Note:

- HW#5 submission closed now.
- All homework are completed now 😊

Note:

- Continue working on your lit. survey project.
- Project report due in three weeks
 - Read the assignment thoroughly
 - Late policy will apply.
- Project presentation in three weeks
 - Submit your slides two days prior (5/12, 5pm) by email
 - Read the assignments again to refresh your mem.
 - More details for presentation will be emailed soon
 - Presentation in alphabetical order
Regression & Learning

CSC 872
Pattern Analysis and Machine Intelligence

What is Regression?

What is the population in year 2025?

1. Fit a line
2. Find our prediction

- Regression is a statistical analysis to find a function representing input-output relation from data samples

http://www.populationmedia.org/issues/pogrowth_data.html
What is Regression?

- We must choose appropriate function form to do regression.

What is the population in year 2025?

1. Fit a curve
2. Find our prediction

In Nutshell

- Goal: estimate input-output relation from data
- For: prediction/forecasting/modeling
- You need to

1) Pick a form of parametric function
 - Line:
 - Polynomial Curves:
 - General Curves:
 - General Functions:

2) Fit the function to the data
 - Maximum likelihood estimation (MLE) is the foundation
Learning Machine Interpretation

• Learning Machine: $y = f(x)$

• Input: independent variable
 – E.g., $x =$ year

• Output: dependent variable
 – E.g., $y =$ population

• Function: parameterized by W
 – E.g., $f(x,w) = wx$: line

\[y_{\text{est}} = Wf(x) \]

Training Data X (Supervised ML)

• Supervised learning

\[y_i = \begin{cases}
+1 & \text{if bear} \\
-1 & \text{otherwise}
\end{cases} \]

\[X = \{(x_i, y_i)\}^N_{i=1} \]

\[y = f(x_1) \]

\[x_2 = g(x_1) \]
Regression Types

Depends on the form of parameterized functions

- Linear Regression (line/plane/hyperplane)
- Polynomial Regression (polynomial curve)
- Non-linear Regression (general curve)
- Radial-Basis Function Regression (basis sum)
- Piecewise Linear Regression (line segments)
- Non-parametric Regression (KDE)
- Robust Regression (robust estimation!!!)
Linear Regression

- **Simplest one parameter case**
 \[y \in \mathbb{R}, x \in \mathbb{R}, w \in \mathbb{R}. \]

- Data is formed by: \(y = wx + \text{noise} \)
 - Unknown scalar \(w \)
 - Noise is independent random variable
 - Noise is normally-distributed with zero mean & \(\sigma^2 \)

- Output \(y \) is then also a random variable with
 \[
P(y|x, w) = \text{Normal}(\text{mean } \langle wx \rangle, \text{variance } \sigma^2)\]

- Given data: \(N \) i.i.d. evidences \((x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\)
- Regression Problem: Find \(w \) from data such that

Bayesian Linear Regression

- **Find \(w \) from data such that it maximizes the posterior distribution:**
 \[
P(w | (x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N))
 \]

- Infer \(P(w|data) \) from data likelihood \(P(y|x, w) \) using Bayes rules!
 - Conjugate prior etc, A bit complicated so...
Maximum-Likelihood Estimate

- Find w from data such that it maximizes the data likelihood function:

$$P(y \mid x_1, x_2, \ldots, x_N, w) = N(y; wx, \sigma^2)$$

- As usual, let’s do some algebra to simplify

Algebra Joy: You know this by now

- For what w is this data most likely to have happened?
- For what w, is $P(y_1, \ldots, y_N \mid x_1, \ldots, x_N, w)$ maximized?
- For what w, is $\prod_{i=1}^N P(y_i \mid x_i, w)$ maximized?
- For what w, is $\prod_{i=1}^N \exp\left(-\frac{1}{2}(y_i-wx_i)^2\right)$ maximized?
- For what w, is $\sum_{i=1}^N \frac{1}{2}(y_i-wx_i)^2$ maximized? This is known as Least Squares method.
- For what w, is $\sum_{i=1}^N (y_i - wx_i)^2$ minimized?
Least Squares Method

- MLE of w is one that minimizes the sum-of-squares of residuals (errors)

$$E(w) = \sum_i (y_i - wx_i)^2$$

Really a quadratic optimization

- MLE of w is one that minimizes the sum-of-squares of residuals (errors)

$$E(w) = \sum_i (y_i - wx_i)^2 = \sum_i (x_i^2w^2 - 2wx_iyw_i + y_i^2)$$

$$= \sum_i x_i^2w^2 - 2\sum_i x_iyw_i + \sum_i y_i^2$$

- We want to minimize a quadratic function of w

$$\frac{\partial E(w)}{\partial w} = 0$$
STOP: We have a closed-form solution!

- For linear regression with normal-distributed noise
- **MLE = Least Squares !!!**

\[\hat{w} = \arg\min_w E(w) = \arg\min_w \sum_i (y_i - w x_i)^2 \]

\[\Leftrightarrow \frac{\partial E(w)}{\partial w} = 0 \]

\[w = \frac{\sum_i x_i y_i}{\sum_i x_i^2} \]

- \(r \): Pearson correlation coefficient
- \(\sigma_x \): standard deviation of \(\{x_i\} \)
- \(\sigma_y \): standard deviation of \(\{y_i\} \)

\[y = w x = \frac{\sum_i x_i y_i}{\sum_i x_i^2} x = \frac{\sigma_y}{\sigma_x} r x \]

Multivariate Case?

- What if input \(x \) is a vector \((x_1, \ldots, x_M)^T\)?
- Model is \(y = w^T x + \epsilon \)
 \[= w_1 x_1 + w_2 x_2 + \cdots + w_M x_M + \cdots + w_M x_M + \epsilon \]
- Given data: \((x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\)

\[X = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_N^T \end{bmatrix}, \quad Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} \]

- MLE of \(w \) is given by
 \[w = (X^T X)^{-1} X^T Y \] (Pseudo Inverse)

\[y = w^T x = ((X^T X)^{-1} X^T Y)^T x \]
Constant Term?

• What if the line does not intersect the origin?

\[
Y = w_1 x_1 + w_2 x_2 + \epsilon
\]

Model is

\[
y = w^t z + \epsilon, \quad z = (1, x^t) \]

\[
y = w_0 + w_1 x_1 + w_2 x_2 + \epsilon
\]

Given data: \((x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\)

\[
Z = \begin{bmatrix}
 x_1^t \\
 x_2^t \\
 \vdots \\
 x_N^t
\end{bmatrix} = \begin{bmatrix}
 (1, x_1^t) \\
 (1, x_2^t) \\
 \vdots \\
 (1, x_N^t)
\end{bmatrix}
\]

MLE of \(w\) is given by

\[
w = (Z^t Z)^{-1} Z^t Y
\]

Most general linear regression formula!!

\[
y = w^t z = ((Z^t Z)^{-1} Z^t Y) \begin{bmatrix} 1 \\ x \end{bmatrix}
\]
Polynomial Regression

• What if I want to fit a polynomial curve?

• You can reuse the linear formula!!!

Quadratic Regression

• Model for 2D is

\[y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_1 x_2 + w_5 x_2^2 + \epsilon \]

\[= w^T z + \epsilon, \quad z = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2) \]

• Given data: \((x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N), x_i = (x_{i1},x_{i2})\)

\[Z = \begin{bmatrix} z_1^T \\ z_2^T \\ \vdots \\ z_N^T \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & x_{11}^2 & x_{11} x_{12} & x_{12}^2 \\ x_{21} & x_{22} & x_{21}^2 & x_{21} x_{22} & x_{22}^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{N1} & x_{N2} & x_{N1}^2 & x_{N1} x_{N2} & x_{N2}^2 \end{bmatrix} \]

\[Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} \]

• MLE of \(w\) is given by

\[w = (Z^T Z)^{-1} Z^T Y \]

But all these are same

\[y = w^T z = ((Z^T Z)^{-1} Z^T Y) z \]
Qth degree Polynomial Regression

- Model is the same but with different \textbf{z}

 \[
 y = w^t z + \epsilon, \quad z = (1, q(x))
 \]

- Given data: \((x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\)

- \(q(x)\): all products of powers of inputs up to Qth degree

\[
Z = \begin{bmatrix}
 z_1^t \\
 z_2^t \\
 \vdots \\
 z_N^t \\
\end{bmatrix} = \begin{bmatrix}
 1 & q(x_1) \\
 1 & q(x_2) \\
 \vdots & \vdots \\
 1 & q(x_N) \\
\end{bmatrix}, \quad Y = \begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_N \\
\end{bmatrix}
\]

- MLE of \(w\) is given by
 \[
 w = (Z^t Z)^{-1} Z^t Y
 \]

\[
y = w^t z = ((Z^t Z)^{-1} Z^t Y)^t z
\]

Radial Basis Function Regression

- Can we generalize the idea of the Polynomial Regression?
 - Basically, you construct \(Z\) with different \(z\) with various products of inputs
 - Then, use the same pseudo inverse formula

- Let’s construct \(z\) with some function \(\phi(x)\) of input \(x\)

- Model is \(y = w_0 + w_1 \phi_1(x) + \cdots + w_K \phi_K(x) + \epsilon\)

- \(B(x)\) is called a \textit{basis} whose linear combination gives an output

- We choose the basis to be symmetric about a center \(c\) with spread \(W\) then call it \textit{radial basis function}

\[
\phi_k(x) = \text{RadialBasisFunction}(\frac{|x-c_k|}{W_k})
\]

- RBF Regression performs the linear regression with \(B(x)\) defined with the radial basis function
Non-linear Regression

- What if I want to fit more general nonlinear function $f(x;w)$?
- Let’s do the same as before!
 - Assume a general model of $y = f(x; w) + \epsilon$
 - Normally-distributed independent noise
 - Likelihood $P(Y|X,w)$ is Normal(mean $f(x;w)$, variance σ^2)
 - MLE of w = LS of w

$$w = \arg\min_w \sum_{i=1}^{N} (y_i - f(x_i; w))^2$$

$$\iff \frac{\partial}{\partial w} \sum_{i} (y_i - f(x_i; w))^2 = 0$$

$$\iff \sum_{i} (y_i - f(x_i; w)) \frac{\partial f(x_i; w)}{\partial w} = 0$$

Ooops! how to solve this about w???
We are doomed. we are stuck here?…

Energy Optimization

- Recall the non-parametric modeling lecture…
- The savior is to go “Iterative” to solve $w = \arg\min_w E(w)$
- Minimizing the Energy/Error/Cost/Potential function by
 - Define an iterative step $move(w,E(w))$
 - Then find an initial solution w_0
 - Then find a sequence w_0, w_1, \ldots, w_m by doing

 step1: $w_{new} = w_{old} + move(w_{old}, E(w))$

 step2: $w_{old} = w_{new}$

 step3: go to step1

- To do this right, you need to find $move(w,E(w))$
 so that w_m converges to a local minimum of $E(w)$
In general

- You want \(w = \text{argmin}_w E(w) \)

\[\text{Iterative solution can get stuck at local minimum depending on initialization} \]

- What if I have a maximization problem?

\[w = \text{argmax}_w E(w) \]

\[w = \text{argmin}_w -E(w) \]

How are we going to solve it?

- Various ways
 - Line search
 - Hill-Climbing
 - Gradient-Descent (Steepest-Descent/Ascent)
 - Conjugate-Gradient
 - Levenberg-Marquart
 - Newton’s Method
 - Simulated Annealing
 - EM-algorithm
 - Mean Shift
 - More and more...

\[\text{Optimization} \]

We study this during the lectures for search methods in AI
Gradient-Descent

- We define the step move function as a negative of partial derivatives of the energy w.r.t. the unknown parameter W

$$w_{new} = w_{old} - \eta \frac{\partial E(w)}{\partial w} \bigg|_{w=w_{old}}$$

η is a learning rate set to a small constant (e.g., 0.05)

Steepest-Descent/Ascent

- Umm, sorry but, I want to maximize really, want to go up
- DON’T LIKE GOING DOWN!!!
- Just flip the sign!!!

$$w_{new} = w_{old} + \eta \frac{\partial E(w)}{\partial w} \bigg|_{w=w_{old}}$$

Gradient-Descent

- Steepest-Ascent: a type of greedy iterative search algorithm we learned in our lecture on search for AI

- Umm: the same
- Gradient-Ascent = Steepest-Ascent
Simulated Annealing

• Are there a way to avoid getting stuck in a local minimum?
• Yes: called "simulated annealing" making it stochastic
 step 1: make a random move
 step 2: take this move if reduces the energy
 step 3: else take it with certain acceptance probability
 step 4: go to step 1

Acceptance Prob. \[P = \exp\left(\frac{E(w_{\text{old}}) - E(w_{\text{new}})}{T}\right) \]

• When temperature \(T_i \) is
 – High: random walk
 – Low: stochastic steepest descent
• Can converge to the global minimum when scheduling a gradual decreasing of the temperature (cooling schedule)

Summary

• Regression & Learning
 – What is regression?
 – Maximum Likelihood Estimate & Least Squares Method
 – Linear regression
 – Polynomial regression
 – Radial Basis Function regression
 – Gradient-descent
 – Simulated Annealing

• Next
 – Artificial Neural Network
 – End of the LDA FP