Advanced Speech Recognition: Leveraging Deep Learning with Segmental CRFs

Fusing Powerful Features for Accurate ASR

by Harsh Bajpai

	RAW AUDIO
	FEATURE EXTRACTION (e.g. MFCCs)
Λ	
MV	ACOUSTIC MODEL: GMMs
	SEQUENCE MODEL HMMs
	LANGUAGE MODEL (N-grams)
	DECODER (Qutput: Word Sequence)

The Old Guard: GMM-HMM Systems

Acoustic Modeling

Gaussian Mixture Models (GMMs) [Sound Likelihoods per State]

Sequence Modeling

Hidden Markov Models (HMMs) [State Sequence / modal temporal sequence]

Limitations

Performance ceiling, limited adaptability

Example System

CU-HTK Broadcast News recognizer (Gales et al., 2006)

Deep Acoustics: DNNs Learning Rich Sound Features

Performance

 \checkmark

Outperforms traditional GMM GMM acoustic models

Reference

Hinton et al. (2012)

O,

Segmental CRFs: Principled Feature Fusion

Combines diverse evidence at at word-segment level

Discriminative Learning

Lears Optimal Weights Discriminatively

Reference

O,

SCARF Toolkit (Zweig & Nguyen, 2010)

JHU Workshop: SCRFs + DL Deliver SOTA Results Feature Integration NN Phoneme Features, Templates, LM, Duration Significant ASR accuracy gains on on BN & WSJ

Reference

Zweig et al. (2011), Jansen & Niyogi (2009)

Beyond Labeled Data: Unsupervised ASR Challenges

Unsupervised ASR

Discovering Acoustic Acoustic Units & Word Word Segments from from Raw Speech

SCRF Role

SCRF Principles (Feature Integration) Remain Relevant

Reference

Aldarmaki et al. (2022) (2022) Review

The Winning Combination: Deep Learning Power + SCRF Integration

Deep Learning

Result

Rich, learned features for acoustics & language

More accurate and robust speech recognition

→ SCRFs

Flexible, principled framework framework for fusing these diverse, segment-level features. features.

8

[I],

Thank You!

Interesting Ablations

Attention	Params	K400	SSv2	8	10	-	-	
Space	85.9M	76.9	36.6		ALT.	Contraction of the second	i i i	in a firm
Joint Space-Time	85.9M	77.4	58.5	AND REAL PROPERTY.	CEL A A	RF 44 FEBS		
Divided Space-Time	121.4M	78.0	59.5	580	1	-	4	1 L
Sparse Local Global	121.4M	75.9	56.3		1000	1 march		
Axial	156.8M	73.5	56.2			ef ser lizza		

Future Directions

- Audio
- Better evaluation metrics
- Reasoning
- Quality data

Close-up of a single yellow apple on a tree, followed by a broader view of several apples on branches. A worker in a black hoodie picks apples, placing them into a red basket and later empties the basket into a large wooden crate.

COMPARISION, PROS & CONS Pros Symbolic logic makes decisions explainable · Rules prevent unsafe or harmful actions Cons · Less training data needed with · Rule creation is effort-intensive domain knowledge · May not adapt well to noisy · Prior knowledge helps adapt to new data. scenarios · Hard to scale logic in complex environments Neural and symbolic components are hard to merge

Mapping and Localization with Deep ConvNets

Why is visual perception crucial for autonomous systems?

What are some real-world applications?

Why are there problems with traditional Mapping and Localization methods?

Matthew Bush

May 13, 2025

DeepVO and SfMLearner

Demonstrated CNN-based visual odometry ideal for GPS-denied drone navigation.

CNN-SLAM

Predicted dense depth maps allow drones to fly through scenes change 3D environments and maintain real-time awareness.

NetVLAD Place Recognition

Shows how how drones can relocalize over long flights despite lighting or seasonal changes.

Future of Drone Navigation

- CNN + RNN methods like DeepVO and DeepSeqSLAM help maintain localization over time without GPS.

- Drones can update maps and re-localize as scenes change

- Use visual cues for terrain classification, slope estimation, and target detection.

- Drones could share CNN-processed visual maps and collaboratively explore large areas.

Goals & Outcomes

Matthew Bush

Page 8

TOE

Tangent Distance Classifier

- A nearest-neighbor classifier robust to small transformation or distortion such as translation, rotations, scaling, or skewing
 - Notice that shifting horizontally, vertically, and rotations wrap around
 - Distortions effectively increased size of dataset
- Transformation moves vector in multidimensional space
- Forms a smooth manifold, meaning derivative can be taken infinitely
- A tangent vector is the directional derivative with respect to a specific transformation. Many tangent vectors form a tangent plane.
- Tangent vectors are the columns of a Jacobian matrix
- Unlike raw pixel distance, TDC is insensitive to small variation

Boltzmann Machine

- Hopfield network will always deterministically move to lower energy state
- Boltzmann's equation from physics states change in energy when moving up or down a state, which can be written as *relative* probability
 - Converting this to *absolute* probability gets us toward Boltzmann distribution

Deep Learning & NLP in Intelligent Machines

by Sai Praneeth Gudala 923832283

Intelligent machines mimic human intelligence for complex tasks Deep Learning and NLP are foundational technologies Machines learn from data, adapt, and improve over time Applications span healthcare, finance, and customer service Can machines truly understand human language and emotions?

What Are Intelligent Machines?

Cognitive Simulation

Machines simulate learning, decisionmaking, perception

Adaptive Behavior

React and evolve based on data inputs

Use Cases

- AlphaGo Zero mastering Go
 without human data
- Moley robot mimicking chefs
- High-risk task automation

Role of NLP in Understanding Language

🗱 NLU – Natural Language Understanding

•Understands grammar, context, and user intent.

•Analyzes parts of speech, named entities, dependencies.

•Translates human sentences into structured data a machine can act on.

•Powers virtual assistants, spam filters, and recommendation engines.

🛎 NLG – Natural Language Generation

Converts machine-readable data into human-like language.
Creates readable summaries, responses, or reports.
Used in chatbots, report generation, and personalized content.
Text-to-speech systems are a key output of NLG.

Question Answering with Deep Similarity Models

Embedding Vectors

Represent questions & answers numerically

Deep Similarity Networks

Measure semantic closeness between queries and responses

Applications

- Support chatbots
- Google snippets
- Quora, StackOverflow

Training

Doc2Vec, Word2Vec, Transformer models

Decision-Making & Problem Solving

Generate Solutions Brainstorm multiple approaches

1

2

3

Assess Plans Evaluate outcomes logically

Assemble Strategy Choose optimal path using learned patterns

Used in robotics, autonomous vehicles, smart assistants

Conclusion & Future Vision

From Automation to Intelligence

Deep Learning and NLP advance machine capabilities

Emotionally-aware Al Personalizes interactions with sentiment understanding

Challenges Ahead Bias, transparency, ethical risks

> Future Vision Machines think, feel, assist with empathy and speed

SCRUD

Are we ready for truly intelligent machines?

Early Efforts

- Theoretically can capture past information
- Quantization 8 notes per bar → 96 time steps
- LSTM based model
- 1st exp: model can reproduce a musical chord structure
- 2nd exp: model can learn melody and chords

Capturing Musical Expression

- Tackling musical expression
- MIDI data representation
- Much deeper LSTM model than before 3 layer 512 cells vs 2 cells per layer
- 125 hz sampling rate for time steps

59

Limitations of RNN Based Models

- User studies showed lacking long term coherent structure
- Many clips sound like a mix of classical composers
 - Lacks musical identity
- Computationally intensive for generating longer pieces of music (15sec clips or shorter)

Longer Form Musical Structure

- Advent of transformer allows for capturing longer dependencies
- Continues capturing stylistic expression
- Contributes Memory Efficient Relative Position Based Attention

 O(L²D) → O(LD)

61

Handling Multiple Voices

- Convolutional Generative Adversarial Networks (GANs) to synthesize multiple tracks
- Jamming: 1 gan / track
- Composer: 1 gan / piece
- Hybrid: 1 gan / track but with shared inputs

Controlling Music Generation

- Generates music with text to music or melody to music
- Single model
- Utilizes codebooks to represent musical patterns, essentially tokenizing
- Language input maps to codebooks which maps to music
- Codebooks are learned

63

Future Work & Insights

- Musical style transfer
 - Can we reimagine happy birthday in the style of Bach or Chopin?
- More fine grained generation as an engine for better expressive and interpretive capabilities
- Long Long form multi instrument composition with structure

Thank you!