

Regression Types

Depends on the form of parameterized functions

- Linear Regression (line/plane/hyperplane)
- Polynomial Regression (polynomial curve)
- Non-linear Regression (general curve)
- Radial-Basis Function Regression (basis sum)
- Piecewise Linear Regression (line segments)
- Non-parametric Regression (KDE)
- Robust Regression (robust estimation!!!)

CSC872: PAMI – Kazunori Okada (C) 2025

Energy Optimization Recall the non-parametric modeling lecture... The savior is to go "Iterative" to solve w = argminwE(w) Minimizing the Energy/Error/Cost/Potential function by Define an iterative step move(w,E(w)) Then find an initial solution w₀ Then find a sequence w₀w₁....,w_m by doing step1: w_{new} = w_{old} + move(w_{old}, E(w)) step2: w_{old} = w_{new} step3: go to step1 To do this right, you need to find move(w,E(w)) so that w_m converges to a local minimum of E(w)

- Read the note!
 - Neural Network
 - Perceptron
 - Multi-Layered Network
 - Backpropagation
 - Other Networks

CSC872: PAMI – Kazunori Okada (C) 2025