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Note:

• HW#5 submission closed now.

• All homework are completed now 
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Note:

• Continue working on your lit. survey project.

• Presentation format: www.pechakucha.com. 
More info later.

• Project report due in three weeks
– Read the assignment thoroughly 

– Late policy will apply. 

• Project presentation in three weeks
– Submit your slides two days prior (5/11, 5pm) by email

– Read the assignments again to refresh your mem.

– More details for presentation will be emailed soon

– Presentation in alphabetical order
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Regression & Learning

CSC 872

Pattern Analysis and Machine Intelligence
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What is Regression ?

• Regression is a statistical analysis to find a function 
representing input-output relation from data samples
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1. Fit a line

2. Find our prediction

http://www.populationmedia.org/issues/popgrowth_data.html
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What is Regression ?

• We must choose appropriate function form to do 
regression
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What is the population 
in year 2026?

1. Fit a curve

2. Find our prediction

http://www.populationmedia.org/issues/popgrowth_data.html
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In Nutshell

• Goal: estimate input-output relation from data

• For: prediction/forecasting/modeling

• You need to
1) Pick a form of parametric function

– Line: 

– Polynomial Curves:

– General Curves: 

– General Functions: 

2) Fit the function to the data
– Maximum likelihood estimation (MLE) is the foundation

5
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Learning Machine Interpretation

• Learning Machine: y = f(x)

• Input: independent variable
– E.g., x = year

• Output: dependent variable
– E.g., y = population

• Function: parameterized by W
– E.g., f(x,w) = wx: line

fx yest

w
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x1: hairiness

x 2
: 

si
ze

x1: hairiness

y:
 b

ea
r

yes

no

Training Data X (Supervised ML)

• Supervised learning

Discrete

Continuous x2 = g(x1)

𝑿 = {(𝒙, 𝑦)}𝒊ୀ𝟏
𝑵

x1: hairiness

x 2
: 

si
ze

𝑦 = ቊ
+1          if bear
−1    otherwise

y = f(x1)
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Regression Types

Depends on the form of parameterized functions

– Linear Regression (line/plane/hyperplane)

– Polynomial Regression (polynomial curve)

– Non-linear Regression (general curve)

– Radial-Basis Function Regression (basis sum) 

– Piecewise Linear Regression (line segments)

– Non-parametric Regression (KDE)

– Robust Regression (robust estimation!!!)

CSC872: PAMI – Kazunori Okada (C) 2025 10

Regression Types

Depends on the form of parameterized functions

– Linear Regression (line/plane/hyperplane)

– Polynomial Regression (polynomial curve)

– Non-linear Regression (general curve)

– Radial-Basis Function Regression (basis sum) 

– Piecewise Linear Regression (line segments)

– Non-parametric Regression (KDE)

– Robust Regression (robust estimation!!!)

9

10



6

CSC872: PAMI – Kazunori Okada (C) 2025 11

Linear Regression

• Simplest one parameter case

• Data is formed by: 𝒚 =  𝒘𝒙 +  𝒏𝒐𝒊𝒔𝒆
– Unknown scalar 𝒘

– Noise is independent random variable

– Noise is normally-distributed with zero mean & 2

• Output y is then also a random variable

with 𝑷(𝒚|𝒙, 𝒘)  =  𝑵𝒐𝒓𝒎𝒂𝒍( 𝒎𝒆𝒂𝒏 “𝒘𝒙”, 𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆 “σ𝟐”)

• Given data: N 𝒊. 𝒊. 𝒅. evidences (𝑥1, 𝑦1), (𝑥2, 𝑦2), . . , (𝑥𝑁, 𝑦𝑁)

• Regression Problem: Find w from data such that ….
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Bayesian Linear Regression

• Find w from data such that it maximizes the 
posterior distribution:

𝑷( 𝒘 | (𝒙𝟏, 𝒚𝟏), (𝒙𝟐, 𝒚𝟐), . . , (𝒙𝑵, 𝒚𝑵) )

• Infer 𝑷(𝒘|𝒅𝒂𝒕𝒂) from data likelihood 
𝑷(𝒚|𝒙, 𝒘) using Bayes rules ! 
– Conjugate prior etc, A bit complicated so…
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Maximum-Likelihood Estimate

• Find w from data such that it maximizes the 
data likelihood function:

𝑷( 𝒚 | 𝒙𝟏, 𝒙𝟐, . . , 𝒙𝑵, 𝒘 )  =  𝑵(𝒚;  𝒘𝒙, σ𝟐)

• As usual, Let’s do some algebra to simplify
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Algebra Joy: You know this by now

• For what w is this data most likely to have happened?

• For what w, is

• For what w, is

• For what w, is

• For what w, is

• For what w, is This is known as Least Squares method

𝑃 𝑦ଵ, . . , 𝑦ே 𝑥ଵ, . . , 𝑥ே, 𝑤  maximized?

ෑ 𝑃(𝑦|𝑥, 𝑤
ே

ୀଵ
) maximized? 

ෑ exp (−ଵ
ଶ

(௬ି௪௫)మ

ఙమ )
ே

ୀଵ
 maximized? 

 −ଵ
ଶ

(௬ି௪௫)మ

ఙమ

ே

ୀଵ
   maximized? 

 (𝑦 − 𝑤𝑥)ଶ     minimized?
ே

ୀଵ
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Least Squares Method

• MLE of w is one that minimizes 

the sum-of-squares of residuals (errors)

2
2

2

2

𝐸 𝑤 =  (𝑦 − 𝑤𝑥)ଶ



𝑥ଵ

𝑦ଵ

𝑥ଶ

𝑦ଶ

𝑤𝑥ଶ
𝑤𝑥ଵ

(𝑦ଵ − 𝑤𝑥ଵ)
(𝑦ଶ − 𝑤𝑥ଶ)

(𝑦 − 𝑤𝑥)

(𝑦ே − 𝑤𝑥ே)
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Really a quadratic optimization

• MLE of w is one that minimizes 

the sum-of-squares of residuals (errors)

• We want to minimize

a quadratic function of w

𝐸 𝑤 =  (𝑦 − 𝑤𝑥)ଶ



= ( 𝑥
ଶ)𝑤ଶ − 2  𝑥𝑦


𝑤 + ( 𝑦

ଶ


)



డா(௪)
డ௪
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STOP: We have a closed-form 
solution!
• For linear regression w/ normal-distributed noise

• MLE = Least Squares !!!

r: Pearson correlation coefficient
x: standard deviation of {xi}
y: standard deviation of {yi}

𝑎𝑟𝑔𝑚𝑖𝑛௪𝐸 𝑤 = 𝑎𝑟𝑔𝑚𝑖𝑛௪  (𝑦 − 𝑤𝑥)ଶ



⇔ డா(௪)
డ௪

= 0

∑ ௫௬

∑ ௫
మ



∑ ௫௬

∑ ௫
మ



ఙ

ఙೣ
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Multivariate Case?

• What if input x is a vector (x1,..,xM)^T?

• Model is

• Given data: (x1,y1),(x2,y2),..,(xN,yN)

• MLE of w is given by

(Pseudo Inverse)

x1: hairiness

x 2
: 

si
ze

𝑦 = 𝒘𝒕𝒙 + 𝜖
= 𝑤ଵ𝑥ଵ + 𝑤ଶ𝑥ଶ + ⋯ + 𝑤𝑥 + ⋯ 𝑤ெ𝑥ெ + 𝜖

𝑿 =

𝑥ଵ
௧

𝑥ଶ
௧

⋮
𝑥ே

௧

=

𝑥ଵଵ 𝑥ଵଶ ⋯ 𝑥ଵெ

𝑥ଶଵ 𝑥ଶଶ ⋯ 𝑥ଶெ

⋮
𝑥ேଵ

⋮
𝑥ேଶ

⋱
⋯

⋮
𝑥ேெ

𝒀 =

𝑦ଵ

𝑦ଶ

⋮
𝑦ே

𝒘 = (𝑿𝒕𝑿)ି𝟏𝑿𝒕𝒀

𝑦 = 𝒘𝒕𝒙 = ((𝑿𝒕𝑿)ି𝟏𝑿𝒕𝒀)𝒕𝒙
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Constant Term?

• What if the line does not intersect the origin ?

• Model is

w0

𝑌 = 𝑤ଵ𝑋ଵ + 𝑤ଶ𝑋ଶ + 𝜖 𝑌 = 𝑤 + 𝑤ଵ𝑋ଵ + 𝑤ଶ𝑋ଶ + 𝜖

= 𝑤𝑋 + 𝑤ଵ𝑋ଵ + 𝑤ଶ𝑋ଶ + 𝜖

𝑦 = 𝒘𝒕𝒛 + 𝜖,   𝒛 = (1, 𝒙௧)௧

= 𝑤1 + 𝑤ଵ𝑥ଵ + 𝑤ଶ𝑥ଶ + ⋯ + 𝑤ெ𝑥ெ + 𝜖

CSC872: PAMI – Kazunori Okada (C) 2025 20

Constant Term?

• What if the line does not intersect the origin ?

• Model is

• Given data: (x1,y1),(x2,y2),..,(xN,yN)

• MLE of w is given by

w0

Most general linear 
regression formula !!

𝑦 = 𝒘𝒕𝒛 + 𝜖, 𝒛 = (1, 𝒙௧)௧

𝒁 =

𝑧ଵ
௧

𝑧ଶ
௧

⋮
𝑧ே

௧

=

(1, 𝑥ଵ
௧)௧

(1, 𝑥ଶ
௧)௧

⋮
(1, 𝑥ே

௧ )௧

=

1 𝑥ଵଵ 𝑥ଵଶ ⋯ 𝑥ଵெ

1 𝑥ଶଵ 𝑥ଶଶ ⋯ 𝑥ଶெ

⋮ ⋮
1 𝑥ேଵ

⋮
𝑥ேଶ

⋱
⋯

⋮
𝑥ேெ

𝒀 =

𝑦ଵ

𝑦ଶ

⋮
𝑦ே

𝒘 = (𝒁𝒕𝒁)ି𝟏𝒁𝒕𝒀

𝑦 = 𝒘𝒕𝒛 = ((𝒁𝒕𝒁)ି𝟏𝒁𝒕𝒀)𝒕 𝟏
𝒙
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Polynomial Regression

• What if I want to fit a polynomial curve?

• You can reuse the linear formula!!!
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Quadratic Regression

• Model for 2D is 

• Given data: (x1,y1),(x2,y2),..,(xN,yN), xi = (xi1,xi2)

• MLE of w is given by
You change here

But all these are same

𝑦 =  𝑤 + 𝑤ଵ𝑥ଵ + 𝑤ଶ𝑥ଶ + 𝑤ଷ𝑥ଵ
ଶ + 𝑤ସ𝑥ଵ𝑥ଶ + 𝑤ଵ𝑥ଶ

ଶ + ϵ

=  𝒘𝒕𝒛 + ϵ, 𝒛 = (1, 𝑥ଵ, 𝑥ଶ, 𝑥ଵ
ଶ, 𝑥ଵ𝑥ଶ, 𝑥ଶ

ଶ)

𝒀 =

𝑦ଵ

𝑦ଶ

⋮
𝑦ே

𝒘 = (𝒁𝒕𝒁)ି𝟏𝒁𝒕𝒀

𝑦 = 𝒘𝒕𝒛 = ((𝒁𝒕𝒁)ି𝟏𝒁𝒕𝒀)𝒕𝒛

𝒁 =

𝑧ଵ
௧

𝑧ଶ
௧

⋮
𝑧ே

௧

=

1
1
⋮
1

𝑥ଵଵ
𝑥ଶଵ

⋮
𝑥ேଵ

𝑥ଵଶ
𝑥ଶଶ

⋮
𝑥ேଶ

𝑥ଵଵ
ଶ

𝑥ଶଵ
ଶ

⋮
𝑥ேଵ

ଶ

𝑥ଵଵ𝑥ଵଶ
𝑥ଶଵ𝑥ଶଶ

⋮
𝑥ேଵ𝑥ேଶ

𝑥ଵଶ
ଶ

𝑥ଶଶ
ଶ

⋮
𝑥ேଶ

ଶ
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Qth degree Polynomial Regression

• Model is the same but with different z 

• Given data: (x1,y1),(x2,y2),..,(xN,yN)

• q(x): all products of powers of inputs up to Qth degree 

• MLE of w is given by

You cannot model 
complicated curves

Because Z gets large 
very quick by increasing 
the complexity of the 
curve by increasing Q 
when more than 1D input

𝑦 =  𝒘𝒕𝒛 + ϵ, 𝒛 = (1, 𝑞(𝒙))

𝒘 = (𝒁𝒕𝒁)ି𝟏𝒁𝒕𝒀

𝑦 = 𝒘𝒕𝒛 = ((𝒁𝒕𝒁)ି𝟏𝒁𝒕𝒀)𝒕𝒛

𝒀 =

𝑦ଵ

𝑦ଶ

⋮
𝑦ே

𝒁 =

𝑧ଵ
௧

𝑧ଶ
௧

⋮
𝑧ே

௧

=

1 𝑞(𝒙ଵ)
1 𝑞(𝒙ଶ)

⋮
1

⋮
𝑞(𝒙ே)

CSC872: PAMI – Kazunori Okada (C) 2025 24

Radial Basis Function Regression

• Can we generalize the idea of the Polynomial Regression?
– Basically, you construct Z with different z with various products of inputs

– Then, use the same pseudo inverse formula

• Let’s construct z with some function (x) of input x

• Model is

• B(x) is called a basis whose linear combination gives an output

• We choose the basis to be symmetric about a center c with 
spread W then call it radial basis function

• RBF Regression performs the linear regression with B(x) 
defined with the radial basis function

=  𝒘𝒕𝒛 + ϵ, 𝒛 = (1, 𝐵 𝑥 = 𝜙ଵ, . . , 𝜙)

𝑦 =  𝑤 + 𝑤ଵ𝜙ଵ 𝒙 + ⋯ + 𝑤𝜙(𝒙) + ϵ

𝜙 𝑥 = RadialBasisFunction(|௫ିೖ|
ௐೖ

)

23
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Non-linear Regression

• What if I want to fit more general nonlinear function f(x;w)?

• Let’s do the same as before !
– Assume a general model of

– Normally-distributed independent noise

– Likelihood P(Y|X,w) is Normal(mean f(x;w),variance 2)

– MLE of w = LS of w

Ooops! how to solve this about w???
We are doomed. we are stuck here?…

𝑦 = 𝑓 𝑥; 𝑤 + 𝜖

𝒘 = argmin௪  (𝑦 − 𝑓(𝒙𝒊; 𝒘))ଶ
ே

ୀଵ

⇔
డ

డ𝒘
∑ (𝑦 − 𝑓 𝒙𝒊; 𝒘 )ଶ

 = 0

⇔ ∑ (𝑦 − 𝑓 𝒙𝒊; 𝒘 )ങ 𝒙𝒊;𝒘

ങೢ = 0
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Energy Optimization

• Recall the non-parametric modeling lecture… 

• The savior is to go “Iterative” to solve

• Minimizing the Energy/Error/Cost/Potential function by
– Define an iterative step move(w,E(w))

– Then find an initial solution w0

– Then find a sequence w0,w1,…,wm by doing

• To do this right, you need to find move(w,E(w))

so that wm converges to a local minimum of E(w)

𝑤 = argmin௪𝐸(𝑤)

step1:   𝑤௪ = 𝑤ௗ + 𝑚𝑜𝑣𝑒(𝑤ௗ, 𝐸 𝑤 )

step2:   𝑤ௗ = 𝑤௪

step3:    go to step1

25
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In general

• You want 

• What if I have a maximization problem ?

w

E(w)

Global
minimum

local
minimum

w0w0

Iterative solution can
get stuck at local
minimum depending
on initialization

You can always 
interchange 
minimization and 
maximization problem

𝑤 = argmax௪𝐸(𝑤)

𝑤 = argm𝑖𝑛௪ − 𝐸(𝑤)

w = argminwE(w)
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How are we going to solve it?

• Various ways
– Line search

– Hill-Climbing

– Gradient-Descent (Steepest-Descent/Ascent)

– Conjugate-Gradient

– Levenberg-Marquart

– Newton’s Method

– Simulated Annealing

– EM-algorithm

– Mean Shift

– More and more…

We study this during the lectures 
for search methods in AI

27
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Gradient-Descent

• We define the step move function as a negative of partial 
derivatives of the energy w.r.t. the unknown parameter W

w

E(w)

w0w0

𝑤௪ = 𝑤ௗ − 𝜂
𝜕𝐸(𝑤)

𝜕𝑤
ቤ

௪ୀ௪

𝜂 is a learning rate set to a small constant (e.g., 0.05) 
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Steepest-Descent/Ascent

• Umm, sorry but, I want to maximize really, want to go up

• DON’T LIKE GOING DOWN!!!

• Just flip the sign!!!

• Steepest-Ascent: a type of greedy iterative search 
algorithm we learned in our lecture on search for AI

• Umm: the same

• Gradient-Ascent = Steepest-Ascent

Gradient-DescentGradient-Ascent

𝑤௪ = 𝑤ௗ − 𝜂
𝜕𝐸(𝑤)

𝜕𝑤
ቤ

௪ୀ௪

𝑤௪ = 𝑤ௗ + 𝜂
𝜕𝐸(𝑤)

𝜕𝑤
ቤ

௪ୀ௪

29
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Simulated Annealing

• Are there a way to avoid getting stuck in a local minimum?

• Yes: called “simulated annealing” making it stochastic

• When temperature Ti is
– High: random walk

– Low: stochastic steepest descent

• Can converge to the global minimum when scheduling a 
gradual decreasing of the temperature (cooling schedule)

step1:   make a 𝐫𝐚𝐧𝐝𝐨𝐦 move
step2:   take this move if reduces the energy
step3:   else take it with cetain acceptance probability
step4:   go to step1

Acceptance Prob.    𝑃 = exp (ா ௪ ିா(௪ೢ)
்

)

sampling from Maxwell−Boltzman distribution
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Summary

• Regression & Learning
– What is regression?
– Maximum Likelihood Estimate & Least Squares Method
– Linear regression
– Polynomial regression
– Radial Basis Function regression
– Gradient-descent
– Simulated Annealing

• Next
– Artificial Neural Network
– End of the LDA FP

31
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Artificial Neural Network

• Today’s lecture on ML-based regression 
can be directly used to understand and 
implement ANN!

• The note will be uploaded in the course 
web

• Read the note! 
– Neural Network
– Perceptron
– Multi-Layered Network
– Backpropagation
– Other Networks
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