

Outline

- What is deep learning (DL)?
- Limitation of prior arts in AI/ML
 - Scalability
 - Complexity
 - Frame Problem
 - Symbol Grounding Problem
 - Feature Engineering Problem
- Advent of Learning Theory & Fast Hardware moved us to Probabilistic modeling with Big Data (DS/DE).
- End-to-end Learning with Representation Learning of distributed and hierarchical representation structure is the key to solve the issues!

```
CSC872: PAMI – Kazunori Okada (C) 2025
```


Any system design that works better with more data then?

- Yes, probabilistic system!
 - Led to the advent of statistical ML since 1990's
 - Such system can be learned by using statistics of data
 - More-Data = Better-System (Mathematical Proof)
 - Law of Large Numbers
 - With larger size data, sample mean converges to true (expected) probability
 - Central Limit Theorem
 - With larger size data, sample means follow the normal distribution regardless of data distribution
 - Some success with **Big Data** but still could not solve difficult problems. → Why?

CSC872: PAMI – Kazunori Okada (C) 2025

Let data decide what factors to be used rather than human designer's choice!

- ML's Bottleneck = Feature Design
- Representation Learning
- Data-Driven Feature Design (vs Human Intelligence)
- Automation of Feature Design
- Solves
 - Feature Engineering Problem (automate it)
 - Symbol Grounding Problem (add a process to extract signified from data)!

How can we assure flexibility of the Learning Machine though?

- Hierarchical Structure by stacking many hidden layers between inputs and outputs!
- Func() → Func(Func(Func(Func(.....))))))))))))))))))))))))))))))
- Exponentially increase # learnable patterns
 = Scalable & Can tackle more complex prob.
- But more difficult learning! → Next Part
- Also inspired by how human brain processes visual information in our brain.
- Can DNN mimic how babies learn to see?

CSC872: PAMI – Kazunori Okada (C) 2025

Making the Learning of CNN work?

- Learning is essentially done by the **backpropagation** algorithm from last lecture, but it got more difficult when making NN architecture deeper and more complicated
- More variables = Tend to overfit
- Break Through: find strategies to sabotage/regularize the learning process, adding noises and breaking connections lead to **robustness to avoid overfit**
- Longer time still required to learn with more variables
- Advent of GPU: improving throughput and making it possible to do massive learning required to solve large-scale/complex prob.

CSC872: PAMI – Kazunori Okada (C) 2025

Backpropagation for CNN's End-to-End Learning

- Use the least sum of squares or other cost func.
- · Solve it by stochastic gradient descent
 - MaxPooling layers do not involve learnable weights
 - Conv layers' weights updated by a convolution like procedure based on backpropagation through conv process
- **Transfer Learning:** reuse convolutional feature maps trained with a large dataset (pretrain/freezing: may take a long time!) and finetune the fully-connected network part by backpropagation (quick)

CSC872: PAMI – Kazunori Okada (C) 2025

Better than hun	etter than human?	
Captcha?		
	Top 5 error	
Imagenet 2011 winner (not CNN)	25.7%	
Imagenet 2012 winner	16.4% (Krizhesvky et al.)	
Imagenet 2013 winner	11.7% (Zeiler/Clarifai)	
Imagenet 2014 winner	6.7% (GoogLeNet)	
Baidu Arxiv paper:2015/1/3	6.0%	
Human: Andrej Karpathy	5.1%	
MS Research Arxiv paper: 2015/2/6	4.9%	
Google Arxiv paper: 2015/3/2	4.8%	
SC872: PAMI – Kazunori Okada (C) 2025	Matsuo, 2015 https://www.ipa.go.jp/files/000048577.pdf	

