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Advanced Speech Recognition:
Leveraging Deep Learning with
Segmental CRFs

Fusing Powerful Features for Accurate ASR

by Harsh Bajpai
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FEATURE EXTRACTION

(e.g. MFCCs) Acoustic Modeling

Gaussian Mixture Models (GMMs) [Sound Likelihoods per State]

ACOUSTIC MODEL:
Sequence Modeling

Hidden Markov Models (HMMs) [State Sequence / modal temporal sequence]

Limitations

Performance ceiling, limited adaptability

Example System

CU-HTK Broadcast News recognizer (Gales et al., 2006)




Deep Acoustics: DNNs
Learning Rich Sound
Features

— Hierarchical ” Performance

Learnlng Outperforms traditional GMM

Features learned directly from GMM acoustic models

from data

Reference

Hinton et al. (2012)

Deep Language: NNLMs
Capturing Context

RNNs Word Reference
Embeddings

Memory for long word Mikolov et al. (2011)
word dependencies Semantic relationships
relationships in vector

vector space

[The quick .

Filterbank frames

Acoustic Model:
GMMs

Phoneme
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il b Segmental CRFs: Principled
Feature Fusion

ti Duration

hoods Model AN Feature Fusion

Score

Combines diverse evidence at

at word-segment level

Neural LM Phoneme
Probability [

Reference

@ Discriminative

Learning

Lears Optimal Weights

Discriminatively

SCARF Toolkit (Zweig & Nguyen, 2010)

[Best Word Sequence]

JHU Workshop: SCRFs + DL
Deliver SOTA Results

Feature Integration Results

DNN Phoneme Features, Significant ASR accuracy gains on
Templates, LM, Duration on BN & WSJ

Reference

Zweig et al. (2011), Jansen & Niyogi (2009)
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,f*p”;"“‘if“gt . llj%a\.murtSpeeic""fi +, Beyond La bGIEd Data:
wmeen  Unsupervised ASR
SUPERVISED | | - Cha"enges

ASR
(SCRF + DF)
Unsupervised SCRF Role Reference
ASR

SCRF Principles Aldarmaki et al. (2022)
Discovering Acoustic (Feature Integration) (2022) Review
Acoustic Units & Word Remain Relevant
Word Segments from

from Raw Speech

The Winning Combination: Deep

Learning

Deep Learning Power + SCRF W\N\"“
Integration —

| SCRF |
E—T

Powerful |
Features S
T dYV) ]

(& Deep Learning > SCRFs '
J\M}& SCRF
Integration

Rich, learned features for Flexible, principled framework
acoustics & language framework for fusing these

diverse, segment-level features.
Acoustic

s
features. /* | Templates %
| -
=| Language ° - 3
|  Model —

(L] Result boint
Ll Accurate

More accurate and robust speech recognition ; Ti”a Nnsc riptiOn

Thank You!
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Video Captioning © crv-ran-savr

° Temporal Attention

° VideoBert Slide 4

‘ ° TimeSformer Slide 5

° Interesting Ablations Slide 6

Slide 7

Slide 8

) CNN
CNN - Object Outputs
Raw Frames pretrained

56
"ol 1| S°

Our LSTM network is connected to a
CNN for RGB frames or a
CNN for optical flow images.

jole)
30

a-prgy(e =9) + (1 — @) - Priow(ye = ¥ CNN - Action
pretrained
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Caption
Features-Extraction  Soft-Attention  Generation

A: Low-level Video Representation B: 3D Convolutional Networks
5 1240 15X15X120 crops
AV oy ——>

S/

i 3d-convl 3d-conv2

i 3X3X3X128 ! 3X3X3X256

* Pool Pool
Loaxax3 3X3X3

| stride(1,1,2) } | Stride(1,1,2)
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HOG

Space ) Joint Space-Time  Divided Space-Time Sparse Local Global & ....
N ™3 Alertion (16} Joint Space-Time Divided Space-Time Sparse Local Global

Attention (T+5) Attention (L+G) (T+W+H)
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Interesting Ablations

Attention
Space
Joint Space-Time
Divided Space-Time
Sparse Local Global
Axial

3 0
--Joint Space-Time -2-Joint Space-Time
-©-Divided Space-Time -©-Divided Space-Time
Out of memory
Out of memory

TimeSformer TimeSformer w/ Divided
w/ Space Attention Space-Time Attention

0 0
224 336 448 560 32 64 96
Spatial Crop (Px) # of Input frames

VideoBert

Season the steak with | | Carefully place the steak | |Flip the steak to the Now let it rest and enjoy
salt and pepper. to the pan. other side. the delicious steak.
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SwinBert

Video Captions

Masked Language Modeling H Sparse Attention Mask
| Caption Generation Module  f—r
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'} Stop Gradient Network ‘ Multimodal Transformer Encoder

| 203D Feature Extractor

a0 il Full Attention Masks el
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Videa Caplions

Video Swin Transformer
Multimodal Transformer  ———
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(b) SwinBERT

Future Directions

Audio

Better evaluation metrics
Reasoning

Quality data

Close-up of a single
yellow apple on a tree,
followed by a broader
view of several apples on
branches. A worker in a
black hoodie picks apples,
placing them into a red
basket and later empties

the basket into a large
wooden crate.
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The Evolution of Convolutional
o o o
Classification:
[ ]
Architectural Innovations and Performance
Breakthroughs (2012-2016)
Sai Saketh Bavisetti
Identity
AlexNet ZFNet shortcuts
Deep CNN DeconvNet 3x3filters enable
+RelU+ for visualizing ultra-deep nets
Dropout + activations X
GPU Training
@[ Bl
% 1(x)
2012 2014 2016
—e 9 *——
o J
17
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01 AlexNet: The First Breakthrough CNN
= Architecture: (5 Convolutional + 3 Fully Connected layers)
— AlexNet was 8 layers deep, which was unprecedented at the time.
— Each convolutional layer was followed by max pooling to reduce spatial size and extract features. Input |mage
— Fully connected layers processed these features and made predictions across 1,000 categories. I
= RelU: f(x)=max(0,x) > 6x faster convergence compared to sigmoid or tan h activations.
= Dropout: p= 0.5 in FC layers; during training 50% of neurons were randomly turned off(overfitted) 2D Convolution
= Dual-GPU training: 90 epochs on 1.2 M images
— The model was trained across two NVIDIA GTX 580 GPUs in parallel. -
— Each GPU handled a separate branch of the model; 2D Convolution
— Which made it feasible to train such a large network on the available hardware.
= The training images augmented using translations and mirrored copies. This helped reduce overfitting and .
improved the model’s ability to generalize to new data. 2D Convolution
= Local Response Normalization: normalizing each pixel in relation to its neighbors. This technique was later
abandoned by future models but contributed slightly to performance at the time. )
= Top-5 error dropped down from 26.2% (previous record) - 15.3% (ILSVRC) Max Pooling
= This result stunned the computer vision community and shifted focus toward deep learning. |
= Every CNN afterward built on its design principles: depth, ReLU, dropout, GPU training. A
Max Pooling
o J
18
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02 ZFNet: Understanding What CNN See

Deconvolution Network (DeconvNet): ZFNet introduced a way to project activation maps from deeper layers back
to input pixel space using:
— Un-pooling (reverse max pooling),
— Rectification (ReLU), and
- Decon\./olut!on ("crarTspose c.onvolutlon) Feature|
Layer-wise Visualization of Filters: map
— Early layers were shown to detect edges and colors.
— Middle layers responded to textures and motifs.
— Higher learned to detect complex object parts like dog faces or bicycle wheels.

Selectively zeroed out individual layers during testing and measured the accuracy drop.

Guided refinement:
— By analyzing visualizations, ZFNet redesigned some convolution filter sizes

(e.g., reducing first layer strides from 4 to 2).
— These changes led to a better-performing model with fewer artifacts in learned representations.
— Isolated and reconstructed the parts of the image that maximally activated a specific feature.
— This analysis revealed that many filters in earlier networks were redundant or noisy.
Improvement: +3% top-1 accuracy vs. AlexNet

Unpooling Deconvolution

Rectification

[]

Ooooo

Pixel-space
image

o J
19
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03 VGGNet: For Large Image Recognition
VGG16 Model Architecture
= Uniform Use of 3x3 Convolutional Filters Across All Layers: A R P b g g‘;ﬁ dlg g g g O
— Larger filters like 5x5 or 7x7 replaced with stacks of 3x3 filters. 22(3152 5 8I512(5/5/502 151513 IR >
— Two stacked 3x3 filters approximate a 5x5 receptive field. . ’
— Three stacked 3x3 filters approximate a 7x7 receptive field. Comvolutional and Pooling Layers  Fully-Connoced Layers
= Following mathematical configuration gives same special coverage as with fewer parameters.
2X9C? =18C?% < 25C? P
= VGG-16 consists of 13 convolutional layers followed by 3 fully connected layers. [
= VGG-19 extends this to 16 convolutional layers. can2o | | [ Como Canvao
= RelU after every convolution ensures non-linear transformation among layers. ol | losen 0
= Every few convolutional layers are followed by a 2x2 max pooling layer. St 128 X
This reduces the feature map size by a factor of 2. | | ‘
= Consistent Channel Expansion: As the network goes deeper, the number of filters increase: LoakyRoLL) !kavﬁew p——
64 > 128 - 256 > 512. 1 ! 1
= VGG-16 has 138 million parameters, mostly in the fully connected layers. Despite its size, the architecture tra Ffuten Coma ComeD
reliably and delivered excellent generalization. 1) coman Conez0
= VGG-16 achieved = 7.3% top-5 error, better than AlexNet and ZFNet ‘ "“"i‘ . e
alchNorm Bate m
= Key takeaway: depth via small filters boosts expressiveness ‘ ‘
‘ Output ‘ !LeakyRﬁLU LeakyReLU
_ J
20
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04 GooglLeNet: A Multi-Scale Design

Inception Module with Parallel Paths - Instead of applying a single filter size per layer, the Inception

module applies four operations in parallel: - - — =
a 3x3 5x5 3x3
— 1x1 convolution Conv Conv | MaxPool

1] H

— 3x3 convolution 4 AT
— 5x5 convolution

—3x3 max pooling

Before applying expensive 3x3 and 5x5 filters, a 1x1 convolution is used to reduce the number of
input channels.

Example: Going from 256 input channels to 64 using 1x1 conv - then apply 3x3.

GoogleNet stacked 9 Inception modules, achieving 22 trainable layers deep and added auxiliary
classifiers halfway through to help train such a deep model.

Two small classifiers were added mid-way through the network. They acted like regularizes, helpin. = o W
gradients flow and improving convergence. m Conv Conv
Similar to VGG, the model uses ReLU activation throughout. : — :
Top-5 error: = 6.7 % with efficient FLOPs ‘ ‘Mai:ioL‘
Inception demonstrated that careful factorization of convolutions can drastically improve efficiency - - - = =
without sacrificing accuracy.

Inception Module

Concat

Inception Module with Dimension Reduction

21
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05 ResNet: Residual Learning

Residual Learning Framework:— Instead of computing H(x)H(x) (the desired mapping), the network
learns F(x) = H(x) — x. The final output becomes: y = F(x, W) + x

Where x is the input, F(x, W) is residual function, and y is the output.

Vanishing gradient solved: identity shortcuts let dL/0x bypass layers.

Bottleneck Blocks for Scalability: 1x1 - 3x3 - 1x1 for depth with efficiency

—The 1x1 convolutions reduce and then restore dimensionality. ~ peeeeeetenaoooo
Unlike VGG, where deeper networks sometimes performed worse, ResNet showed monotonic
improvements with depth.

Training Extremely Deep Networks:

— ResNet-50, ResNet-101, and ResNet-152 became standard benchmarks.

— Even a 152-layer ResNet outperformed all shallower versions.

— 5x5 convolution

—3x3 max pooling

Performance: ResNet-50 = 5.3 % | ResNet-152 = 4.5 % top-5 error

ResNet is now used in Faster R-CNN, Mask R-CNN, RetinaNet, and more. %
Its modularity, clarity, and gradient flow properties remain unmatched.

22
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— Depth vs. Width: Using many small filters in deep stacks enhances feature richness (VGG).
— Interpretability: Visual diagnostics like DeconvNet guide architecture choices (ZFNet).
— Factorization: Breaking large convolutions into smaller parallel paths improves efficiency

Core Design Patterns in CNN

(Inception).
— Gradient Stability: Identity shortcuts ensure reliable trainin? of extremely deep models
(ResNet). (2015

(2012) VGG +
AlexNet GoogLeNet/Inception
ZFNet ResNet
(2014) (2016) )
23
000 a——

Thank you!

24
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NEUROSYMBOLIC Al

Neurocomputing
Al

Symbolic

Logic

S — 20
*

25

GOALS OF THIS
RESEARCH

e
(4 S

* Develop safe, real-world deployable Al systems

* Incorporate human-like reasoning into neural models

* Enhance interpretability and trust in Al decisions

+ Enable faster training and generalization across environments

These goals aim to solve core problems in domains like autonomous
driving and mental health care

Hooves | Tail '(White Black Brown | Red

H
<A lain
\OR NE)SL!?"JT
y  [Tanster»
v

(Hooves AND Tail) AND
((White and Black) OR Brown)

=> Horse

Copyright © 2018 Anton Kolonin, Aigent

26
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MOTIVATION &
TECHNICAL CONTEXT

e — <

Traditional deep learning systems are powerful but face key challenges:
 Lack of explainability
» Unsafe decision-making in real-time settings
» Poor performance in novel or low-data situations
Neurocomputing Al integrates rules and reasoning to overcome these
issues—injecting symbolic knowledge into models and reducing the risk of
unsafe or opaque actions.

.
_ 0
.."."'“"’n

27

PROBLEMS AND
PROPOSED METHODS
*0S— <

Problems Proposed solutions

» Unsafe actions during DRL training » DRLSL filters actions using symbolic logic
in autonomous driving (Sharifi et al.)

* Semantic loss in Al-driven * GFlowNet models causal meaning to
communication preserve intent (Thomas et al.)

* Black-box decisions in cybersecurity » Knowledge graphs enable explainable Al
threat detection decisions (Piplai et al.)

* Al models lack clinical reasoning * Infuse clinical knowledge into Al systems
and produce unexplainable mental using symbolic rules for explainable, safe
health predictions. predictions. (Roy et al.)

+ Deep Learning models struggle with + Combine Symbolic Logic with Computer
spatial rules and complex safety Vision to interpret spatial relationships
inspections. and enforce safety rules. (Luo et al.)

28

14
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ASSUMPTIONS & LIMITATIONS
*0S — e
SHARIFIET AL. ROYET AL. THOMASET AL.
A Safety rules can be x Expert ontologies reflect A Shared knowledge bases
formalized in logic clinical reality exist between nodes
A Hard to scale symbolic rules A Symbolic Al may not A Symbol grounding is complex
to real-world complexity generalize across populations and costly

LUOET AL.

s Spatial safety rules can be
logically encoded

/\ Symbolic models lack flexibility
in dynamic sites

PIPLAIET AL.

s Threats can be structured in
knowledge graphs

/\ Limited performance against
novel attacks

29

EXPERIMENTS & RESULTS
S — 3¢
Roy et al. Piplai et

Design: Used annotated Reddit and Design: Combinedyl knowledge graphs
clinical datasets with ontology- with reinforcement learning on malware
guided classification datasets
Results: Results:

* Improved detection of mental » 8% faster convergence in RL

health symptoms * 4% improvement in  detection
 Better gender-specific symptom accuracy

recognition
Thomas et al.
Design:  Simulated  speaker-listener

system using GFlowNet for message
generation
Results:
* Maintained semantic reliability
» QOutperformed traditional systems in
intent preservation

30
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COMPARISION, PROS & CONS

%S — L

Pros
» Symbolic logic makes decisions
explainable
* Rules prevent unsafe or harmful
actions

Cons

* Rule creation is effort-intensive

« May not adapt well to noisy
data.

» Hard to scale logic in complex
environments

* Neural and symbolic
components are hard to merge

* Less training data needed with
domain knowledge

» Prior knowledge helps adapt to new
scenarios

31

IMPROVEMENTS & MY VIEWS

Improvements My views
Automate symbolic rule generation

using large language models
Improve integration between
neural and symbolic components
Enable adaptive learning of new
logic from changing environments
Optimize computational efficiency
of reasoning modules

Expand domain-specific
knowledge coverage (especially in
healthcare & cybersecurity)

* Neurocomputing Al is powerful but
needs to evolve beyond static rules.

* | believe combining deep learning
with dynamic, learnable logic will lead
to safer and smarter Al.

» Future models should continuously
learn from real-world feedback, not
just predefined ontologies.

* Human-Al collaboration should be
built on transparency, trust, and
explainability.

THANK YOU

32
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1. Localization: robot’s position
using sensors
. Mapping: building a model of

the surrounding environment
from those visual cues.
. SLAM and VO: methods use

ConvNets to learn features
and improve performance.

\ -4
it

What is Localization and M

Matthew Bush

apping?

5/12/2025
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; Conventional Method = "
Camera Scale
Caltration ssmaton

J -
i

Momon
Essmation

Visual Odometry

Matthew Bush

Input Data

DeepVO

CNN Find the geometric features to be used in the RNN
MSE error is scaled for distance and angle errors

RNN has feedback loops so the current value can be
affected by what happened previously

Long term dependencies might vanish

Model Output

DeepVO (Wang et. 2018)

Matthew Bush

Page 4

5/12/2025
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Pose Estimation

Loop
Feature Match Closure

Probabilities
Qutlier elimination
RANSAC

Checks the changes

Sensors

Understanding SLAM

Matthew Bush

DeepSeqSLAM (Chancan, et al. 2020)

Input
mage

- Seguence-based place recognition methods perform well
under extreme conditions

AlexNat

- single monocular image sequence.

- Tested on Nordland (728 km) and Oxford RobotCar (10 km)
datasets.

NetVLAD (Arandjelovi¢ et al.,
2016)

AlexNet

Places205

- Combines CNN + VLAD peoling to create compact,
trainable place descriptors.

- Trained on large datasets like Google Street View Time
Machine examples.

- Widely used in visual place recognition benchmarks.

Place Recognition

Matthew Bush

e  Seen locations
. Feeds back

Bundle
Adjustment

5/12/2025
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{a) Losses: Overfit

. | |
=
Generalization to New Data Scarcity and Bias
/ Environments Most public datasets KITTI,
" CNN models often perform well in Nordland, Oxford are region-and
o P N Y Y the environments they're trained or season-specific.
on, but struggle in unfamiliar
settings.

Computational Complexity Lack of Explainability

Deep networks are often too CNNs are typically black-box
heavy for real-time deployment an models so it's difficult to
resource-constrained devices like understand why a certain pose or
drones place was predicted.

Limitations and Challenges

Matthew Bush Page 7

DeepVO and SfMLearner Future of Drone Navigation

Demonstrated CNN-based visual odometry ideal for GPS-  _ oyN + RNN methods like DeepVO and
denied drone navigation. DeepSeqSLAM help maintain localization over

time without GPS.
5 - Drones can update maps and re-localize as
Predicted dense depth maps allow drones to fly through scenes change

3D environments and maintain real-time awareness.
- Use visual cues for terrain classification, slope

NetVLAD Place Recognition estimation, and target detection.

Shows how how drones can relocalize over long flights - Drenes could share CNN-processed visual
despite lighting or seasonal changes. maps and collaboratively explore large areas.

Goals & OQutcomes

Matthew Bush

20



Field Programmable Gate Array | 57 75
Input/Output Blocks Rt PND GATE R GATE NOT GATE  NOR GATE
fpososs OB B I >-d 9 -
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LI —J =1 :EZ>
5 ! = Erase votage XPAD GORT  NORG YORT ANDORX. GANT NORXONDOR
' . . Programmable
- o Interconnect How CPU Executes Program Instructions ?
= . ‘ CPU - Central Processing Unit Moty
o L
u Ll
HEE EE EE BN
Lo . Qrnicr v ar g o (rger o)
EFC‘:’W a
& ot parean ca)
<>
. MBR —> Memory Buffer Register
Memory Address Register e
gl IM.M! _Is Mamuow .Idir::s Register
PC —> Program Counter
www.learncomputerscienceonline.com
41

Global Memory

* Neural network weights and biases

* Inputimages
* Qutput data

Shared Memory

* Feature maps

* Convolutional layer values

* Gradients

* Matrix multiplication or vector

Local Memory
* Loop counters

* Backpropagation values

* Activation function outputs
Partial sums

operations

NVIDIA.

Epochs CPU Time (seconds) GPU Time (seconds)
100 5.87 0.28

1,000 295.35 2.68

10,000 3552.43 26.61

All accuracies above 98%

42
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Tangent Distance Classifier

* A nearest-neighbor classifier robust to small transformation or
distortion such as translation, rotations, scaling, or skewing
* Notice that shifting horizontally, vertically, and rotations wrap around
* Distortions effectively increased size of dataset

* Transformation moves vector in multidimensional space
* Forms a smooth manifold, meaning derivative can be taken infinitely

* A tangent vector is the directional derivative with respect to a specific
transformation. Many tangent vectors form a tangent plane.

» Tangent vectors are the columns of a Jacobian matrix
* Unlike raw pixel distance, TDC is insensitive to small variation

43

Modified Machine Learning Algorithms 2003

* Learning Vector Quantization
* Start with centroids of K-Means clustering now referred to as “prototype”

* Using unseen data, train our prototype: move correct prototype towards correct label and
wrong prototype away. Decrease learning rate over time. 1

* Relatively fast and memory efficient but less accurate | ©

* KNN stores all training data. LVQ only stores prototype data .
e . e . Height @
* Discriminative Learning Quadratic Discriminant Function @

* Start with QDA classifier parameters instead of random weights

* Loss function is Minimum Classification Error . :
* Contains regularization coefficient that penalizes more complex models ~ Weight

* Update parameters using stochastic gradient descent
* Stochastic gradient descent works great when your data is clustered, which is what 0-9 digits should be

T

44
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Feature Extraction Methods

H Ktart ALtart 3 P 1

® Cha|n COde oint = point| 4 T > ;—)l ;

’—9' * > |
ES ! 4 ————0

Unordered count used : i A ! |
as input vector L_ 1, ] g 7

. A I
“ eV
* Crossing Count A

* Proportion of black pixels in zone

* White runs: lengths of consecutive white pixels between dark pixels

45

Adaptive Learning Rate

v'Increases learning rate if progress is in the same direction as previous

vIf gradient direction conflicts with previous, learning rate is decreased
to reduce oscillation or overcorrection.

* Adam optimizer (Adaptive Moment Estimation)
* Gradient descent with velocity term
* If gradients point in the same direction repeatedly, momemtum
accumulates and accelerates learning in that direction
* If gradient fluctuates, momentum helps dampen the oscillation

* RMSProp (Root Mean Square Propagation) scales the learning rate for
each parameter inversely proportional to the recent magnitude of its

gradients, thereby adapting the learning rate individually for each
parameter over time.

46
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Hopfield Network

* Weights form energy landscape

* Hebbian weights for trained pattern
is a local minima

Noisy or Recalled
I)élf‘[ E'(l] cues memories

0 A A o © o
B : Qo0 © ~ 3
2 ' T 6

77 “ o

o

Hopfield net

Boltzmann Machine
* Hopfield network will always deterministically move to lower energy state

* Boltzmann’s equation from physics states change in energy when moving up or
down a state, which can be written as relative probability
* Converting this to absolute probability gets us toward Boltzmann distribution

Fres Fres
ON i 5 i o Sigmoid function of the input pon =
Y = — Wi TiT 5

] T a S
E I Pon _ - ;, " Weighted input &
-E! 14

1+.'u,r
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Deep Learning & NLP in
Intelligent Machines

by Sai Praneeth Gudala
923832283

Intelligent machines mimic human intelligence for complex tasks
Deep Learning and NLP are foundational technologies

Machines learn from data, adapt, and improve over time
Applications span healthcare, finance, and customer service

Can machines truly understand human language and emotions?

What Are Intelligent Machines?

Cognitive Simulation Adaptive Behavior Use Cases

Machines simulate learning, decision- React and evolve based on data + AlphaGo Zero mastering Go
making, perception inputs without human data
Moley robot mimicking chefs

High-risk task automation
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Role of NLP in Understanding Language

#& NLU - Natural Language Understanding « NLG - Natural Language Generation
*Understands grammar, context, and user intent. *Converts machine-readable data into human-like language.

*Analyzes parts of speech, named entities, dependencies. *Creates readable summaries, responses, or reports.

*Translates human sentences into structured data

) *Used in chatbots, report generation, and personalized content.
a machine can act on.

*Text-to-speech systems are a key output of NLG.
*Powers virtual assistants, spam filters, and recommendation P Y Y P

engines.

Power of Deep Learning

Inspired by _ Multi-layer CNNs RNNs & LSTMs

Human Brain ' Networks : .
Extract image and text Handle sequential data

features

Enables complex pattern learning for translation, medical imaging
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>0CiAl MEDIA SENTIENTN
Sentiment Analysis - ANALY'SS

Decoding Emotions e

Emotion Detection

Positive, negative, neutral text sentiment

Coraglets  Latting Aredia

Applications

Social monitoring, brand reputation, politics, finance

Challenges

Sarcasm, idioms, emojis, polysemy

Tools & Methods

VADER, TextBlob, deep learning for context

@ teekfal, 20

Question Answering with Deep Similarity
Models

Embedding Vectors Deep Similarity Applications Training

Networks
Represent questions & + Support chatbots Doc2Vec, Word2Vec,
answers numerically Measure semantic closeness - Google snippets Transformer models

between queries and
Quora, StackOverflow

responses

27



Decision-Making &
Problem Solving

Generate Solutions

Brainstorm multiple approaches

Assess Plans

Evaluate outcomes logically

Assemble Strategy

Choose optimal path using learned patterns

Used in robotics, autonomous vehicles, smart assistants

Conclusion & Future
Vision
From Automation to Intelligence

Deep Learning and NLP advance machine capabilities

Emotionally-aware Al

Personalizes interactions with sentiment understanding

Challenges Ahead

Bias, transparency, ethical risks

Future Vision

Machines think, feel, assist with empathy and speed

Are we ready for truly intelligent machines?
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Practice Doesn’'t Make Perfect: Music Generation
with Deep Learning

Rhythm and Time Expression and Interpretation Multiple Voices

thythm af a melody Tempo — Andante =60 Technigune ae: ‘g::i:'tl
|

J J J Expression — Play Rubato | v
m 2 - 3 } ! I 1x Only pizz spre: o
P et e PV T e
| Tl e e T e ta A e Viols
= =3 . - ; 2
Express m

Tuni Bassi
m

Early Efforts

Theoretically can
capture past information
Quantization 8 notes per
bar — 96 time steps
LSTM based model

1st exp: model can
reproduce a musical

chords!

chord structure

2nd exp: model can ﬂ “
-] ] @

learn melody and chords @

Prabability.y, Probability, ¥, Brobinbility. v, , Frobabillty ., Faobabllit y,, Probiabiity,y,

@
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Capturing Musical Expression

Tackling musical
expression - C e
MIDI data L,

representation pa s @ MRE————
Much deeper LSTM e A i £

model than before 3 e

layer 512 cells vs 2

cells per layer

125 hz sampling rate

for time steps

00000 target output

Limitations of RNN Based Models

e User studies showed lacking long
term coherent structure
Many clips sound like a mix of

classical composers
Lacks musical identity

Computationally intensive for
generating longer pieces of music
(15sec clips or shorter)
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Longer Form Musical Structure

e Advent of transformer
allows for capturing
longer dependencies
Continues capturing
stylistic expression
Contributes Memory
Efficient Relative
Position Based

Attention
0O(L2D) — O(LD)

Handling Multiple Voices

Convolutional Generative
Adversarial Networks (GANs) to
synthesize multiple tracks
Jamming: 1 gan / track
Composer: 1 gan / piece
Hybrid: 1 gan / track but with
shared inputs

(c) Hybrid model
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Controlling Music Generation

Generates music with text to music
or melody to music

Single model

Utilizes codebooks to represent
musical patterns, essentially
tokenizing

Language input maps to codebooks
which maps to music

Codebooks are learned

Future Work & Insights

Musical style transfer
Can we reimagine happy birthday in the
style of Bach or Chopin?

More fine grained generation as an
engine for better expressive and
interpretive capabilities

Long Long form multi instrument
composition with structure

Residual codebooks

Residhal codebooks

Sequence steps

Coarse Fir

8t
i
= “._
[

mE--

Residual codebooks

Pattern

Residhal codeboaks

S %y % Shef % %3 S Sy S

Sequence steps

Thank youl!

arallel Pattern

LR
o || % |
LB,
LR

R T

Sequence steps

Delay Pattern

o |G u

o |l

LR

o | = ]
=

L} “”k

Sequence steps
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