
1

Note:

• Final Session: Complete FP#3 on LDA and submit
your code and results (screen shots/short doc
report) via Canvas by midnight tomorrow!

• Project report due in two weeks (Plus 2 days)

• Project presentation in two weeks
– Submit your slides two days prior (5/11, 5pm) by email

– More information in Canvas now. Please read it.

CSC872: PAMI – Kazunori Okada (C) 2025 1

CSC872: PAMI – Kazunori Okada (C) 2025 2

Artificial Neural Network

CSC 872

Pattern Analysis and Machine Intelligence

1

2

2

3

Artificial Neural Network (ANN)

• An information processing paradigm inspired by
biological nervous system such as human brain

• Large number of highly interconnected processing
elements (neurons) working together

• Learn from examples to adapt to new situation

• Various connections/learning methods for various
applications

CSC872: PAMI – Kazunori Okada (C) 2025

CSC872: PAMI – Kazunori Okada (C) 2025 4

Application

• Pattern Classifications
– Object & Speech recognition
– Handwritten letter recognition
– Credit scoring

• Control
– Robot
– Autonomous vehicle

• Time series modeling
– S&P 500 Index prediction, LBS capital management, FL
– Natural gas price, Northern Natural Gas, NE
– Jury summoning prediction, Montgomery Courthouse, PA

• Optimization
– Multiprocessor scheduling
– VLSI placement

• Recent Apps Includes Self-Driving and Go-game etc

3

4

3

CSC872: PAMI – Kazunori Okada (C) 2025 5

Basic Types

• Feed-forward Network

• Self-Organizing Map

• Hopfield Network

• Recurrent Network

• Stochastic Network

• Radial Basis Function Network

• Support Vector Machine

• Convolutional Neural Network (DL)

CSC872: PAMI – Kazunori Okada (C) 2025 6

Basic Types

• Feed-forward Network (maps input to outputs)

• Self-Organizing Map

• Hopfield Network

• Recurrent Network

• Stochastic Network

• Radial Basis Function Network

• Support Vector Machine

• Convolutional Neural Network (DL)

5

6

4

CSC872: PAMI – Kazunori Okada (C) 2025 7

History

• 1943: McCulloch-Pitts Neuron Model
• 1949: Hebbian Learning (Hebb)
• 1958: Perceptron (Rosenblatt)
• 1969: Critique of Perceptron (Minsky)
• 1976: Adaptive Resonance Theory (ART) (Grossberg)
• 1982: Hopfield Network (Hopfield: associative)
• 1985: Boltzmann machine (Hinton/Sejnowski, simulated

annealing)
• 1986: Multilayer Perceptron / Backpropagation

(Rumelhart/McClelland)
• 1989: Self-Organizing Map (Kohonen)
• 1995: Support Vector Machine (Vapnik)
• 1995: AdaBoost (Freund, Schapire)
• Today: Deep learning

CSC872: PAMI – Kazunori Okada (C) 2025 8

Neuron Model

• McCulloch-Pitts Model

x1

xj

xN

w1

wj

wN





z f(z) y
...
...

Bias

Input

Output

Transfer function

Weighted linear combination of
inputs: z = j

N wjxj + 

𝑦 = 𝑓 𝑧 = 𝑓(𝑤ଵ𝑥ଵ + ⋯ + 𝑤௝𝑥௝ + ⋯ + 𝑤ே𝑥ே + 𝜃)

7

8

5

CSC872: PAMI – Kazunori Okada (C) 2025 9

Transfer (Activation) Function

discrete continuous

thresholding

Bounded in [0 1]

𝑦 = 𝑓 𝑧 = 𝑓(𝑤ଵ𝑥ଵ + ⋯ + 𝑤௝𝑥௝ + ⋯ + 𝑤ே𝑥ே + 𝜃)

CSC872: PAMI – Kazunori Okada (C) 2025 10

Perceptron (1958)

• A simple single-neuron network

• Use the hard limit (threshold)
transfer function

• Change the weight by an amount
proportional to the difference
between the desired output Di and
the actual output yi

(Perceptron learning rule)

x1 xj xN

f(z)

xb =1

y=1 or 0

w1 wj wN
wb = 𝜃

… …

𝑧 = ෍ 𝑤௝𝑥௝ + 𝜃
ே

௝ୀଵ

= 𝒘𝒕𝒙 + 𝜃

= 𝜃 𝒘𝒕 1
𝒙

𝑤௝ାଵ = 𝑤௝ + ∆𝑤௝

∆𝑤௝ = η(𝐷௜ − 𝑦௜)𝑥௝

9

10

6

CSC872: PAMI – Kazunori Okada (C) 2025 11

Perceptron

• A simple single-neuron network

• Use the hard limit (threshold)
transfer function

• Change the weight by an amount
proportional to the difference
between the desired output Di and
the actual output yi

(Perceptron learning rule)

x1 xj xN

f(z)

xb =1

y=1 or 0

w1 wj wN
wb

… …

𝑧 = ෍ 𝑤௝𝑥௝ + 𝜃
ே

௝ୀଵ

= 𝒘𝒕𝒙 + 𝜃

= 𝜃 𝒘𝒕 1
𝒙

𝑤௜ାଵ = 𝑤௜ + ∆𝑤௜

∆𝑤௜ = η(𝐷௜ − 𝑦௜)𝑥௜

How does it work?
How do we get the learning rule?
For what should we use this for?

Understand it as MLE=LS regression
using Gradient Descent …

CSC872: PAMI – Kazunori Okada (C) 2025 12

Review: Regression

• Assume a regression model: y = f(x;w) + e ~ N(0,2)

• We can fit a function f(x;w) to data {(Xi,Di)} by …

• MLE: find w that maximizes P(Y|X,W) = N(f(x;w),2)

• LS: find w that minimizes the sum-of-square errors

• When f(x;w) is simple we have

a closed-form solution for w

• Otherwise we use Gradient-Descent

1940 1960 1980 2000 2020
2000

3000

4000

5000

6000

7000

World Population

P
op

ul
a

tio
n

(M
ill

io
n

)

Year

𝒘 = argmin௪ ෍ (𝐷௜ − 𝑓(𝒙𝒊; 𝒘))ଶ
ே

௜ୀଵ

⇔
డ

డ𝒘
∑ (𝐷௜ − 𝑓 𝒙𝒊; 𝒘)ଶ

௜ = 0

11

12

7

CSC872: PAMI – Kazunori Okada (C) 2025 13

Review: Gradient-Descent

• Negative gradient as an iterative step

w

E(w)

w0w0

step0: wold
Ã w0(initialization)

step1: wnew Ã wold
¡ ´

@E(w)

@w

¯̄
¯̄
¯
w=wold

step2: wold
Ã wnew

CSC872: PAMI – Kazunori Okada (C) 2025 14

Multivariate Gradient-Descent

• Multivariate case: w = (w1,..,wM)

Gradient vector
(points to the
direction of
steepest ascent!)

where wj is the
jth weights of w
vector

step0: 𝒘௢௟ௗ ← 𝒘଴ (initialization)

step1: 𝒘௡௘௪ ← 𝒘௢௟ௗ − 𝜂𝛻𝐸(𝒘௢௟ௗ)

step2: 𝒘௢௟ௗ ← 𝒘௡௘௪

𝛻𝐸 𝒘 =

డ
డ௪భ

ா(𝒘)

డ
డ௪మ

ா(𝒘)

⋮
డ

డ௪ಾ
ா(𝒘)

𝑤௝ ← 𝑤௝ − 𝜂 డ
డ௪ೕ

ா(𝒘)

13

14

8

CSC872: PAMI – Kazunori Okada (C) 2025 15

STOP: Simplest case: linear
transfer
• Linear perceptron: y = wTx

• Same as linear regression!

• MLE=LS: minimize the sum-of-
square errors by gradient descent

Gradient descent rule

With the sum-of-
square errors to be
minimized

x1 xj xN

f(z)

xb =1

y=1 or 0

w1 wj wN
wb = 𝜃

… …𝒘 = argmin௪ ෍ (𝐷௜ − 𝒘௧𝒙௜)ଶ
ே

௜ୀଵ

𝑤௝ ← 𝑤௝ − 𝜂డா(𝒘)
డ௪ೕ

𝐸 𝑤 = ෍ (𝐷௜ − 𝒘௧𝒙௜)ଶ
ே

௜ୀଵ

CSC872: PAMI – Kazunori Okada (C) 2025 16

Simplest case: Do Calculus

Delta: difference between
desired and actual outputs

Neglect 2This is actually the perceptron leaning rule!!!

x1 xj xN

f(z)

xb =1

y=1 or 0

w1 wj wN
wb = 𝜃

… …

𝒘 = argmin௪ ෍ (𝐷௜ − 𝒘௧𝒙௜)ଶ
ே

௜ୀଵ

𝑤௝ ← 𝑤௝ − 𝜂డா(𝒘)
డ௪ೕ

𝐸 𝑤 = ෍ (𝐷௜ − 𝒘௧𝒙௜)ଶ
ே

௜ୀଵ

డா(𝒘)
డ௪ೕ

= ෍ 2(𝐷௜ − 𝒘௧𝒙௜) డ
డ௪ೕ

(𝐷௜ − 𝒘௧𝒙௜)
௜

= −2 ෍ 𝛿௜
డ

డ௪ೕ
𝒘௧𝒙௜;

௜
𝛿௜ = 𝐷௜ − 𝒘௧𝒙௜

= −2 ෍ 𝛿௜
డ

డ௪ೕ
෍ 𝑤௝𝑥௝

௝

௜

= −2 ෍ 𝛿௜𝑥௝
௜

𝛿௜ ← 𝐷௜ − 𝒘௧𝒙௜

𝑤௝ ← 𝑤௝ + 2𝜂∑ ఋ೔௫ೕ೔

15

16

9

CSC872: PAMI – Kazunori Okada (C) 2025 17

Why Perceptron?

• Perceptron learning rule is also known as
– Delta rule
– Windrow Hoff rule
– LMS rule

• But linear regression has a closed-form soln.
Why GD?

• Advantage of iterative GD
– Biologically more plausible
– More easily parallelizable
– Efficient when there are many feature attributes (large m)
– When many feature attributes are used, it becomes difficult to do

matrix inversion for the direct closed-form solution

• Disadvantage of iterative GD
– Hard to choose good learning rate
– You cannot be sure when GD stops (irregular run time speed)
– Local minimum!

𝛿௜ ← 𝑦௜ − 𝒘௧𝒙௜

𝑤௝ ← 𝑤௝ + 𝜂𝛿௜𝑥௝

CSC872: PAMI – Kazunori Okada (C) 2025 18

Batch / Online Learning Algorithm

Batch Algorithm: use all samples at once
1) Randomly initialize weights w1,..,wm,wb

2) Get supervised data set and append 1

3) For all training samples (i=1 to N): accumulate
error for each sample i

4) For all features (j=1toM): update each weight wj

by the delta rule

5) Loop to (3) unless i
2 stops improving

Online Algorithm: one sample at a time
– Each time you observe a sample (x, y)

– Update the weights with the error only from the
sample

x1 xj xN

f(z)

xb =1

y=1 or 0

w1 wj wN
wb = 𝜃

… …
𝛿௜ ← 𝑦௜ − 𝒘௧𝒙௜

𝑤௝ ← 𝑤௝ + 𝜂∑ ఋ೔௫ೕ೔

𝑤௝ ← 𝑤௝ + 𝜂𝛿௜𝑥௝

17

18

10

CSC872: PAMI – Kazunori Okada (C) 2025 19

Perceptron for Classification

• We can do a linear regression

• Do classification by threshold

– 0 if y · ½

– 1 if y > ½

• Any problem with this?

Blue = y

Green = classification

CSC872: PAMI – Kazunori Okada (C) 2025 20

Problem is…

Least squares fit is useless This is much better classification
but it is not a least squares fit

So let’s fit a function (green)
like this!!!

Solution:

Instead of y = wTx
We fit y = g(wTx)

Where g(z) is a squashing transfer
function 𝑔 𝑧 : ℝ → (0,1)

19

20

11

CSC872: PAMI – Kazunori Okada (C) 2025 21

Perceptron with Sigmoid function

• Popular example of the
squashing function

• With nice property

• We want to find weights w that
minimizes

ଵ
ଵାୣ୶୮ (ି௭)

𝐸 𝑤 = ෍ (𝐷௜ − 𝑔(𝒘௧𝒙௜))ଶ
ே

௜ୀଵ

CSC872: PAMI – Kazunori Okada (C) 2025 22

Learning Rule with Sigmoid

𝑦 = 𝑔(𝒘௧𝒙)
డா(௪)

డ௪ೕ
= ෍ డ

డ௪ೕ
(𝐷௜ − 𝑔(𝑤௧𝑥௜))ଶ

ே

௜ୀଵ

= ෍ ଶ ஽೔ି௚ ௪೟௫೔ ି
డ

డ௪ೕ
𝑔(𝑤௧𝑥௜)

ே

௜ୀଵ

= −2 ෍ ஽೔ି௚ ௪೟௫೔ ௚ᇱ(௪೟௫೔)
డ

డ௪ೕ
∑ ௪ೕ௫೔ೕೕ

ே

௜ୀଵ

= −2 ෍ ఋ೔௚(௪೟௫೔)(ଵି௚(௪೟௫೔))௫೔ೕ

ே

௜ୀଵ

𝑤௝ ← 𝑤௝ + 𝜂 ෍ 𝛿௜𝑔௜(1 − 𝑔௜)𝑥௜௝
௜

𝛿௜ = 𝐷௜ − 𝑔௜

𝑔௜ = 𝑔(𝒘௧𝒙௜)

21

22

12

CSC872: PAMI – Kazunori Okada (C) 2025 23

Limitation of Perceptron

• Perceptron provides a linear discriminant function

Perceptron
cannot learn
to classify
this case…

CSC872: PAMI – Kazunori Okada (C) 2025 24

Multi-Layer Perceptron (MLP)

23

24

13

25

MLP: one-hidden layer net

Hidden Layer

Output Layer

Input Layer

CSC872: PAMI – Kazunori Okada (C) 2025

26

Backpropagation Algorithm

= Iterative steepest descent!!!

CSC872: PAMI – Kazunori Okada (C) 2025

25

26

14

CSC872: PAMI – Kazunori Okada (C) 2025 27

Backpropagation Learning Rule

• In any ANN book + MATLAB NN Toolkit

• How to actually derive from theory
– Same as the regular GD but E(w) is now an indirect function of

weights in the hidden layer(s)

– Therefore use “chain rule” of calculus for deriving the update
rules for weights in different (nested) layers

• How to use
– Phase 1: Calculate sum-of-square errors (squared differences

between the desired <Di> and actual network outputs <yi>)

– Phase 2: Update weight from back to front (hence
backpropagation) by computing the partial derivatives using the
chain rule

CSC872: PAMI – Kazunori Okada (C) 2025

28

Backpropagation Issues

• It is GD! So it may converge at local minimum

• You must find right network topology and structure (number
of hidden layers and nodes) by trial & error

• Setting the right learning rate is a subtle art!
– TOO SMALL: it may take long time for convergence
– TOO LARGE: it may diverge and/or oscillate!
– This is a reason why we like iterative methods without learning rate

(e.g., EM, Mean Shift)

• Many methods to make GD work better
– Momentum: use past information
– Newton’s Method: use quadratic form with 2nd derivative
– Conjugate Gradient: quadratic assumption w/ only 1st derivative

27

28

15

CSC872: PAMI – Kazunori Okada (C) 2025 29

Summary

• Artificial Neural Network
– Types of Various ANNs
– Neuron Model
– Linear Perceptron
– Delta Learning Rule
– Sigmoid Perceptron
– Limitation of Perceptron
– Multi-Layer Perceptron
– Back propagation

• Next: Deep Neural Networks
– Last lectures.
– No in-class exercises.

29

