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Advanced Speech Recognition: 
Leveraging Deep Learning with  
Segmental CRFs
Fusing Powerful Features for Accurate ASR

by Harsh Bajpai

The Old Guard: GMM-HMM 
Systems

Acoustic Modeling

Gaussian Mixture Models (GMMs) [Sound Likelihoods per State]

Sequence Modeling

Hidden Markov Models (HMMs) [State Sequence / modal temporal sequence]

Limitations

Performance ceiling, limited adaptability

Example System

CU-HTK Broadcast News recognizer (Gales et al., 2006)
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Deep Acoustics: DNNs 
Learning Rich Sound 
Features

Hierarchical 
Learning
Features learned directly from 

from data

Performance

Outperforms traditional GMM 

GMM acoustic models

Reference
Hinton et al. (2012)

Deep Language: NNLMs 
Capturing Context

RNNs

Memory for long word 

word dependencies

Word 
Embeddings

Semantic relationships 

relationships in vector 

vector space

Reference

Mikolov et al. (2011)

3

4



5/12/2025

3

Segmental CRFs: Principled 
Feature Fusion

Feature Fusion
Combines diverse evidence at 

at word-segment level

Discriminative 
Learning
Lears Optimal Weights 

Discriminatively

Reference 
SCARF Toolkit (Zweig & Nguyen, 2010)

JHU Workshop: SCRFs + DL 
Deliver SOTA Results

Feature Integration
DNN Phoneme Features, 

Templates, LM, Duration

Results
Significant ASR accuracy gains on 

on BN & WSJ

Reference
Zweig et al. (2011), Jansen & Niyogi (2009)

5

6



5/12/2025

4

Beyond Labeled Data: 
Unsupervised ASR 
Challenges
Unsupervised 
ASR

Discovering Acoustic 

Acoustic Units & Word 

Word Segments from 

from Raw Speech

SCRF Role

SCRF Principles 

(Feature Integration) 

Remain Relevant

Reference

Aldarmaki et al. (2022) 

(2022) Review

The Winning Combination: 
Deep Learning Power + SCRF 
Integration

Deep Learning
Rich, learned features for 

acoustics & language

SCRFs
Flexible, principled framework 

framework for fusing these 

diverse, segment-level features.

features.

Result
More accurate and robust speech recognition

Thank You!
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CNN-RNN - S2VT

Temporal Attention

VideoBert

TimeSformer

Interesting Ablations

SwinBert

Video Captioning Slide 2

Slide 3

Slide 4

Slide 5

Slide 6

Slide 7

Conclusion7 Slide 8

S2VT
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Temporal Attention

12

TimeSformer
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Interesting Ablations
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VideoBert
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SwinBert

16

Future Directions

● Audio
● Better evaluation metrics
● Reasoning
● Quality data

Close-up of a single 
yellow apple on a tree, 
followed by a broader 
view of several apples on 
branches. A worker in a 
black hoodie picks apples, 
placing them into a red 
basket and later empties 
the basket into a large 
wooden crate.
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The Evolution of Convolutional 
Neural Networks for Image 
Classification:
Architectural Innovations and Performance 
Breakthroughs (2012–2016)

Sai Saketh Bavisetti

(GoogLeNet)

(ResNet)

AlexNet: The First Breakthrough CNN01
 Architecture: (5 Convolutional + 3 Fully Connected layers)

– AlexNet was 8 layers deep, which was unprecedented at the time.
– Each convolutional layer was followed by max pooling to reduce spatial size and extract features.
– Fully connected layers processed these features and made predictions across 1,000 categories.

 ReLU: 𝑓(𝑥)=max(0,𝑥) → 6× faster convergence compared to sigmoid or tan h activations.
 Dropout: 𝜌= 0.5 in FC layers; during training 50% of neurons were randomly turned off(overfitted)
 Dual-GPU training: 90 epochs on 1.2 M images

– The model was trained across two NVIDIA GTX 580 GPUs in parallel.
– Each GPU handled a separate branch of the model; 
– Which made it feasible to train such a large network on the available hardware.

 The training images augmented using translations and mirrored copies. This helped reduce overfitting and 
improved the model’s ability to generalize to new data.

 Local Response Normalization: normalizing each pixel in relation to its neighbors. This technique was later 
abandoned by future models but contributed slightly to performance at the time.

 Top-5 error dropped down from 26.2% (previous record) → 15.3% (ILSVRC)
 This result stunned the computer vision community and shifted focus toward deep learning.
 Every CNN afterward built on its design principles: depth, ReLU, dropout, GPU training.
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ZFNet: Understanding What CNN See02
 Deconvolution Network (DeconvNet): ZFNet introduced a way to project activation maps from deeper layers back 

to input pixel space using:  
– Un-pooling (reverse max pooling), 
– Rectification (ReLU), and 
– Deconvolution (transpose convolution)

 Layer-wise Visualization of Filters:
– Early layers were shown to detect edges and colors.
– Middle layers responded to textures and motifs.
– Higher learned to detect complex object parts like dog faces or bicycle wheels.

 Selectively zeroed out individual layers during testing and measured the accuracy drop.
 Guided refinement: 

– By analyzing visualizations, ZFNet redesigned some convolution filter sizes 
(e.g., reducing first layer strides from 4 to 2).

– These changes led to a better-performing model with fewer artifacts in learned representations.
– Isolated and reconstructed the parts of the image that maximally activated a specific feature.
– This analysis revealed that many filters in earlier networks were redundant or noisy.

 Improvement: +3% top-1 accuracy vs. AlexNet

VGGNet: For Large Image Recognition03
 Uniform Use of 3×3 Convolutional Filters Across All Layers:  

– Larger filters like 5×5 or 7×7 replaced with stacks of 3×3 filters.
– Two stacked 3×3 filters approximate a 5×5 receptive field.
– Three stacked 3×3 filters approximate a 7×7 receptive field.

 Following mathematical configuration gives same special coverage as with fewer parameters.
2 × 9𝐶ଶ = 18𝐶ଶ < 25𝐶ଶ

 VGG-16 consists of 13 convolutional layers followed by 3 fully connected layers.
 VGG-19 extends this to 16 convolutional layers.
 ReLU after every convolution ensures non-linear transformation among layers.
 Every few convolutional layers are followed by a 2×2 max pooling layer. 

This reduces the feature map size by a factor of 2.
 Consistent Channel Expansion: As the network goes deeper, the number of filters increase: 

64 → 128 → 256 → 512.
 VGG-16 has 138 million parameters, mostly in the fully connected layers. Despite its size, the architecture trained 

reliably and delivered excellent generalization.
 VGG-16 achieved ≈ 7.3% top-5 error, better than AlexNet and ZFNet
 Key takeaway: depth via small filters boosts expressiveness
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GoogLeNet: A Multi-Scale Design04
 Inception Module with Parallel Paths - Instead of applying a single filter size per layer, the Inception 

module applies four operations in parallel:
– 1×1 convolution
– 3×3 convolution
– 5×5 convolution
– 3×3 max pooling

 Before applying expensive 3×3 and 5×5 filters, a 1×1 convolution is used to reduce the number of 
input channels. 
Example: Going from 256 input channels to 64 using 1×1 conv → then apply 3×3.

 GoogLeNet stacked 9 Inception modules, achieving 22 trainable layers deep and added auxiliary 
classifiers halfway through to help train such a deep model.

 Two small classifiers were added mid-way through the network. They acted like regularizes, helping 
gradients flow and improving convergence.

 Similar to VGG, the model uses ReLU activation throughout.
 Top-5 error: ≈ 6.7 % with efficient FLOPs
 Inception demonstrated that careful factorization of convolutions can drastically improve efficiency 

without sacrificing accuracy.

ResNet: Residual Learning05
 Residual Learning Framework:– Instead of computing 𝐻(𝑥)H(x) (the desired mapping), the network 

learns 𝐹 𝑥 = 𝐻 𝑥 − 𝑥. The final output becomes: 𝑦 = 𝐹 𝑥, 𝑊 + 𝑥 
Where 𝑥 is the input, 𝐹 𝑥, 𝑊 is residual function, and 𝑦 is the output.

 Vanishing gradient solved: identity shortcuts let ∂𝐿/∂𝑥 bypass layers.
 Bottleneck Blocks for Scalability: 1×1 → 3×3 → 1×1 for depth with efficiency

– The 1×1 convolutions reduce and then restore dimensionality.
 Unlike VGG, where deeper networks sometimes performed worse, ResNet showed monotonic 

improvements with depth.
 Training Extremely Deep Networks:

– ResNet-50, ResNet-101, and ResNet-152 became standard benchmarks.
– Even a 152-layer ResNet outperformed all shallower versions.
– 5×5 convolution
– 3×3 max pooling

 Performance: ResNet-50 ≈ 5.3 % | ResNet-152 ≈ 4.5 % top-5 error
 Residual connections became standard practice in almost all vision and transformer-based models.
 ResNet is now used in Faster R-CNN, Mask R-CNN, RetinaNet, and more.
 Its modularity, clarity, and gradient flow properties remain unmatched.
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Core Design Patterns in CNN

‒ Depth vs. Width: Using many small filters in deep stacks enhances feature richness (VGG).
‒ Interpretability: Visual diagnostics like DeconvNet guide architecture choices (ZFNet).
‒ Factorization: Breaking large convolutions into smaller parallel paths improves efficiency 

(Inception).
‒ Gradient Stability: Identity shortcuts ensure reliable training of extremely deep models 

(ResNet).

AlexNet

(2012)

ZFNet
(2014)

VGG +
GoogLeNet/Inception

(2015)

ResNet
(2016)

Thank you!
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Field Programmable Gate Array

Global Memory
• Neural network weights and biases
• Input images
• Output data

Shared Memory
• Feature maps
• Convolutional layer values
• Gradients
• Matrix multiplication or vector operations

Local Memory
• Loop counters
• Backpropagation values
• Activation function outputs
• Partial sums

GPU Time (seconds)CPU Time (seconds)Epochs

0.285.87100

2.68295.351,000

26.613552.4310,000

All accuracies above 98%
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Tangent Distance Classifier
• A nearest-neighbor classifier robust to small transformation or 

distortion such as translation, rotations, scaling, or skewing
• Notice that shifting horizontally, vertically, and rotations wrap around
• Distortions effectively increased size of dataset

• Transformation moves vector in multidimensional space
• Forms a smooth manifold, meaning derivative can be taken infinitely
• A tangent vector is the directional derivative with respect to a specific 

transformation. Many tangent vectors form a tangent plane. 
• Tangent vectors are the columns of a Jacobian matrix
• Unlike raw pixel distance, TDC is insensitive to small variation

Modified Machine Learning Algorithms 2003
• Learning Vector Quantization

• Start with centroids of K-Means clustering now referred to as “prototype”
• Using unseen data, train our prototype: move correct prototype towards correct label and 

wrong prototype away. Decrease learning rate over time.
• Relatively fast and memory efficient but less accurate

• KNN stores all training data. LVQ only stores prototype data

• Discriminative Learning Quadratic Discriminant Function 
• Start with QDA classifier parameters instead of random weights
• Loss function is Minimum Classification Error

• Contains regularization coefficient that penalizes more complex models
• Update parameters using stochastic gradient descent

• Stochastic gradient descent works great when your data is clustered, which is what 0-9 digits should be
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Feature Extraction Methods

• Chain Code

• Crossing Count

• Proportion of black pixels in zone
• White runs: lengths of consecutive white pixels between dark pixels

Unordered count used 
as input vector

Adaptive Learning Rate
Increases learning rate if progress is in the same direction as previous
If gradient direction conflicts with previous, learning rate is decreased 

to reduce oscillation or overcorrection.

• Adam optimizer (Adaptive Moment Estimation) 
• Gradient descent with velocity term

• If gradients point in the same direction repeatedly, momemtum
accumulates and accelerates learning in that direction

• If gradient fluctuates, momentum helps dampen the oscillation
• RMSProp (Root Mean Square Propagation) scales the learning rate for 

each parameter inversely proportional to the recent magnitude of its 
gradients, thereby adapting the learning rate individually for each 
parameter over time.
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Hopfield Network
• Weights form energy landscape
• Hebbian weights for trained pattern 

is a local minima
1

1

1

1

2

2

2

3

3

3

3

2

Boltzmann Machine
• Hopfield network will always deterministically move to lower energy state
• Boltzmann’s equation from physics states change in energy when moving up or 

down a state, which can be written as relative probability
• Converting this to absolute probability gets us toward Boltzmann distribution
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Deep Learning & NLP in 
Intelligent Machines

Intelligent machines mimic human intelligence for complex tasks

Deep Learning and NLP are foundational technologies

Machines learn from data, adapt, and improve over time

Applications span healthcare, finance, and customer service

Can machines truly understand human language and emotions?

by Sai Praneeth Gudala
923832283

What Are Intelligent Machines?

Cognitive Simulation

Machines simulate learning, decision-
making, perception

Adaptive Behavior

React and evolve based on data 
inputs

Use Cases

• AlphaGo Zero mastering Go 
without human data

• Moley robot mimicking chefs

• High-risk task automation
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Role of NLP in Understanding Language

NLU – Natural Language Understanding  NLG – Natural Language Generation

•Understands grammar, context, and user intent.

•Analyzes parts of speech, named entities, dependencies.

•Translates human sentences into structured data 
a machine can act on.

•Powers virtual assistants, spam filters, and recommendation
engines.

•Converts machine-readable data into human-like language.

•Creates readable summaries, responses, or reports.

•Used in chatbots, report generation, and personalized content.

•Text-to-speech systems are a key output of NLG.

Power of Deep Learning

Inspired by 
Human Brain

Multi-layer 
Networks

CNNs

Extract image and text 
features

RNNs & LSTMs

Handle sequential data

Enables complex pattern learning for translation, medical imaging
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Sentiment Analysis –
Decoding Emotions

Emotion Detection

Positive, negative, neutral text sentiment

Applications

Social monitoring, brand reputation, politics, finance

Challenges

Sarcasm, idioms, emojis, polysemy

Tools & Methods

VADER, TextBlob, deep learning for context

Question Answering with Deep Similarity 
Models

Embedding Vectors

Represent questions & 
answers numerically

Deep Similarity 
Networks

Measure semantic closeness 
between queries and 
responses

Applications

• Support chatbots

• Google snippets

• Quora, StackOverflow

Training

Doc2Vec, Word2Vec, 
Transformer models
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Decision-Making & 
Problem Solving

Generate Solutions

Brainstorm multiple approaches

Assess Plans

Evaluate outcomes logically

Assemble Strategy

Choose optimal path using learned patterns

Used in robotics, autonomous vehicles, smart assistants

Conclusion & Future 
Vision

From Automation to Intelligence

Deep Learning and NLP advance machine capabilities

Emotionally-aware AI

Personalizes interactions with sentiment understanding

Challenges Ahead

Bias, transparency, ethical risks

Future Vision

Machines think, feel, assist with empathy and speed

Are we ready for truly intelligent machines?
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