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Note:

• Pecha Kucha project presentation next week
– Submit your MS-PPT slides two days prior (May 11, 5pm) by email

– Read my email as well as the assignment handout. 8 slides with 50 
seconds each. Will be automatically played! You will have NO 
CONTROL!!! So MAKE SURE YOU PRACTICE!

• Presentation in alphabetical order (See email)

• Project Report due in next week (5/15 Thr, 10pm).
– Two additional days

– Read the assignment thoroughly

– Late policy will apply. 
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Outline

• What is deep learning (DL)?

• Limitation of prior arts in AI/ML
– Scalability 

– Complexity

– Frame Problem 

– Symbol Grounding Problem

– Feature Engineering Problem

• Advent of Learning Theory & Fast Hardware moved us to 
Probabilistic modeling with Big Data (DS/DE). 

• End-to-end Learning with Representation Learning of 
distributed and hierarchical representation structure 
is the key to solve the issues!
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What is Deep Learning?

• Machine Learning (ML) on Deep Neural 
Network (Deep NN)

• Deep NN: NN with many stacked layers in 
various configurations
– Add more layers to the multilayer perceptron

– Complex Structure with many more unknown variables 

– More flexible to match with complex problem but

– More difficult to train/learn

– Require a lot of data to train/learn
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What is Deep Learning?

• Has seen a great recent success
– Hierarchical Structure

– Representation Learning

– Let’s study first the foundation of WHY this works!
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X Y

supervised regressionunsupervised representation learning

Recall Classic AI

• 1st AI Boom: 1960’s
– Tree-Search (Goal/Utility-based Agents)

– Games: Puzzles and Chess

– Can solve interesting problems if we can describe them in 
a tree-search formulation

– But did not work for large-scale problems!

• Perceptron 
– First Artificial Neural Network in ML

– Minsky’s proof for the limit of ANN as a linear classifier

– Basically did not work for complex problems!

– Neuro Winer 1970~
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Classic AI: 2nd AI Boom (1980’s)

• Let’s incorporate explicit knowledge!
– Rules with formal logic (Knowledge-based Agents)

– Chat system (Eliza,1964) & Expert system (Mycin,1970)
– Based on DB of standard templates & logical rules

– Eventually evolved to Siri/ChatGPT and Watson, respectively

– Work on small-scale problems but

• Need to increase the size of knowledge to 
make it work for large-scale problems…
– But the amount of common sense/background required to 

describe a simple rule is HUGE and COMPLEX!

– Basically more data did not help to solve large-scale 
problems  time-knowledge trade-off
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And Neural Network?

• Let’s introduce layered hierarchy !
– More complex structure to match complex problems?

• Multilayer Feedforward Networks
– Hidden layers introduced (Func() Func(Func(Func)))

– Backpropagation algorithm to solve a learning problem 
structurally more difficult than perceptron

– Beat the Minsky’s criticism (Linear  Non-linear)

– More accurate system  More complex network structure

– More complex structure  More difficult learning

– Adapting it to complex & large problem still failed…

– Second Neuro Winter (~2007)
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Summary: Situations before DL

• Things work with small toy problems but … 

• Failed when we apply them to large-scale 
and difficult/complex problems

• More knowledge/data better? 
– Yes, but failed, could not handle too large a size of 

knowledge

• More complex structure better?
– Yes, but failed, could not solve learning problem when 

making the system structure more complex

• AI Winter (1995~)
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How best to describe larger and more 
complex data then?

• Maybe we were formatting data wrong?

• Fundamental Question posed by the AI 

• Knowledge Representation
– = formal description of information
– Semantic network (1960~)

– Cyc (1984~) Knowledge Base of all common knowledge

– Ontology (1990~)

• Needs
– Scalability

– Adaptability

– Efficiency
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Any system design that works better with 
more data then?

• Yes, probabilistic system!
– Led to the advent of statistical ML since 1990’s

– Such system can be learned by using statistics of data

– More-Data = Better-System (Mathematical Proof)

– Law of Large Numbers
– With larger size data, sample mean converges to true 

(expected) probability

– Central Limit Theorem
– With larger size data, sample means follow the normal 

distribution regardless of data distribution

– Some success with Big Data but still could not solve 
difficult problems. Why?
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Three Problems of Pre-DL ML/AI

• Fundamental Problems in Overall Design 
of Solution Architecture!
– Frame Problem

– Symbol Grounding Problem

– Feature Engineering Problem

• Success of Deep NN can be attributed to 
offering an effective solution to these 
problems!
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Frame Problem: McCarthyHayes69’

• FOL ignores a lot of possibilities…
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• Alpha-Go works because the system only 
need to think of how to play GO game not 
worry about raising rents and job 
prospects…

 New wampus?

 Moving pits?

 Escape routes?

 Explosion?

 Stock market crash?

 Flower blossom?

Frame Problem in General

• Dennett (1994)
– A battery is on a tray in a cave. But there is also a bomb on the 

same tray. To save the battery, a robot is sent to bring it out of the 
cave.

– R1D1: Exploded. It understood the task of bring out the battery and 
noticed of the bomb but did not understand that bringing out the tray will 
also bring out bomb.

– R1D2: Stucked. Redesign it to consider consequences of action. When 
reaching the battery, it stopped and never moved, thinking all possible 
consequences of moving the battery out; would it make the bomb 
explode? ceiling falls? change the color of walls? and so on, forever.

– R2D1: NeverMoved. Redesign it to not consider situations that are 
irrelevant. Before reaching the battery, it stopped and never moved, 
thinking all possible situations to sort out what is relevant and irrelevant. 
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Frame Problem in General

• Think Self-Driving: There are infinitely many 
things that must be considered to solve a task in 
general domains.

• Often ignore those that are not related to the 
given task and consider only related information 
(= frame). 

• Selecting a correct frame among all possible 
things forces you to search among infinitely many 
choices so it can take forever…

• It tells us that rule-based approach has a 
fundamental problem.
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Semiology-Semiotics: Saussure

• Linguistical relation of labels and concepts
– Signified: Referents or Actual Concepts/Objects

– Signifier: Signs or labels

CSC872: PAMI – Kazunori Okada (C) 2025 16

Horse

Compositions of 
Signifieds create 
new Signfied that 
receives a Signifer.

Grounding
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Symbol Grounding Problem: Harnad ‘90

• Symbolic manipulation of ungrounded / 
meaningless signs cannot handle unknowns
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• But we can imagine this is possible as long 
as we know horse and stripe…

• Can AI too?

= +

PR/ML: Learning Machine

• PR and ML focused on mathematical techniques 
to derive best W from given data

• But you have to chose what factors you extract 
from raw data to be used as inputs X & outputs Y 
(and the choice of f form as well).
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fx yest

w
Data W
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Feature Design

• To build an end-to-end ML/PR system, engineers 
must find a set of factors, appropriate to a 
given problem, to be extracted as inputs

• Features = Problem-specific factors to be used as 
X extracted from raw data.

• Feature design = act of finding appropriate features

CSC872: PAMI – Kazunori Okada (C) 2025 19

Data W

fx yest

w

Feature Engineering Problem

• Feature design turns out to be an art!!!

• Found that the overall performance changes a lot 
when using different features (sensitive)

• This sensitivity are often larger with feature design 
than the choice of ML algorithm used

• Expert developers thus focused on hand-crafting 
best features to improve performances in ML/PR 
system research and development ( this is 
Feature Engineering!)

• But this was difficult without any guiding theories 
and slowing the progress of Big Data ML

CSC872: PAMI – Kazunori Okada (C) 2025 20
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Common Culprit

• Human designer had to decide which aspects in the real 
world would be used as the factors in formulating 
problems to be solved.

• System failed when designer’s choice was wrong!

• Frame Problem
– Designer manually defines problem-specific assumptions/frames

– Wrong inference  Bomb explode!

• Symbol Grounding Problem
– Manually designed labels used w/o signified model from data

– Cannot adapt to new concepts  Do not generalize/scale!

• Feature Engineering Problem
– Manually designed problem-specific features used

– Could not handle complex problem!  Limit of BigData ML
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Let data decide what factors to be used rather 
than human designer’s choice!

• ML’s Bottleneck = Feature Design

• Representation Learning

• Data-Driven Feature Design (vs Human 
Intelligence)

• Automation of Feature Design

• Solves 
– Feature Engineering Problem (automate it) 

– Symbol Grounding Problem (add a process to extract 
signified from data)!
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Distributed Representation

• Generalization/Scalability in symbol grounding 
problem can influence basic rep schemes

CSC872: PAMI – Kazunori Okada (C) 2025 23https://www.oreilly.com/ideas/how-neural-networks-learn-distributed-representations

Sparse Symbolic Rep. Distributed Rep.

New Case?

• Multilayer NN 
architecture thus helps 
to improve those above

Frame Problem?

• Can be solved by using a flexible general-
purpose learning machine that can be 
learned from data and from scratch!

• Do this without assumptions or learn the 
assumptions themselves from data 

• End-to-End learning of Deep NN 
Became possible by the feature learning!
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How can we assure flexibility of the 
Learning Machine though?

• Hierarchical Structure by stacking many hidden 
layers between inputs and outputs!

• Func()  Func(Func(Func(Func(……))))))))

• Exponentially increase # learnable patterns 
= Scalable & Can tackle more complex prob.

• But more difficult learning!  Next Part

• Also inspired by how human brain processes 
visual information in our brain.

• Can DNN mimic how babies learn to see?

CSC872: PAMI – Kazunori Okada (C) 2025 25

Biologically-Inspired Hierarchical 
Representation of Visual Patterns

CSC872: PAMI – Kazunori Okada (C) 2025 26Sven Behnke
Google’s Cat (Google X, 2012)
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Summary

• Deep Learning realizes 
– End-to-end learning

– Representation learning

• Deep NN architecture realizes
– Distributed Representation

– Hierarchical Representation

• These design addresses
– Scalability/Problem-Complexity

– Frame Problem

– Symbol Grounding Problem

– Feature Engineering Problem
CSC872: PAMI – Kazunori Okada (C) 2025 27

Outline

• Deep Neural Network Architecture: Auto Encoder

• Deep Neural Network Architecture: ConvNets

• What made it work: Various learning techniques to avoid 
overfitting

• ImageNet

• CNN variants

• Software Libraries

• Recurrent Neural Networks

• Generative Adversarial Network

• Ethics/Future
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Deep NN is not a new idea…

• Neocognitron (Fukushima, 1979)
– End-to-end representation learning with distributed 

hierarchical structure

• But could not train it from data then…

CSC872: PAMI – Kazunori Okada (C) 2025 29

Auto-Encoder: First Step

• Hinton 2006

• NN with the same input/output (predicting self)

CSC872: PAMI – Kazunori Okada (C) 2025 30

Input

Hidden

Output

Answer• With less number of 
hidden units, NN can 
learn/extract 
compact and 
essential aspect of 
the patterns  

• Unsupervised 
Learning

Matsuo, 2015 https://www.ipa.go.jp/files/000048577.pdf
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Representation Learning: Low Level

• Backprop w/ Gradient Descent…

CSC872: PAMI – Kazunori Okada (C) 2025 31Matsuo, 2015 https://www.ipa.go.jp/files/000048577.pdf

low-level visual features 
learned from data

Representation Learning: High Level

• Make it “deep”

• So that it is possible to 
learn the hierarchy of 
feature representations 
from low to high levels…

CSC872: PAMI – Kazunori Okada (C) 2025 32Matsuo, 2015 https://www.ipa.go.jp/files/000048577.pdf

Add more 
hidden layers
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Google’s Cat (2012)
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Pre-train & Fine-tuning

• Final classifier: stacking the deep auto encoder 
and a fully-connected multilayer feedforward 
network

• Pre-training: unsupervised learning of auto 
encoder

• Fine-tuning: supervised learning of fully-
connected multilayer network by backpropagation

• Alternative to stacked auto encoder
– Stacked restricted Boltzmann machine

– Stacked denoise autoencoders

– Stacked kernel PCA/semi-supervised embedding/ISA etc

CSC872: PAMI – Kazunori Okada (C) 2025 34
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Convolutional Neural Net (CNN)

• LeNet (1989) consists of
– Convolution Layer

– Transfer function (ReLU) Layer

– Pooling Layer

– Fully connected Layer

CSC872: PAMI – Kazunori Okada (C) 2025 35
Source of the slide: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

Convolution

ReLU

Pooling

Convolution

ReLU

Pooling

Convolution

ReLU

Pooling

Input

Output

vectorize

Repeat

Fully 
connected 
Feedforward 
Net

Feature Maps

Convolution

• Local filter is scanned over images to compute a 
response by computing the sum of pairwise products

• Stride: skipping the interval of scans

• Results goes through transfer function (Sigmoid/ReLU)

CSC872: PAMI – Kazunori Okada (C) 2025 36
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CNN – Convolution

100001

010010

001100

010001

010010

010100

6 x 6 image

-1-11

-11-1

1-1-1

Filter 1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

stride=1

Property 2

Source of the slide: http://219.216.82.193/cache/8/03/speech.ee.ntu.edu.tw/43149163c97eb6be7590e3d8de445a67/CNN.pdf
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CNN – Convolution

100001

010010

001100

010001

010010

010100

6 x 6 image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-11-1

-11-1

-11-1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Do the same process for 
every filter

stride=1

4 x 4 image

Feature
Map

Source of the slide: http://219.216.82.193/cache/8/03/speech.ee.ntu.edu.tw/43149163c97eb6be7590e3d8de445a67/CNN.pdf
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Max Pooling and Sub-Sampling

• Reducing resolution by replacing a patch with
– Random sample among 2x2: Sub Sampling

– Average value of 2x2: Average Pooling

– Maximum of 2x2: Max Pooling

CSC872: PAMI – Kazunori Okada (C) 2025 39Figures from: Jianping Fan, UNC Charlotte

40

Stacking Layers

Convolution

Max Pooling

Convolution

Max Pooling

Can repeat 
many timesA new image

The number of the channels is 
the number of filters

Smaller than the original 
image

3 0

13

-1 1

30

Source of the slide: http://219.216.82.193/cache/8/03/speech.ee.ntu.edu.tw/43149163c97eb6be7590e3d8de445a67/CNN.pdf

CSC872: PAMI – Kazunori Okada (C) 2025
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Vectorize

3 0

13

-1 1

30 Flatten

3

0

1

3

-1

1

0

3

Fully Connected 
Feedforward network

Source of the slide: http://219.216.82.193/cache/8/03/speech.ee.ntu.edu.tw/43149163c97eb6be7590e3d8de445a67/CNN.pdf

CSC872: PAMI – Kazunori Okada (C) 2025

Softmax Unit

• Used for output unit to convert values into a 
probability distribution

42Figures from: Ruiyun Yu, Northeastern University CSC872: PAMI – Kazunori Okada (C) 2025
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Making the Learning of CNN work?

• Learning is essentially done by the backpropagation
algorithm from last lecture, but it got more difficult when 
making NN architecture deeper and more complicated

• More variables = Tend to overfit

• Break Through: find strategies to sabotage/regularize the 
learning process, adding noises and breaking connections 
lead to robustness to avoid overfit

• Longer time still required to learn with more variables

• Advent of GPU: improving throughput and making it 
possible to do massive learning required to solve large-
scale/complex prob.

CSC872: PAMI – Kazunori Okada (C) 2025 43

Stochastic Gradient Descent

• Recall batch vs online perceptron delta rule 
derived by the gradient descent algorithm

• Stochastic Gradient Descent
– Online Gradient Descent

– Approximation of the batch version

– Converges better because of high frequency of weight 
updates

– Minibatch GD: randomly sample a subset of small batch 
from data then sequentially perform gradient descent

CSC872: PAMI – Kazunori Okada (C) 2025 44
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Vanishing Gradient Problem

• Backpropagation propagates gradient of errors from output 
layers to input layers using the chain rule (product of probs)

• Sigmoid as transfer function: gradient [0,1]

• So as we get closer to the input layer, propagated error 
become a product of many less-then-1 values 
exponentially get smaller!

45

• Stop changing weights = 
Stop learning (Delta = 0)

• Shadowing 

• Deeper the net, more 
chance of having gradient 
vanished!

• Sigmoid won’t work deep!

Figures from: Jianping Fan, UNC Charlotte CSC872: PAMI – Kazunori Okada (C) 2025

Rectified Linear Units (ReLU)

• max(0,y)

• Gradient is the constant (1) 
for y > 0 so it would not 
vanish by going through 
many layers back

• More efficient (no exp 
comp)

• Sparsity (y<0) 
Regularization = Avoid 
overfitting

CSC872: PAMI – Kazunori Okada (C) 2025 46Figures from: Ruiyun Yu, Northeastern University
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Why Max Pooling?

• Pooling creates overlapping receptive fields

• Max Pooling is most commonly used
– Shift Invariants: slight misplacement accommodated

– Additional non-linearity: more expressive representation

– Efficiency: computes faster than average pooling

CSC872: PAMI – Kazunori Okada (C) 2025 47Figures from: Jianping Fan, UNC Charlotte

conv conv conv

Dropouts

• Randomly ignore neurons in hidden layers 
for updating during learning

• This acts as practically-efficient regularizer
for deep learning
– Adding noise to learning process for robustness

– Sparse activation of units during the learning

– Thus avoid overfitting

– Also efficient to do 

CSC872: PAMI – Kazunori Okada (C) 2025 48
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Backpropagation for CNN’s End-to-End 
Learning

• Use the least sum of squares or other cost func.

• Solve it by stochastic gradient descent 
– MaxPooling layers do not involve learnable weights

– Conv layers’ weights updated by a convolution like procedure based 
on backpropagation through conv process

• Transfer Learning: reuse convolutional feature 
maps trained with a large dataset 
(pretrain/freezing: may take a long time!) and fine-
tune the fully-connected network part by 
backpropagation (quick)

CSC872: PAMI – Kazunori Okada (C) 2025 49

ImageNet Challenge 2012

• Scene analysis: most 
difficult computer vision 
task

• ~14 million labeled 
images, 20k classes

• Image gathered from 
internet

• Human labels via Amazon 
Turk

• Challenge: 1.2 million 
training images with 100 
classes

CSC872: PAMI – Kazunori Okada (C) 2025 50
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Alex Net

51CSC872: PAMI – Kazunori Okada (C) 2025

CNN Variants: Getting deeper…

• VGGNet
– Symonyan&Zisserman 2015, ILSVRC-2014 Runnerup

– Smaller 3x3 Conv filters

– Deeper network: 16~19 layers (AlexNet was 8 layers)

• GoogleNet
– Szegedy 2015, ILSVRC-2014 Winner

– Deeper: 22 layers

– Focused on computational efficiency

• ResNet
– He 2015, ILSVRC-2015 Winner

– Extremely deep: 152 layers

– Skip connections  Residual mapping
CSC872: PAMI – Kazunori Okada (C) 2025
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ImageNet Large Scale Visual Recognition 
Challenge(ILSVRC) winners

Source of the slide: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdfCSC872: PAMI – Kazunori Okada (C) 2025
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ImageNet Large Scale Visual Recognition 
Challenge(ILSVRC) winners

Source of the slide: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdfCSC872: PAMI – Kazunori Okada (C) 2025
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ImageNet Large Scale Visual Recognition 
Challenge(ILSVRC) winners

Source of the slide: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdfCSC872: PAMI – Kazunori Okada (C) 2025

56

ImageNet Large Scale Visual Recognition 
Challenge(ILSVRC) winners

Source of the slide: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdfCSC872: PAMI – Kazunori Okada (C) 2025
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Better than human?

• Captcha?

CSC872: PAMI – Kazunori Okada (C) 2025 57Matsuo, 2015 https://www.ipa.go.jp/files/000048577.pdf

Recurrent Neural Network: RNN

• Modeling and prediction of sequential data
– Speech

– Text

– Video

• Recurrence unfolded over time  Deep 
Structure

• Suffers from Vanishing&Exploding Gradient 
– Remedy1: Long Short-Term Memory (LSTM)

– Remedy2: Gated Recurrent Unit (GRU)

– Replace standard units by them

CSC872: PAMI – Kazunori Okada (C) 2025 58
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Encoder-Decoder Architecture

• Encoder: Texts  Thoughts

• Decoder: Thoughts  Texts

• Machine Translation:
– Train an encoder with English

– Train a decoder with Spanish

– Concatenate them  English to Spanish Translation

• Video Captioning:
– Train an encoder with Video (Video  Concepts)

– Train a decoder with English (Concepts  Texts)

– Concatenate them  Video to Text Captions!

CSC872: PAMI – Kazunori Okada (C) 2025 59

Generative Adversarial Network: GAN

• Goodfellow 2014

• Generative model for unsupervised learning

• Two neural networks one generative and the other 
discriminative compete each other game theoretically.
– Generative network tries to fool the discriminative network. 

– Discriminative network try to distinguish the real ones from the fake ones  

CSC872: PAMI – Kazunori Okada (C) 2025 60

Image by Thalles Silva
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Image generated by GANs 

CSC872: PAMI – Kazunori Okada (C) 2025 61

Software Library

• Tensor Flow (from Google Brain)

• Keras (high level Python API)

• Caffe (from Berkeley-AI)

• Microsoft Cognitive Toolkit (graphical)

• PyTorch (python, GPU)

• Theano, DeepLearning4j, Appache Mxnet, 
Caffe2, Torch, Chainer, Dlib, 
Paddlepaddle,

• Matalb: e.g. https://www.mathworks.com/matlabcentral/fileexchange/59223-convolution-

neural-network-simple-code-simple-to-use
CSC872: PAMI – Kazunori Okada (C) 2025 62
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CSC872: PAMI – Kazunori Okada (C) 2025 63

Ethics/Future

• Deep Fake/Google’s Lip Reading 96% success

• We have to continue figuring out how best to integrate it 
in our society

• We can solve problems but don’t know why 
–  Going back to pre-enlightenment before 16thC 

–  People knew they don’t die if they grill meat but did not know why then Pasteur 
discovered the reason 

–  Changing the basic mode of R&D to “solve it first then figure out why” from 
“develop a theory to solve it” 

– e.g., Alpha GO, ChatGPT

• IoT and 5G would increase available data for DL 
exponentially  Chicken race continues

• Induction vs Deduction (Distributed vs Symbolic)

CSC872: PAMI – Kazunori Okada (C) 2025 64

Summary

• Deep Neural Network
– Frame Problem
– Symbol Grounding Problem
– Feature Engineering Problem
– End-To-End Representation Learning
– Distributed Representation
– Auto Encoder
– Convolutional Neural Nets
– CNN Variants
– Recurrent Neural Nets
– Generative Adversarial Nets

• Next: Final Project Presentations
– 5/11 5pm Due for 8 slides ONLY
– Each has 6-minutes-plus-40-seconds presentation, Take a 

note and ask questions on Canvas after!
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