Note:

- **Pecha Kucha** project presentation **next week**
 - Submit your slides two days prior (Dec 6, 5pm) by email
 - Read my email as well as the assignment handout. 12 slides with 40 seconds each. Will be automatically played! You will have NO CONTROL!!

- Presentation in alphabetical order (See email)

- Project Report due in next week (12/10 Thr, 10pm).
 - Two additional days
 - Read the assignment thoroughly
 - Late policy will apply.

Deep Neural Network

CSC 872
Pattern Analysis and Machine Intelligence
Outline

• What is deep learning (DL)?
• Limitation of prior arts in AI/ML
 – Scalability
 – Complexity
 – Frame Problem
 – Symbol Grounding Problem
 – Feature Engineering Problem
• Advent of Learning Theory & Fast Hardware moved us to Probabilistic modeling with Big Data.
• End-to-end Learning with Representation Learning of distributed and hierarchical representation structure is the key to solve the issues!

What is Deep Learning?

• Machine Learning (ML) on Deep Neural Network (Deep NN) DNN
• Deep NN: NN with many stacked layers in various configurations
 – Add more layers to the multilayer perceptron
 – Complex Structure with many more unknown variables
 – More flexible to match with complex problem but
 – More difficult to train/learn
 – Require a lot of data to train/learn
What is Deep Learning?

- Has seen a great recent success
 - Hierarchical Structure
 - Representation Learning
 - Let’s study first the foundation of WHY this works!

Recall Classic AI

- 1st AI Boom: 1960’s
 - Tree-Search (Goal/Utility-based Agents)
 - Games: Puzzles and Chess
 - Can solve interesting problems if we can describe them in a tree-search formulation
 - But did not work for large-scale problems!

- Perceptron
 - First Artificial Neural Network in ML
 - Minsky’s proof for the limit of ANN as a linear classifier
 - Basically did not work for complex problems!
 - Neuro Winer 1970~
Classic AI: 2nd AI Boom (1980’s)

• Let’s incorporate explicit knowledge!
 – Rules with formal logic (Knowledge-based Agents)
 – Chat system (Eliza, 1964) & Expert system (Mycin, 1970)
 – Based on DB of standard templates & logical rules
 – Eventually evolved to Siri and Watson, respectively
 – Work on small-scale problems but

• Need to increase the size of knowledge to make it work for large-scale problems...
 – But the amount of common sense/background required to describe a simple rule is HUGE and COMPLEX!
 – Basically more data did not help to solve large-scale problems ⇐ time-knowledge trade-off

And Neural Network?

• Let’s introduce layered hierarchy!
 – More complex structure to match complex problems?

• Multilayer Feedforward Networks
 – Hidden layers introduced (Func() → Func(Func(Func())))
 – Backpropagation algorithm to solve a learning problem structurally more difficult than perceptron
 – Beat the Minsky’s criticism (Linear → Non-linear)
 – More accurate system → More complex network structure
 – More complex structure → More difficult learning
 – Adapting it to complex & large problem still failed…
Summary: Situations before DL

- Things work with small toy problems but …
- Failed when we apply them to large-scale and difficult/complex problems
- More knowledge/data better?
 - Yes, but failed, could not handle too large a size of knowledge
- More complex structure better?
 - Yes, but failed, could not solve learning problem when making the system structure more complex
- AI Winter (1995~)

How best to describe larger and more complex data then?

- Maybe we were formatting data wrong?
- Fundamental Question posed by the AI
- Knowledge Representation
 - = formal description of information
 - Semantic network (1960~)
 - Cyc (1984~) Knowledge Base of all common knowledge
 - Ontology (1990~)
- Needs
 - Scalability
 - Adaptability
 - Efficiency
Any system design that works better with more data then?

- Yes, probabilistic system!
 - Led to the advent of **statistical ML** since 1990’s
 - Such system can be learned by using statistics of data
 - More-Data = Better-System (Mathematical Proof)
 - **Law of Large Numbers**
 - With larger size data, sample mean converges to true (expected) probability
 - **Central Limit Theorem**
 - With larger size data, sample means follow the normal distribution regardless of data distribution
 - Some success with **Big Data** but still could not solve difficult problems. → Why?

Three Problems of Pre-DL ML/AI

- **Fundamental Problems in Overall Design of Solution Architecture!**
 - **Frame Problem**
 - **Symbol Grounding Problem**
 - **Feature Engineering Problem**

- **Success of Deep NN can be attributed to offering an effective solution to these problems!**
Frame Problem: McCarthyHayes69’

- FOL ignores a lot of possibilities…

- Alpha-Go works because the system only need to think of how to play GO game not worry about raising rents and job prospects…

Frame Problem in General

- Dennett (1994)
 - A battery is on a tray in a cave. But there is also a bomb on the same tray. To save the battery, a robot is sent to bring it out of the cave.
 - R1D1: Exploded. It understood the task of bring out the battery and noticed of the bomb but did not understand that bringing out the tray will also bring out bomb.
 - R1D2: Exploded. Redesign it to consider consequences of action. When reaching the battery, it stopped and never moved, thinking all possible consequences of moving the battery out; would it make the bomb explode? ceiling falls? change the color of walls? and so on, forever.
 - R2D1: NeverMoved. Redesign it to not consider situations that are irrelevant. Before reaching the battery, it stopped and never moved, thinking all possible situations to sort out what is relevant and irrelevant.
Frame Problem in General

- Think Self-Driving: There are infinitely many things that must be considered to solve a task in general domains.
- Often ignore those that are not related to the given task and consider only related information (= frame).
- Selecting a correct frame among all possible things forces you to search among infinitely many choices so it can take forever…
- It tells us that rule-based approach has a fundamental problem.

Semiology-Semiotics: Saussure

- Linguistical relation of labels and concepts
 - **Signified**: Referents or Actual Concepts/Objects
 - **Signifier**: Signs or labels

[Diagram showing compositions of Signifieds creating a new Signified that receives a Signifier]
Symbol Grounding Problem: Harnad ‘90

- Symbolic manipulation of ungrounded / meaningless signs cannot handle unknowns

- But we can imagine this is possible as long as we know horse and stripe...
- Can AI too?

PR/ML: Learning Machine

- PR and ML focused on mathematical techniques to derive best W from given data

\[Data \rightarrow W \]

- But you have to choose what factors you extract from raw data to be used as inputs X & outputs Y (and the choice of f form as well).
Feature Design

- To build an end-to-end ML/PR system, engineers must find a set of factors, appropriate to a given problem, to be extracted as inputs.

\[\text{Data} \rightarrow W \]

\[x \rightarrow f \rightarrow y^{est} \]

- Features = Problem-specific factors to be used as \(X \) extracted from raw data.
- Feature design = act of finding appropriate features.

Feature Engineering Problem

- Feature design turns out to be an art!!!
- Found that the overall performance changes a lot when using different features (sensitive).
- This sensitivity are often larger with feature design than the choice of ML algorithm used.
- Expert developers thus focused on hand-crafting best features to improve performances in ML/PR system research and development (this is Feature Engineering!)
- But this was difficult without any guiding theories and slowing the progress of Big Data ML.
Common Culprit

- Human designer had to decide which aspects in the real world would be used as the factors in formulating problems to be solved.
- System failed when designer’s choice was wrong!

- Frame Problem
 - Designer manually defines problem-specific assumptions/frames
 - Wrong inference → Bomb explode!

- Symbol Grounding Problem
 - Manually designed labels used w/o signified model from data
 - Cannot adapt to new concepts → Do not generalize/scale!

- Feature Engineering Problem
 - Manually designed problem-specific features used
 - Could not handle complex problem! ← Limit of BigData ML

Let **data** decide what factors to be used rather than human designer’s choice!

- ML’s Bottleneck = Feature Design
- Representation Learning
- Data-Driven Feature Design (vs Human Intelligence)
- **Automation of Feature Design**
- Solves
 - Feature Engineering Problem (automate it)
 - Symbol Grounding Problem (add a process to extract signified from data)!
Distributed Representation

- Generalization/Scalability in symbol grounding problem can influences basic rep schemes

- Multilayer NN architecture thus helps to improve those above

Frame Problem?

- Can be solved by using a flexible general-purpose learning machine that can be learned from data and from scratch!
- Do this without assumptions or learn the assumptions themselves from data
- **End-to-End learning** of Deep NN Became possible by the feature learning!
How can we assure flexibility of the Learning Machine though?

- Hierarchical Structure by stacking many hidden layers between inputs and outputs!
- Func() → Func(Func(Func(Func(……))))))
- Exponentially increase # learnable patterns = Scalable & Can tackle more complex prob.
- But more difficult learning! → Next Part
- Also inspired by how human brain processes visual information in our brain.
- Can DNN mimic how babies learn to see?

Biologically-Inspired Hierarchical Representation of Visual Patterns
Summary

- Deep Learning realizes
 - End-to-end learning
 - Representation learning
- Deep NN architecture realizes
 - Distributed Representation
 - Hierarchical Representation
- These design addresses
 - Scalability/Problem-Complexity
 - Frame Problem
 - Symbol Grounding Problem
 - Feature Engineering Problem

Outline

- Deep Neural Network Architecture: Auto Encoder
- Deep Neural Network Architecture: ConvNets
- What made it work: Various learning techniques to avoid overfitting
- ImageNet
- CNN variants
- Software Libraries
- Recurrent Neural Networks
- Generative Adversarial Network
- Ethics/Future
Deep NN is not a new idea…

- Neocognitron (Fukushima, 1979)
 - End-to-end representation learning with distributed hierarchical structure
- But could not train it from data then...

![Neocognitron Diagram](image)

Auto-Encoder: First Step

- Hinton 2006
- NN with the same input/output (predicting self)
- With less number of hidden units, NN can learn/extract compact and essential aspect of the patterns
- Unsupervised Learning

![Auto-Encoder Diagram](image)
Representation Learning: Low Level

- Backprop w/ Gradient Descent…

![Diagram of a neural network with low-level visual features learned from data.](image)

Representation Learning: High Level

- Make it “deep”
- So that it is possible to learn the hierarchy of feature representations from low to high levels…

![Diagram showing the addition of more hidden layers in a neural network.](image)
Google’s Cat (2012)

Pre-train & Fine-tuning

- Final classifier: stacking the deep auto encoder and a fully-connected multilayer feedforward network
- **Pre-training**: unsupervised learning of autoencoder
- **Fine-tuning**: supervised learning of fully-connected multilayer network by backpropagation
- Alternative to stacked auto encoder
 - Stacked restricted Boltzmann machine
 - Stacked denoise autoencoders
 - Stacked kernel PCA/semi-supervised embedding/ISA etc
Convolutional Neural Net (CNN)

- LeNet (1989) consists of
 - Convolution Layer
 - Transfer function (ReLU) Layer
 - Pooling Layer
 - Fully connected Layer

Convolution

- Local filter is scanned over images to compute a response by computing the sum of pairwise products
- Stride: skipping the interval of scans
- Results goes through transfer function (Sigmoid/ReLU)
CNN – Convolution

Filter 1

stride=1

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

6 x 6 image

Property 2

Source of the slide: http://219.216.82.193/cache/8/03/speech.ee.ntu.edu.tw/43149163c97eb6be7590e3d8de445a67/CNN.pdf

CNN – Convolution

Filter 2

stride=1

<table>
<thead>
<tr>
<th>-1</th>
<th>1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

6 x 6 image

Do the same process for every filter

Feature Map

4 x 4 image

Source of the slide: http://219.216.82.193/cache/8/03/speech.ee.ntu.edu.tw/43149163c97eb6be7590e3d8de445a67/CNN.pdf
Max Pooling and Sub-Sampling

- Reducing resolution by replacing a patch with
 - Random sample among 2x2: Sub Sampling
 - Average value of 2x2: Average Pooling
 - Maximum of 2x2: Max Pooling

Stacking Layers

- A new image
- Smaller than the original image
- The number of the channels is the number of filters

Can repeat many times
Softmax Unit

- Used for output unit to convert values into a probability distribution

\[\sigma(z)_j = \frac{e^{z_j}}{\sum_{k=1}^{K} e^{z_k}} \quad j = 1, 2, \ldots, K \]

Source of the slide: http://219.216.82.193/cache/speech.ee.ntu.edu.tw/43149163d87ebdb7590a3d8da45a67/CNN.pdf

Figures from: Ruiyun Yu, Northeastern University
Making the Learning of CNN work?

- Learning is essentially done by the backpropagation algorithm from last lecture, but it got more difficult when making NN architecture deeper and more complicated.
- More variables = Tend to overfit
- Break Through: find strategies to sabotage/regularize the learning process, adding noises and breaking connections lead to robustness to avoid overfit
- Longer time still required to learn with more variables
- Advent of GPU: improving throughput and making it possible to do massive learning required to solve large-scale/complex prob.

Stochastic Gradient Descent

- Recall batch vs online perceptron delta rule derived by the gradient descent algorithm
- Stochastic Gradient Descent
 - Online Gradient Descent
 - Approximation of the batch version
 - Converges better because of high frequency of weight updates
 - Minibatch GD: randomly sample a subset of small batch from data then sequentially perform gradient descent
Vanishing Gradient Problem

- Backpropagation propagates gradient of errors from output layers to input layers using the chain rule (product of probs)
- Sigmoid as transfer function: gradient [0,1]
- So as we get closer to the input layer, propagated error become a product of many less-than-1 values → exponentially get smaller!
- Stop changing weights = Stop learning
- Shadowing
 - Deeper the net, more chance of having gradient vanished!
 - Sigmoid won’t work deep!

Rectified Linear Units (ReLU)

- max(0,y)
- Gradient is the constant (1) for y > 0 so it would not vanish by going through many layers back
- More efficient (no exp comp)
- Sparsity (y<0) → Regularization = Avoid overfitting
Why Max Pooling?

- Pooling creates overlapping receptive fields
- Max Pooling is most commonly used
 - Shift Invariants: slight misplacement accommodated
 - Additional non-linearity: more expressive representation
 - Efficiency: computes faster than average pooling

Dropouts

- Randomly ignore neurons in hidden layers for updating during learning
- This acts as practically-efficient regularizer for deep learning
 - Adding noise to learning process for robustness
 - Sparse activation of units during the learning
 - Thus avoid overfitting
 - Also efficient to do
Backpropagation for CNN’s End-to-End Learning

- Use the least sum of squares or other cost func.
- Solve it by stochastic gradient descent
 - MaxPooling layers do not involve learnable weights
 - Conv layers’ weights updated by a convolution like procedure based on backpropagation through conv process
- **Transfer Learning**: reuse convolutional feature maps trained with a large dataset (pretrain: make take a long time!) and fine-tune the fully-connected network part by backpropagation (quick)

ImageNet Challenge 2012

- Scene analysis: most difficult computer vision task
- ~14 million labeled images, 20k classes
- Image gathered from internet
- Human labels via Amazon Turk
- Challenge: 1.2 million training images with 100 classes
Alex Net

ImageNet Challenge 2012

- Similar framework to LeCun’98 but:
 - Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
 - More data (10^6 vs. 10^5 images)
 - GPU implementation (50x speedup over CPU)
 - Trained on two GPUs for a week
 - Better regularization for training (DropOut)

CNN Variants: Getting deeper...

- **VGGNet**
 - Symonyan&Zisserman 2015, ILSVRC-2014 Runnerup
 - Smaller 3x3 Conv filters
 - Deeper network: 16~19 layers (AlexNet was 8 layers)

- **GoogleNet**
 - Szegedy 2015, ILSVRC-2014 Winner
 - Deeper: 22 layers
 - Focused on computational efficiency

- **ResNet**
 - He 2015, ILSVRC-2015 Winner
 - Extremely deep: 152 layers
 - Skip connections → Residual mapping
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

First CNN-based winner

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ZFNet: Improved hyperparameters over AlexNet

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

- **Deeper Networks**
 - **152 layers**
 - **ILSVRC’15 ResNet**
 - **ILSVRC’14 GoogleNet**
 - **ILSVRC’14 VGG**
 - **ILSVRC’13**
 - **ILSVRC’12 AlexNet**
 - **ILSVRC’11**
 - **ILSVRC’10**

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

- **“Revolution of Depth”**
 - **152 layers**
 - **ILSVRC’15 ResNet**
 - **ILSVRC’14 GoogleNet**
 - **ILSVRC’14 VGG**
 - **ILSVRC’13**
 - **ILSVRC’12 AlexNet**
 - **ILSVRC’11**
 - **ILSVRC’10**

Better than human?

- Captcha?

<table>
<thead>
<tr>
<th></th>
<th>Top 5 error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imagenet 2011 winner (not CNN)</td>
<td>25.7%</td>
</tr>
<tr>
<td>Imagenet 2012 winner</td>
<td>16.4% (Krizhevsky et al.)</td>
</tr>
<tr>
<td>Imagenet 2013 winner</td>
<td>11.7% (Zeiler/Clarifai)</td>
</tr>
<tr>
<td>Imagenet 2014 winner</td>
<td>6.7% (GoogleLeNet)</td>
</tr>
<tr>
<td>Baidu Arxiv paper:2015/1/3</td>
<td>6.0%</td>
</tr>
<tr>
<td>Human: Andrej Karpathy</td>
<td>5.1%</td>
</tr>
<tr>
<td>MS Research Arxiv paper: 2015/2/6</td>
<td>4.9%</td>
</tr>
<tr>
<td>Google Arxiv paper: 2015/3/2</td>
<td>4.8%</td>
</tr>
</tbody>
</table>

Recurrent Neural Network: RNN

- Modeling and prediction of sequential data
 - Speech
 - Text
 - Video
- Recurrence unfolded over time → Deep Structure
- Suffers from Vanishing & Exploding Gradient
 - Remedy 1: Long Short-Term Memory (LSTM)
 - Remedy 2: Gated Recurrent Unit (GRU)
 - Replace standard units by them
Encoder-Decoder Architecture

- Encoder: Texts → Thoughts
- Decoder: Thoughts → Texts
- Machine Translation:
 - Train an encoder with English
 - Train a decoder with Spanish
 - Concatenate them → English to Spanish Translation

- Video Captioning:
 - Train an encoder with Video (Video → Concepts)
 - Train a decoder with English (Concepts → Texts)
 - Concatenate them → Video to Text Captions!

Generative Adversarial Network: GAN

- Goodfellow 2014
- Generative model for unsupervised learning
- Two neural networks: one generative and the other discriminative compete each other game theoretically.
 - Generative network tries to fool the discriminative network.
 - Discriminative network tries to distinguish the real ones from the fake ones
Image generated by GANs

Sample shoes images from Zappos.com [Yu and Grauman 2014]

Random image samples from Generator G(z) DCGAN [Radford et al. 2015]

Software Library

- Tensor Flow (from Google Brain)
- Keras (high level Python API)
- Caffe (from Berkeley-AI)
- Microsoft Cognitive Toolkit (graphical)
- PyTorch (python, GPU)
- Theano, DeepLearning4j, Appache Mxnet, Caffe2, Torch, Chainer, Dlib, Paddlepaddle,
- **Matlab**: e.g. https://www.mathworks.com/matlabcentral/fileexchange/59223-convolution-neural-network-simple-code-simple-to-use
Ethics/Future

- Deep Fake/Google’s Lip Reading 96% success
- We have to continue figuring out how best to integrate it in our society
- We can solve problems but don’t know why
 - Going back to pre-enlightenment before 16°C
 - People knew they don’t die if they grill meat but did not know why then Pasteur discovered the reason
 - Changing the basic mode of R&D to “solve it first then figure out why” from “develop a theory to solve it”
 - e.g., Alpha GO
- IoT and 5G would increase available data for DL exponentially \(\rightarrow\) Chicken race continues
- Induction vs Deduction (Distributed vs Symbolic)

Summary

- Deep Neural Network
 - Frame Problem
 - Symbol Grounding Problem
 - Feature Engineering Problem
 - End-To-End Representation Learning
 - Distributed Representation
 - Auto Encoder
 - Convolutional Neural Nets
 - CNN Variants
 - Recurrent Neural Nets
 - Generative Adversarial Nets
- Next: Final Project Presentations
 - 12/6 5pm Due for 12 slides ONLY
 - Each has 8-minute presentation, Take a note and ask questions on iLearn after!