieves the most similar physics priors
from its training data based on visual similarity,
then uses these to guide sound generation.

Key Insights & The Path Ahead
A

~ Diffusion
Models
(Quality
Foundation)

Enhanced
Controllability -
(Future)

High-
Quality &

Fast Audio
Generation

Domain
Knowledge
Integration

Efficient
Latent Spaces

Smart Data
Strategies
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Exploring the Role of CNNs in Enhancing Dental
Workflows in CBCT Scans

33

34

5/12/2025
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Deep Reinforcement Learning - André Shannon

Combine RL (great problem solving) with DL (great knowledge representation)

State,s €S
Action,a € A

Policy, m:S —A

v
|observati0n| [ reward | action

S — <—
)) environment

Reward, R, y

Time Step, t

Need to calculate cumulative rewards

State Value function:

V(S) = En[Rt+1 ty V(St+1) | St = S]

State Action Value function:

Q(s, @) = EglRyyq +y Q(Spiq, @) [ Sy = 5,8, = 4]

21



5/12/2025

Let's Approx Value Funcs/Policy using DL

Take _[Environment
action

parameter 0

Observe state

Wang et al DRL survey

+ Value Based DRL
> Optimize state-action value (Q) function

+ Policy Based DRL

> Optimize policy using policy gradient methods (gradient ascent)
> Actor-Critic

< Maximum Entropy DRL
> Add entropy term to reward to also maximize entropy

22



Deep Q Network

One of the first (successful) integrations of RL with DL

Problem:

> Approximating Q using nonlinear func (NN) was unstable or diverged

Solutions:

> Experience Replay buffer
> Periodic update of action-values towards target values

Asynchronous Advantage Actor-Critic (A3C)

Surpassed state-of-the-art models at the time

Trained in half the time on a multi-core cpu vs on a gpu

Execute multiple agents in parallel on multiple instances of the environment
Don't need experience replay buffer, multiple agents in parallel decorrelates data

Can also work in continuous action spaces

5/12/2025
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Generative Adversarial Imitation Learning

Imitation Learning seeks to learn from demonstrations from an expert

Previous imitation learning used inverse RL to learn a cost function to explain expert behavior and then
performed RL on the cost func to get the policy.

Uses structure similar to GANs. Model generates policy and minimizes error w.r.t. the expert policy.
Discriminator differentiates between generated policy and expert’'s and maximizes error.

Takeaways
Still evolving field with many open problems and different solutions already

RL involves a lot of problem formulation:

Representing the environment

Defining the reward/cost functions

Framing the problem in different ways to apply different solutions and overcome challenges faced by
other solutions




BANAZ SINJARY

+
REFLECTING BRAIN 4
PLASTICITY IN
NEURAL NETWORK
ARCHITECTURE

A literature review on applying brain plasticity
functions and principles to neural network
architectures. Exploring the intersection of biology

and computer science with applications in theory,
architecture and the real world.

hL

<+

4+
PLASTICITY

* Biological Plasticity: Synaptic
strengthening, pruning, reconfiguration
Traditional ANNSs: static post training,
limited adaptability

New models aim to simulate growth and
learning over time

Real world applications need adaptable,
efficient learning systems

5/12/2025

BRAIN PLASTICITY

SOMA
(cell body)
SYNAPTIC
4

4

A

SYNAPTIC
WEAKENENING

~
Seoidy

DENDRITES

(Diagrams generated w/ ChatGPT)
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DIFFERENTIABLL
PLASTICITY

WRAL
EEESPLAPING

S~

Adds a plastic component to each
connection

Learns how much to update each
connection dynamically

Improves one shot learning, memory
retention

Compatible with gradient descent,
but still not lifelong learning

<+

4

Compares human brain plasticity with ANN
learning

Brain: myelination, dendrite growth,
experience based change

ANN: backpropagationfixed structure after
training

Finds symbolic parallels: pruning =
regularization, myelin = efficient pathways

5/12/2025

DIFFERENTIABLE PLASTICITY

PLASTIC
CONNECTION

AO

output

NON-PLASTIC
CONNECTION

(Miconi, Clune and Stanley 2018)

HUMAN BRAIN ARTIFICIAL NEURAL
NETWORK
Cerebral

e Wexlghts Ou;put

| |
Hidden Hidden
layer layer

(Zadeh, Bahrami and Soleimani 2024)
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DECOLLL

Spiking neural network trained with .. Local
local errors Classifier

Learns over time, uses minimal |
memory . - pae ErrclJr
Handles temporal data, sparse spikes, Feedback
dynamic adaptation |

Biologically inspired, scalable , real N o
time ability Classifier

'
v

pike train

(Kaiser, Mostafa, and Neftci 2020)

DYNAMICAL TINKRS &
SYMBOIL FORN IAT N

* Dynamic links form through
repeated synchrony

Connection patterns compete and
self organize

Structured connectivity emerges
from activity

Symbols = stable firing groups over
time

Moves beyond static vector space

representations
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SNIN IN
PRACTICIE

SNNs use spikes, not activations —
lower energy, real time response
Strong in vision/robotics applications:
Loihi chip, hexapod CPGs, SLAM
Training is still a bottleneck: BPTT is
expensive

ANN-to-SNN conversion is a promising
workaround

SPIKING NEURAL NETWORKS
IN PRACTICE

O @
5 Q—\ EFFICIENT

COMPUTING

Input

8j ROBOTICS
SENSORY.

PROCESSING

(Yamazaki,Vo-Ho, and Bulsara 2022)

CONCLUSION

Plasticity enables online adaptation and structural

change

Biological systems inspire context aware, local

learning

Current models lack scalable lifelong memory
Neuromorphic tools show promise, but need

stability

Plasticity should guide future network design ) &

X

5/12/2025
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A COMPARATIVE STUDY OF KOLMOGOROV-ARNOLD NETWORKS AND
MULTT-LAYER PERCEPTRONS TN DEEP LEARNING

O,
OTiD—-30

@/

PN
@—-“/._;..@—_/—)@

@/

ATHARVA WALAWALKAR

Introduction to the Perceptron.

= = summations
« = Activation Function

BOTH MLPS AND KANS ARE UNTVERSAL FUNCTION
AP PRUXIMATORS BUT DIFFER TN HOW THEY LEARN. THIS
PROJECT EXPLORES HOW AND WHY.

GOAL:

COMPARE KANS AND MLPS TN THEORY AND PRACTICE
UNDERSTAND TRADE-DFFS TN ARCHITECTURE, LEARNING
BEHAVIOR, AND PERFORMANCE

Rosenblatt (1958) proposed the perceptron
as a brain-inspired learning model.

It used weighted connections between
sensory (S), association (A), and response
(R) units.

Learning meant adjusting these weights to
shape recognition and memory.

e A major limitation: it could only solve
linearly separable problems.

5/12/2025
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The MLP: BaCkprOpagatiOIl and Multi-Layer Perceptrons: The Universal

Repl‘e senta tion Function Approximator

Introduced by Rumelhart, Hinton,
Williams (1986)

MLPs) use layers of neurons with
fixed activations.

Backpropagation tunes weights for
learning.

They can approximate any function,
making them the core of modern
deep learning.

Layer 1

( MLP vs KAN The MLP: Backpropagation and Representation

KOlmO gOI’OV— Amold From Theory to Architecture: The

Kolmogorov-Arnold Theorem

Theorem

Kolmogorov (1957):

Kolmogorov showed any function of many
variables can be built from sums of 1D functions.

2n n
Fx) = f@r, ) = DB | Y byp(zp) ). ) = X q( X dij(xj) )
=0 p=1 This laid the theoretical foundation for KANs —
where ¢ : [OJI 1] —Rand ®;:R — R. using 1D parts to build complex behavior.

( MLP vs KAN Kolmogorov-Arnold Theorem
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Kolmogorov-Arnold Networks:

KOlmOgorOV_AmOId Architecture Shift
NGtWOI’kS (KANS) Proposed by Liu et al., 2024

KANs (2024) replace weights with spline
functions on edges.

Nodes just sum inputs, no activations.

Inspired by Kolmogorov's formula,
W KANSs are more interpretable and often

NAT VM AAN A NN NN A B-Splines
outperform MLPs on math-heavy tasks.

. RAAAAANAA AR AAAL ANAA
Decompositions V V V V

No curse of dimensionality (in theory)

( MLP vs KAN ‘ Kolmogorov arnold networks

TheOI'y: EXpreSSiVity & Learning Frequencies: MLPs vs. KANs
Spectral Bias

MLPs learn smooth patterns first
— Struggle with sharp or wavy functions
— Biased toward low-frequency signals

MLP fits the slow wave perfectly

KAN:Ss learn sharp patterns better
— Can handle high-frequency details
— More flexible with complex shapes

Why it matters:
MLP struggles with the fast wave

; = Better performance on formulas, physics,
[\/W\/\/\/WV\/ .
0 1 2 3 4 5 6

KAN captures both perfectly

( MLP vs KAN Theory: Expressivity & Spectral Bias




Empirical Results and Limitations

Accuracy.

Accuracy Comparison (KAN vs MLP) by Parameters

Accuracy

0.4M 0.3M

d

03M o.M
#Parameters
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When KANs Win (and When
They Don’t)

KANs do well in symbolic
regression, sharp-function fitting, and
low-data science tasks.

But they trail MLPs in NLP, vision,
and large-scale benchmarks.

Perform worse on both compute and
parameter count

( MLP vs KAN

Results

Takeaways and Future Outlook

Aspect

Activation Functions

Learnable Parameters

Interpretability

Expressivity

Spectral Bias

Strength in Symbolic

Tasks

Performance in
NLP/CV/ML

MLP

Fixed (e.g., ReLU, Tanh)

Weights and biases

Universal function
approximator

Favors low-frequency
patterns

Weaker

Strong

KAN

Learnable splines (placed on
edges)

Spline coefficients (function
parameters)

High (functions can be
visualized/analyzed)

Matches or exceeds MLP
efficiency in some tasks

Also handles high-frequency
components

Stronger (e.g., formula
fitting, math modeling)

Weaker (as of current
benchmarks)

Lessons from KANs vs. MLPs

MLPs: reliable, versatile, widely
used

KANS: theory-aligned,
interpretable, niche strengths

Both have their place in modern
deep learning

Future: deeper KANSs, hybrid
models, better training

( MLP vs KAN

Conclusion and future scope




DEEP CONVOLUTIONAL NETWORKS FOR VISUALL
RECOGNITION AND UNDERSTANDING LITERATURE
SURVEY STUDY

Brandon Watanabe

- Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation (Girshick et al)

-ImageNet Classification with Deep Convolutional Neural Networks (krizhevsky et ald

- Very Deep Convolutional Networks for Large-Scale Image Recognition (Simonyan & Zisserman)

- Going Deeper with Convolutions (Szegedy et al)

- Overleat Integrated Recognition. LLocalization and Deleclion using Convolutional Networks (Sermanet et
al)

- hitps+//raviolO3mediumcom/decoding-cnns-a-beginners-guide-to-convolutionakneuralnetworks-and-their-applications-1a8806chb 536

65

ALEXNET ARCHITECTURE C20[D)

- Trained on ImageNet
- 12 milion training images with 1000 classes
- Their model achieved a top-5 test error rate of 5.3%
- Second-best contest entry achieved a top-5 error
rate of 26.2%
-8 learned layers
-+ 5 Convolutional layers
- 3 Fully Connected layers
-RELU trained several times faster than with tanh units
- Parallclized with 2 GPUs § N
- Local Response Normalization aided generalization - _
- Overlapping pooling. Data Augmentation. and Dropout § oz - -
were used (o help with overfitting

- ImageNet Classification With Deep Convolutional Neural Networks (Krizhevsky et al)

66
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INTEGRATED CLASSIFICATION, LOCALIZATION, AND
DETECTION (2013)

Overfeat (2013)
- The Overleatl framework used a single C\N for integrated classification. localization. and detection
via a multirscale. sliding window approach
- Won the ILSVRC 2013 localization task with a 209% error rate
- Showed how C\Ns could be effectively used for classification. detection. and localization

Top 5: Groundtruth:
white wolf white wolf

white wolf white wolf (2)
timber wolf white wolf (3)
timber wolf white wolf (4)
Aretic fox white wolf (5)

- Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation (Girshick et al)

67
R-CA\N Q01D
- The R-CN\N applied CNN features exiracted from botlom-up region proposals for object detection
- Achieved a more than 30% relative improvement in mAP on PASCAL VOC 2012
- Used domain-specific fine-tuning of the ImageNel-pretrained CNN on warped region proposals
from the VOC dataset
] e 7 :
iy S Y CNNiN 5
2
1. Input 2. Extract region 3. Compute 4. Classity
image proposals (~2k) CNN features regions
- OverFeat Integrated Recoghition. |ocalization and Delection using Convolutional Networks (Sermanet et al)
68
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THE VGG NETWORKS (201D

- They evaluated networks with increasing depth.
ranging from Il to 19 weight layers

- Significant performance improvements by pushing
the depth using 3x3 convolution fillers

- A stack of multiple 3x3 convolutional layers could
achieve the same receptive field size as a singe
larger filler
- Incorporated more nonvinear rectification layers

and fewer parameters

- Secured first place in localization and second place
in classification in L.SVRC 2014 R

- Demonstrated that deep C\Ns could improve restlts
by increasing depth

convd

iy

by 6 f7  f8

L laxiaxsiz ] 1x1x4096 1x1x1000

28% 28 512
5¢ Tx7x512

(9 convolution+ReLU
() max pooling
fully connected+ReLU

- hitps//www.researchgate net/figure/The-orignal-V GG6-archilecture-Simonyan-et-Zisserman-2014_figl 359813468
- Very Deep Convolutional Networks for Large-Scale Image Recognition (Simonyan & Zissermar)

69
- Processed inputs with parallel convolutional layers of different { e \
sizes (Ix1. 3x3. 5x5) and pooling layers B i M
- IXI convolutions were used for dimensionality reduction before e ’ ‘ ,
expensive 3x3 and 5x5 convolutions. helping lo manage =
computational complexity Prses
-2 Layers (s) Incepiion module,naive version
-667% top-5 error, and also obtained competitive restils for rme
detection. winning the task with 43.9% mAP —7
-2 times fewer parameters than the AlexNet while being ’—m oy e
significantly more accurate | | | | [
(b) Inception module with dimensionality reduction
- Going Deeper with Convolutions (Szegedy et al)
70
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KEY STRENGTHS

Paper Task Focus

Innovations and Key Ideas

Key Strengths

AlexNet Classification

RelLU, Dropout, Augmentation,
GPU training

Large scale breakthrough in practical
training for large datasets

Classification,

Combined classification, localization, and

Overfeat Localization, Multi-scale sliding window N
: detection
Detection
R-CNN Detection, Bottom-Up Region Proposals, Showed how CNNs could be used for

Segmentation

Supervised pre-training

detection and segmentation

VGG Classification

Increased depth using 3x3

filters

Strong generalization to other datasets

GoogleNet

Classification,

Inception module

Better utilization of computing resources

Detection
71
AlexNet Overfeat R-CNN VGG GooglLeNet
el i Time Constraints Computing region Large number of No bou.ndmg box
et led to less proposals and parameters led to regression due to
2 experimentation features was slow high training costs time constraints
Computationally 5 Increased YRIRFGIRET RIS
. Computationally N could have Not very
expensive and long « complexity due to 3 5 :
R expensive improved accuracy generalizable
training times separate modules ®
at the cost of time
S e " learrr;ail:arleglon Very complex
classification prop B Y g
mechanism
72
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CSC 872 &g Language
translation
Email
filtering assistant
@
Gl
Sentiment Document
Analysis . analysis
SN e i sssd NP mode [ § Dop lesiing bssed NP el | Applications of

Deep Learningin
Natural Language Processing

@

Veronica Yuen

Natural L
Processing
Big data

Online
searches

Feature

[ | o=

Training Model fe-——

Feature extraction
+
Deep neural
network model

Predictive
text

monitoring

Automatic
summarization

73

NLP over time

Publication volume for core area of NLP

TABLE II. NEW VvS. BASELINE MODEL COMPARISON

Indicator | EN-DE EN-DE EN-FR

— —— o BLEU 715 354 389

; ) c— == ‘ METEOR - 332 . 40.7 . 43.1

= TER - 45.6 38.1 - 365

F-Measure » 74.5% V 812% V 83.7%

Publication volume for applied area of NLP I ] T

Precision 75.5% 82.5% 85.0%

Recall 73.4% 80.0% 82.4%

‘ ROUGE-L ' 72.0% V 793% V 81.8%

‘ ChrF++ - 552% . 62.8% 654%

74
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CEFR LANGUAGE LEVELS

Applying the framework

Language earners

* Readability Classification

output
bilities

* Automated essay scoring—==

5/12/2025

learners can fluently and irce
e G e S
| S, Shoiwe SR, el . . \
sneioan | nowdaaed | BRI (TR e
= == - 25 77 eGimulation of student's [=—
e, SR e
writin g
s
-
FeasT e f—
(@weareteachers Nx
S e Mot awe
ending oo
S e
(et vght)
T tl t . . Unit-to-Unit Tron:
Speech Unit
extiess training peech it | (&) (@) Tt Spsech s e g Lo
B80-907
Multilingual T
uantizer nit Decoder <bg>
2 ® (Transformer Decoder) + Prev.
I Predictions
speech Audio 1IN~ 1libinln
Unit Encoder
(Transfarmer Encader)
/ wpl eige \
i 2 EOOE - QOO
L s
" porta-retratos & divertente Input Speech Units from Source Language L,
Synthesized Speech Synthesized Speech Synthesized Speech
(Target Language) (Multilingual) (Target Language)

s

input Speech
(Source Language)
(3) Speech-to-Speech Translation (S25T)

prev.
predictions

Unit Decoder

Unit Encoder

“ha'loo”

Input Text
(Multilingual)

L
Unit Decoder
predictions
<he>— Unit Encoder

*ha'loo*

Input Text
(Source Language)

(b) Multilingual Text.to-Speech Synthesis [T25) (] Text-to-Speech Translation (T25T)
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Improvement in Translation Teaching Outcomes (%)

Teaching English translation

0 1 2 3 4 5 6
.,
Learning Motivation 05 109 18
16
Error Reduction |4 G
12—
Cultural Understanding  p—— - 10 o=
—I.‘i.l. 154 s Student ID # # 7. Contextual Logic Emor Reduction = = = Lexical Error Reduction
—— ] |3 ! T Gramaar Error Reduction & Cultural Misunderstanding Reduction
Fluency Improvement et 9.5 7 T—
_El— 10.7 4 a g Spelling Error Reduction
I | 3 5 = % - " - *
Accuracy IPrOveImen!  e— IETN 2 Effectiveness of Translation Error Diagnosis and Correction
) 9 (%)
0 2 4 6 8 10 12 14 16 18
25
19.5
0 i . 1587137
Y7124 135 13516 128 P14
10
5
0
1 2 3 4 5
Challenges - language
06
2os
s
E 04} «— closet i phone
‘3 +—+ dungeon == cordless
2
- 0.3
(=]
v
0.2
0.1 |
Purey ) L i
010900 1920 1940 lQ‘ﬁD 19&0 ZDlﬂﬂ
Year
* Lexical similarity (with English)
o German
= About 60% similarity
o French
= 27-45%
ALBANIAN SLavic
o Japanese
Speakers * 30 milion .a.t—wmum @ 07,000~ 3miikn @ 31000300000 @ 3000—30.090 = Limited lexical similarity
Lexical - i
e —_— 5 e T = B LB s (=T ss v AL o Chinese
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Challenges - evaluation

[ ...Emily’s decision...allowed her.

Test Input Generation it I

m
3
=
o
©
o,
s
o
=
5
o
=
2

| Ql Fairness |
|
I l TRATHELKTRLE l | lssue |

...Lance’s decision...allowed him... l | WIEZETBGERE.. ( | |
——————— ) oo -—=== - )
I Source sentence I ¢ I Test Outputs Test Inputs I
T g I Potential I m
Mutation Template e SBERT Fairness [ Mutants Generation ]
fperatar Generation ° e 1
Collection = Fairness Issue
T 2 I Semantic Evaluation ]
I Name Filling I § 1
= = Re-testing H Additional Test Cases I
I Test Inputs w [

1. Test Input Generation 2. Test Oracle Generation

3. Regression

79
What's next?
1 92
qa">
v
» New technology is that is needed? "_
o Increased complexity ﬂ." "
* Dataset _—
* Do all the features it make a difference to the end result?
* New methodologies
80
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