Note:

» Final Session: Complete FP#3 on LDA and submit
your code and results (screen shots/short doc
report) via Canvas by midnight tomorrow!

* Project report due in two weeks (Plus 2 days)

* Project presentation in two weeks
— Submit your slides two days prior (5/11, 5pm) by email
— More information in Canvas now. Please read it.

CSC872: PAMI — Kazunori Okada (C) 2025

1

Artificial Neural Network

CSC 872
Pattern Analysis and Machine Intelligence

CSC872: PAMI — Kazunori Okada (C) 2025

2

Artificial Neural Network (ANN)

« An information processing paradigm inspired by
biological nervous system such as human brain

« Large number of highly interconnected processing
elements (neurons) working together

* Learn from examples to adapt to new situation

« Various connections/learning methods for various
applications

Hidden Layer
Input Layer Output Layer

CSC872: PAMIT=

3

Application

Pattern Classifications

— Object & Speech recognition

— Handwritten letter recognition

— Credit scoring
+ Control

— Robot

— Autonomous vehicle
Time series modeling

— S&P 500 Index prediction, LBS capital management, FL
— Natural gas price, Northern Natural Gas, NE

— Jury summoning prediction, Montgomery Courthouse, PA
Optimization

— Multiprocessor scheduling

— VLSI placement

» Recent Apps Includes Self-Driving and Go-game etc

CSC872: PAMI — Kazunori Okada (C) 2025

4

e

Basic Types ;0%

(< > %
>

£
P

* Feed-forward Network

« Self-Organizing Map MW% VALY
» Hopfield Network
 Recurrent Network Mide] Selestien

Stochastic Network

Radial Basis Function Network

+ Support Vector Machine b4t
» Convolutional Neural Network (DL)

CCCCCCCCCC — Kazunori Okada (C) 2025

5

Basic Types @,ﬂiﬂ @

° @(maps input to outputs)

« Self-Organizing Map & /gl:f(x)«@

* Hopfield Network MMWQ M
Recurrent Network

Stochastic Network

Radial Basis Function Network

Support Vector Machine

Convolutional Neural Network (DL)

CCCCCCCCCC — Kazunori Okada (C) 2025

6

History

VAN

* 1943: McCulloch-Pitts Neuron Model 79{

* 1949: Hebbian Learning (Hebb)

* 1958: Perceptron (Rosenblatt)

. 1969: Critique of Perceptron (Minsky) — Nawo Wit

+ 1976: Adaptive Resonance Theory (ART) (Grossberg)

» 1982: Hopfield Network (Hopfield: associative)

+ 1985: Boltzmann machine (Hinton/Sejnowski, simulated

annealing)
+ (1986:/Multilayer Perceptron / Backpropagati%rg% @

Rumelhart/McClelland) S
+ 1989: Self-Organizing Map (Kohonen)
+ 1995: Support Vector Machine (Vapnik)
+ 1995: AdaBoost (Freund, Schapire)
« Today: Deep learning Sy bpe

CSC872: PAMI — Kazunori Okada (C) 2025

7

fofivx
Neuron Model L_%WJ

Output

Dendrites (Carry
S i)

&g Q@
Synapse size changes in

response to learning

y=f(2)=fwixg ++wjx; + -+ wyxy +0)

Weighted linear combination of
inputs: z= 3N wyx; + 6

CSC872: PAMI — Kazunori Okada (C) 2025

T
« McCulloch-Pitts Model ([943) ——
: P@WMW Syy, asThe We:]]fk o knab (aHm
npu Transfer function il
X] acﬁv ! F i & Aron
: e { S /neum WV\SMRM Axoa) .
. i AXGM ;\t&dwh) /;Ja;dnle heuro W_(_],(]TB‘VL
X 3 cally, o
j Y ety sl

8

Transfer (Activation) Function

discrete continuous
y y Toof(
Hard Limit: y =0 if z<0 1 Linear:
1 i e - 7
y=1 if z>=0 , y=z
+°9 (.
. 0 i1 C
thresholding J el
g Y 4
: : Y Fm;%w . W 1
Symmetrical: y=-1 if z<0 1 Log-Sigmoid: —p =
Hard Limit y=+1 1if z>=0 . y =1/(1+e?) -_'6 >
0 ‘

-1

Voa

Bounded in [0 1]
y=f(2)=f(wixg ++wjx; + - +wyxy +0)

CSC872: PAMI — Kazunori Okada (C) 2025

9

Perceptron (1958) E(YUD’»)S;,

+ A simple single-neuron network y=1or0
+ Use the hard limit (threshold) ¥ = F(x w)
transfer function

+ Change the weight by an amount
proportional to the difference

w :
between the desired output D5 and
the actual output y; @ I

N
(Perceptron learning rule) z= Z w;xj + 0
j=1
Wis1 = wj + Aw; = wtx +6
, = D 1
Awj=nDi=ydx | =6 wi|]

residusl el < &\‘M

CSC872: PAMI — Kazunori Okada (C) 2025

10

Perceptron

« A simple single-neuron network y=1or0
. lea tha hard limit (thrachnld) t

{
(How does it work?

! How do we get the learning rule?
i For what should we use this for?

Understand it as MLE=LS regression 9

using Gradient Descent ...

Aw; =n(D; —yi)Xx; =[p wt] [;J

CSC872: PAMI — Kazunori Okada (C) 2025

</

11

Review: Regression

Assume a regression model: y = f(x;w) + e ~ N(0,5?)
We can fit a function f(x;w) to data {(X,D;)} by ...
MLE: find w that maximizes P(Y|X,W) = N(f(x;w),c?)
LS: find w that minimizes the sum-of-square errors

N
w = argmin,, z (D; — f(x;; W))Z y World Population
i=1 7000

a 2 < 6000
e =XD;—flxzw)* =0 £
ow < 5000 f
§4OOG /
When f(x;w) is simple we have " 00
a closed-form solution for w T s

Otherwise we use Gradient-Descent

CSC872: PAMI — Kazunori Okada (C) 2025

12

Review: Gradient-Descent

* Negative gradient as an iterative step

stepO: wqg < wo(initialization)

O0E(w)
ow

Stepl Wnew — Wold - (7
W=Wold
step2: Wold = Wnew

\ E(w)

CSC872: PAMI — Kazunori Okada (C) 2025

13

Multivariate Gradient-Descent

* Multivariate case: w = (w,,..,w,)
step0: w,q < Wy (initialization)
stepl: Wyep < Woig —MVE(Woiq)

step2: Wyia ¢ Whew

d

awEW) Gradient vector
9 (points to the

_ |z EW
VE(w) = [dw: direction of

P steepest ascent!)

wat W)

M

where w; is the
j™" weights of w
vector

d

CSC872: PAMI — Kazunori Okada (C) 2025

14

STOP: Simplest case: linear
transfer Y=z

» Linear perceptron: y = w'x [ﬁco) yv=1or0
+ Same as linear regression!

* MLE=LS: minimize the sum-of-
square errors by gradient descent
Eovy=

N

OE(w)
aWj

W; &< wWj — 1 Gradient descent rule

N
= E ty)2 With the sum-of-
i=1 square errors to be
minimized
CSC872: PAMI — Kazunori Okada (!

a (C) 2025

15

Simplest case: Do Calculus

N

w = argmin,, z (D; — wtx;)?
i=1

JE(w)

ow;j

E(w) =) 0-wx)?

W] (—W] n

aE(W) Z 2(D; —w xl) (D -w xl)
// Delta: difference between
=-2 Z (Slaw ~—wix;; 8 = D; —w'x; desired and actual outputs
,W/% Vx?‘z*‘*"ﬂ'x 7~ WN 5(:.
= —ZZ Z Wi x
fow; 7 6,: « Di — thi
- _ZZ 8.x; . . .
01 L W e W + 21%; 8ix;
I
This is actually the perceptron leaning rule!!! Neglect 2

CSC872: PAMI — Kazunori Okada (C) 2025

16

Why Perceptron?

» Perceptron learning rule is also known as

— Delta rule S: —v: —wtx:
— Windrow Hoff rule L Yi L
— LMS rule wj < wj +16;X;

» But linear regression has a closed-form soln.
Why GD?

« Advantage of iterative GD
Biologically more plausible
More easily parallelizable
Efficient when there are many feature attributes (large m)
When many feature attributes are used, it becomes difficult to do
matrix inversion for the direct closed-form solution
» Disadvantage of iterative GD
— Hard to choose good learning rate
— You cannot be sure when GD stops (irregular run time speed)
— Local minimum!

CSC872: PAMI — Kazunori Okada (C) 2025 17

17

Batch / Online Learning Algorithm
M/ELL(S,\}L‘? y=1or0

L

Batch Algorithm: use all samples at once
1) Randomly initialize weights w,..,w,,,w, (77/ DZ
2) Get supervised data set and append 1

3) For all training samples (i=71 to N): accumulate
error for each sample 5; §; « y; — wtx;

4) For all features (j=1toM): update each weight w;
by the deltarule w; < w; + 1%, §ix;
5) Loop to (3) unless 357 stops improving

Online Algorithm: one sample at a time
— Each time you observe a sample (x, y)

— Update the weights with the error only from the
sample
w; < wj +1nd;x;

CSC872: PAMI — Kazunori Okada (C) 2025 18

18

Perceptron for Classification

* We can do a linear regression
* Do classification by threshold

- 0ify <%
- 1ify>"%

CSC872: PAMI — Kazunori Okada (C) 2025

What if all outputs are O’'s or 1's ?

Blue =y

Green = classification

* Any problem with this?

19

Problem is...

Least squares fit is useless

Solution:

Instead of y =wix
We fit y=gw'x)

Where g(z) is a squashing transfer|
function g(2):R - (0,1)

CSC872: PAMI = Kazunori Okada (C) 2025

This is much better classification
but it is not a least squares fit

® ‘..IIIIII

So let’s fit a function (green)
like this!!!

20

20

10

Perceptron with Sigmoid function

i B TR

» Popular example of the g T
squashing function

- 1
9() = s

* With nice property

g@2)=92A-9g9@) , L 5
+ We want to find weights w that Q:;U =0 "_;_.?O

minimizes

N
Ew) =) (Di= gw'x))

l

CSC872: PAMI — Kazunori Okada (C) 2025 21

21
Learning Rule with Sigmoid
y=gwx)

L =N LD gwix)Y
] Wl]
=Z' Z(Di—g(wtxi))—aiwjg(wtxi)
1= ‘,’}_
=_Zz i~ tx;))grwtx; i WjXij
(ot o T
= —Zz SigwWhx)(1—gwhx))x;;
i=1
wj < w; + le_5igi(1 — gi)Xij
" 8=Di—g
gi = g(w'x;)
22

11

Limitation of Perceptron ..y

* Perceptron provides a linear discriminant function

Perceptron
cannot learn
to classify
this case...

CSC872: PAMI — Kazunori Okada (C) 2025

23

23
Multi-Layer Perceptron (MLP)
The class of functions representable by perceptrons
is limited
Out(x) = g(w'x)= g[D wx,]
]
//// X \/7_ ﬂ\
A ~ .
- OO Use a w:de(
A A . representation !
Out(x)=g Z”',g{ Z, WXy]] This is a nonlinear function
! Of a linear combination
Of non linear functions
Of linear combinations of inputs
Copyright © 2001, 2003, Andrew W. Moore Neural Networks: Slide 51
CSC872: PAMI — Kazunori Okada (C) 2025 24
24

12

MLP: one-hidden layer net

Ninputs = 2 Hidden Layer Niropen = 3

)

?VNS / - \

X VHID
War k/ Z W, vk

an \ Output Layer

/\ P
Input Layer Q W3kxk

Copyright © 2001, 2003, Andrew W. Moore CSC872: PAMI — Kazunori Okada (C) 2025 Neural Networks: Slide 52 25
25
Backpropagation Algorithm
Out(x) = g[> ng[2 Wik]J
J k
Find a set of weights { Wj. i {w,k }
to minimize
> (= Out(x,)y
: = i 1l
by ora dient descent. Iterative steepest descent!!!
M
That's it!
That's the backpropagation
algorithm.
Copyright © 2001, 2003, Andrew W. Moore CSC872: PAMI — Kazunori Okada (C) 2025 Neural Networks: Slide 54 26
26

13

Backpropagation Learning Rule

* In any ANN book + MATLAB NN Toolkit

» How to actually derive from theory

— Same as the regular GD but E(w) is now an indirect function of
weights in the hidden layer(s)

— Therefore use “chain rule” of calculus for deriving the update
rules for weights in different (nested) layers Phaae

(o)
* How to use G@?;W;zi'
— Phase 1: Calculate sum-of-square errors (squared differences

between the desired <Di> and actual network outputs <yi>)
— Phase 2: Update weight from back to front (hence

backpropagation) by computing the partial derivatives using the
chain rule

CSC872: PAMI — Kazunori Okada (C) 2025

27

27

CSC872: PAMI — Kazunori Okada (C) 2025

Backpropagation Issues

+ Itis GD! So it may converge at local minimum

of hidden layers and nodes) by trial & error

+ Setting the right learning rate is a subtle art!
— TOO SMALL: it may take long time for convergence
— TOO LARGE: it may diverge and/or oscillate!

(e.g., EM, Mean Shift)

* Many methods to make GD work better
— Momentum: use past information
— Newton’s Method: use quadratic form with 2nd derivative
— Conjugate Gradient: quadratic assumption w/ only 15t derivative

* You must find right network topology and structure (number

— This is a reason why we like iterative methods without learning rate

Opfimzal.

28

28

14

Summary

« Artificial Neural Network
— Types of Various ANNs
— Neuron Model
— Linear Perceptron
— Delta Learning Rule
— Sigmoid Perceptron
— Limitation of Perceptron
— Multi-Layer Perceptron
— Back propagation

* Next: Deep Neural Networks
— Last lectures.
— No in-class exercises.

CSC872: PAMI — Kazunori Okada (C) 2025

29

29

15

