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Note

• Enjoy Spring Break (next week)!

• Homework #3 submission closed.

• Project topic/papers due tonight 10 pm.
– Submit the choice of topic and more than 5 selected 

papers in the Canvas discussion thread

– Late policy will apply

• Fast Prototyping Exercise #2 on Mean Shift 
starts today.
– https://bidal.sfsu.edu/~kazokada/csc872/PD2.pdf

– https://bidal.sfsu.edu/~kazokada/csc872/DATA/Segmentation_Data.zip

CSC872: PAMI – Kazunori Okada (C) 2025 1

CSC872: PAMI – Kazunori Okada (C) 2025 2

Parametric Statistical 
Modeling

CSC 872

Pattern Analysis and Machine Intelligence

References
Andrew Moore’s great slides at
http://www.cs.cmu.edu/~awm/tutorials
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PF: Statistical Modeling: Review

• Problem
– Estimating probability distribution from data 

– Data = Samples drawn from an unknown underlying 
distribution

– What is the underlying distribution given these data?
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Non-Parametric Modeling: Review

• Histogram & Kernel Density Estimation
– No prior assumption about the density function

• Advantages
– Flexible (for any shape of distribution)

• Disadvantages
– Needs Quantization or Bandwidth Parameter Tuning

– High Time and Space Complexity

– Needs to store all data points for KDE!

– Takes a lot of time to build and use these things
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New Strategy: Parametric Modeling

• Let’s use prior knowledge/assumption of the 
target distribution !!!

• Two-Step Strategy

• (1) Choose A Parameterized Function
– Pick a function with parameters that control its shape and location

– It is up to us what function we use

– You need to choose the function according to your prior knowledge!!!

• (2) Do Parameter Estimation
– Basically fit the function to the data …in another words …

– Estimate the parameters that make the function fit best to the data 
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New Strategy: Parametric Modeling

• Let’s use prior knowledge/assumption of the 
target distribution !!!

• Why we do this?

• Parameters are typically much fewer so…

(1) Greatly improve time and space complexity

• Parameter Estimation is a well-studied field

(2) Nice mathematical framework that is called… 
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PF: Maximum Likelihood Estimation

• Maximum Likelihood Estimate (MLE)

• You saw this first in Bayesian Reasoning Lec

• Foundation of pattern analysis and learning

• NOT Bayesian Inference!

• Maximum A Posteriori Estimate (MAP)

• MLE is used more than MAP

• Why?

• I get back to this later
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PF: Maximum Likelihood Estimation !!!

• Suppose we have independent and identically 
distributed samples drawn from a distribution 
parameterized by 

– x1, x2, .. , xN ~ (i.i.d.) p(x|) := f(x,)

– You know a form of f BUT you don’t know the 
value of 

• For what  are these samples most likely?

likelihood
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MLE for Gaussian (Normal) Mean

• Suppose we have x1,..,xN ~ (i.i.d.) N(,2)

• But you don’t know  (known N and 2)

• MLE: For which  is x1,..,xN most likely?

Algebra&Calculus to simplify the problem &

Solving rp(x) = 0 to maximize the likelihood

௠௟௘
ఓ 𝟏 𝑵

ଶ

𝑁 𝜇, 𝜎ଶ = ଵ

ଶగఙ
ୣ୶୮ (ି

(௫ିఓ)మ

ଶఙమ )
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Some Algebra

MLE

i.i.d. assumption

log = log

Plugging in Gaussian

Removing parts that are not
related to the optimization

Log-likelihood !!!

Log monotonisity

௠௟௘
ఓ 𝟏 𝑵

ଶ

= argmaxఓ ෑ 𝑝(𝒙𝒏|𝜇, 𝜎ଶ) 

ே

௡ୀଵ

= argmaxఓlog ෑ 𝑝(𝒙𝒏|𝜇, 𝜎ଶ) 

ே

௡ୀଵ

= argmaxఓ ෍ log[𝑝 𝒙𝒏 𝜇, 𝜎ଶ ]
ே

௡ୀଵ

= argmaxఓ ෍ −(𝒙𝒏ିఓ)మ

ଶఙమ + 𝐶
ே

௡ୀଵ

= argminఓ ෍ (𝒙𝒏 − 𝜇)ଶ
ே

௡ୀଵ

𝑁 𝜇, 𝜎ଶ = ଵ

ଶగఙ
ୣ୶୮ (ି

(௫ିఓ)
ଶఙమ )
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More Algebra

Argmin/Argmax is 
Solving r p(x,) = 0

Do differentiation

Solve it about 

௠௟௘
ఓ 𝟏 𝑵

ଶ

= argminఓ ෍ (𝒙𝒏 − 𝜇)ଶ
ே

௡ୀଵ

= 𝜇      s. t.  0 = డ
డఓ

෍ (𝒙𝒏 − 𝜇)ଶ
ே

௡ୀଵ

0 = ି ෍ 2(𝒙𝒏 − 𝜇௠௟௘)
ே

௡ୀଵ

𝜇௠௟௘ = ଵ
ே ෍ 𝒙𝒏

ே

௡ୀଵ
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What do we get?

• MLE mle of a normal distribution is a sample mean

• In another word
• Computing the sample mean =
• Computing MLE of the true population mean =
• Computing MLE of the center of a Gaussian fitted to 

your data

௠௟௘
௡

ே

௡ୀଵ
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How do we do that? (Recipe for MLE)

• TASK: Find  assuming known form of p(Data|,…)

1. Derive log-likelihood (LL): LL = log p(Data|,…)

2. Do calculus/algebra on LL/
3. Create an equation by setting LL/= 0

4. Solve LL/= 0 about  for maximizing p(Data|,…)

5. Check if the solution is a maximum instead of minimum 
or saddle point
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For more than one parameters

• TASK: Find  assuming known form of p(Data|1,..,n)

1. Derive log-likelihood (LL): LL = log p(Data|1,..,n)

2. Do calculus/algebra on LL/1LL/n

3. Create a set of equations by setting

LL/ = 0

LL/2 = 0



LL/n = 0

4. Solve the simultaneous equations about n

5. Check if the solution is a maximum
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STOP: Back to MLE of Gaussian

Sample variance!!!

௠௟௘
ఏ 𝟏 𝑵 ＝ ଶ

𝐿𝐿 = log[𝑝 𝒙𝟏, . . , 𝒙𝑵 𝜇, 𝜎ଶ ]

= −0.5𝑁log2π − 0.5𝑁log𝜎ଶ − ଵ
ଶఙమ ∑ (𝒙𝒏 ିఓ)మಿ

೙సభ

డ௅௅
డఙమ = − ே

ଶఙమ + ଵ
ଶఙర ෍ (𝒙𝒏 − 𝜇)ଶ =  0

ே

௡ୀଵ

డ௅௅
డఓ

= − ଵ
ఙమ ෍ 𝒙𝒏 − 𝜇 = 0

ே

௡ୀଵ
→    𝜇௠௟௘=

1

𝑁
෍ 𝒙𝒏

ே

௡ୀଵ

→    𝜎௠௟௘
ଶ =

1

𝑁
෍ ( 𝒙𝒏 − 𝜇௠௟௘)ଶ

ே

௡ୀଵ
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Unbiased Estimator

• Unbiased Estimator
– Expected value of the estimate is the same as the 

true value of the estimate

• Suppose x1,..,xN ~ (i.i.d.) N(,2)

mle is unbiased

𝜇௠௟௘ =
1

𝑁
෍ 𝒙𝒏

ே

௡ୀଵ
𝐸 𝑥 = 𝜇

𝐸 𝜇௠௟௘ = 𝐸 ଵ
ே

෍ 𝒙𝒏

ே

௡ୀଵ
= ଵ

ே
෍ 𝐸 𝒙𝒏 = ଵ

ே
෍ 𝜇 = 𝜇

ே

௡ୀଵ

ே

௡ୀଵ

𝐸 𝜇௠௟௘ = 𝜇
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Biased Estimator

• Biased Estimator
– Expected value of the estimate is different from the 

true value of the estimate

• Suppose x1,..,xN ~ (i.i.d.) N(,2)

mle is biased!!!

𝜎௠௟௘
ଶ =

1

𝑁
෍ ( 𝒙𝒏 − 𝜇௠௟௘)ଶ

ே

௡ୀଵ

𝐸[𝜎௠௟௘
ଶ ] = 𝐸

1

𝑁
෍  𝒙𝒏 − 𝜇௠௟௘ ଶே

௡ୀଵ
=

1

𝑁
𝐸 ෍ 𝒙𝒏

𝟐 − ଵ
ே

௡
෍ ෍ 𝒙𝒏𝒙′𝒏

௡ᇱ௡

=
1

𝑁ଶ
𝐸 (𝑁 − 1) ෍ 𝒙𝒏

𝟐 −
௡

෍ 𝒙𝒏𝒙′𝒏
௡ஷ௡ᇱ

=
𝑁 − 1

𝑁ଶ
෍ 𝐸[𝒙𝒏

𝟐] −
௡

𝑁𝐸 𝒙𝒏
ଶ = ேିଵ

ே
𝜎ଶ

𝐸 𝑥ଶ − 𝐸[𝑥]ଶ = 𝜎ଶ

௠௟௘
ଶ ଶ
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17

18



10

CSC872: PAMI – Kazunori Okada (C) 2025 19

What we gonna do?

• Bias: E[mle] - 

• Unbiased estimator from a biased one

• Is unbiased estimator always better?

• Asymptotically unbiased estimator

𝐵𝑖𝑎𝑠 𝜎௠௟௘
ଶ = 𝐸 𝜎௠௟௘

ଶ − 𝜎ଶ = ேିଵ
ே

𝜎ଶ − 𝜎ଶ = −ଵ
ே

𝜎ଶ

𝐸[𝜎௠௟௘
ଶ ] = ேିଵ

ே
𝜎ଶ

𝜎௨௡௕௜௔௦௘ௗ
ଶ = ே

ேିଵ
𝜎௠௟௘

ଶ = ଵ
ேିଵ

∑ 𝒙𝒏ିఓ మಿ
೙సభ

𝐸[𝜎௨௡௕௜௔௦௘ௗ
ଶ ] = ఙమ

𝜇௘௦௧ଵ = 𝒙𝟒

𝜇௘௦௧ଶ =
1

𝑁 + 10
෍ 𝒙𝒏

ே

௡ୀଵ

𝐸[𝜎௠௟௘
ଶ ] = ேିଵ

ே
𝜎ଶ

ே→ஶ
𝜎ଶ
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And more … what if

• TASK: Find  assuming known form of p(Data|1,..,n)

1. Derive log-likelihood (LL): LL = log p(Data|1,..,n)

2. Do calculus/algebra on LL/1LL/n

3. Create an equation by setting

LL/ = 0

LL/2 = 0



LL/n = 0

4. Solve the simultaneous equations about n

5. Check if the solution is a maximum

What if we cannot solve them???
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Alternative to Our MLE Recipe

• Bad News:   for many functions you choose, you 
CANNOT SOLVE the simultaneous equations   
LL/1=0LL/n=0

• Oh no …
• But there is a savior …

• Go Iterative !!!
(Examples: Mean Shift, EM Algorithm)

• Variational Method (below is the recipe)
– Define a simplified problem using inequality … in another words …
– Define an analytical lower-bound of your complex density function
– Find MLE of the (quadratic) lower-bound
– This solution provides an iterative step (like mean shift vector!)
– A sequence of this iterator can be proven to asymptotically converge to a 

nearest mode of the density function

CSC872: PAMI – Kazunori Okada (C) 2025 22

Maximum A Posteriori Estimation

• Suppose we have x1,..,xN ~ (i.i.d.) p(x|)

• But you don’t know 
• MLE: For which  is x1,..,xN most likely?

• MAP: Which  maximizes posterior p(|x1,..,xN)

You need to provide a prior distribution

Remember our Bayesian inference
lecture. Treating a likelihood as a
posterior yielded a wrong inference.
In the same sense, we should be 
using a posterior for our parameter
estimation problem! 

𝜃௠௟௘ = argmaxఏ𝑝(𝒙𝟏, . . , 𝒙𝑵|𝜃)

𝜃௠௔௣ = argmaxఏ𝑝(𝜃|𝒙𝟏, . . , 𝒙𝑵)

= argmaxఏ
௣(𝒙𝟏,..,𝒙𝑵|ఏ)௣(ఏ) 

∫ ௣(𝒙𝟏,..,𝒙𝑵|ఏᇱ)௣(ఏᇱ) ௗఏᇱഇᇲ

= argmaxఏ𝑝 𝒙𝟏, . . , 𝒙𝑵 𝜃 𝑝(𝜃)
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MAP for Gaussian (Normal) Mean

• Suppose we have x1,..,xN ~ (i.i.d.) N(,2)

• But you don’t know 
• MAP: Which  maximizes posterior p(|x1,..,xN,2)

• Set the prior also as a Gaussian N(0,0
2)

MLE recipe: log+rp=0

𝜇௠௔௣ = argmaxఓ𝑝(𝜇|𝒙𝟏, . . , 𝒙𝑵, 𝜎ଶ)

= argmaxఓ𝑝(𝒙𝟏, . . , 𝒙𝑵|𝜇, 𝜎ଶ)𝑝(𝜇)

= argmaxఓ𝑁(𝜇; 𝜇଴, 𝜎଴
ଶ) ෑ 𝑁(𝒙𝒏; 𝜇, 𝜎ଶ)

ே

௡ୀଵ
= argmaxఓ𝑁(𝜇; 𝜇ଵ, 𝜎ଵ

ଶ) 𝜇ଵ = ఙమఓబାఙబ
మ ∑ 𝒙𝒏

ಿ
೙సభ

ఙమାఙబ
మே

𝜎ଵ
ଶ = ఙమఙబ

మ

ఙమାఙబ
మே

= ఙమఓబାఙబ
మ ∑ 𝒙𝒏

ಿ
೙సభ

ఙమାఙబ
మே

𝜎଴
ଶ → 0      very sure

𝜎଴
ଶ → ∞      very unsure
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Great! But why not MAP?

• Why did we choose Gaussian as a prior?
• Well, we did not need to really … but
• Because of its analytical simplicity, meaning
• You get a posterior as the same form as prior!!!
• Conjugate Prior
• This allows us use our MLE recipe to get a closed-form soln.
• For more complex distributions, algebra gets bad (your 

headache)
• So why not MAP

– Too much algebra being nuisance (simpler better!)
– But really, for larger N, it may not differ much from MLE !
– But really, my nice conjugate prior does not represent my specific problem
– But really, for my specific problem, I don’t have conjugate prior
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PF: Is it learning?

• Just some algebra to derive formulae?
– Yes, but at the end, you really get a probability distribution 

approximated by your function whose shape is fit to your data. 
– So these provides a valid means for probabilistic learning! 
– if you are lucky and you get a closed-form solution
– If not, go ITERATIVE NUMERICAL! (e.g., mean shift / EM)

• What designer must choose?
– Function form of distributions ( likelihood (+ prior) )
– Type of estimation (MLE or MAP or Iterative)

• What must be derived from data?
– Parameter values
– Approximated Distributions in an Analytical Form (if you are lucky)
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Summary

• Parametric Statistical Modeling
– Statistical Modeling via Parameter Estimation

– MLE: Maximum Likelihood Estimation

– MAP: Maximum A Posteriori Estimation

– Gaussian is your friend! (or analytical nature of your function matters)

– For more complex distributions, you can go iterative.

– DISADVANTAGE:
– How to pick right function to your data?

– What if my data does not fit the function I want to choose (e.g., 
Gaussian)?

– Most useful function like Gaussian has a limited expression power…

• Next
– Mixture Model: Parametric Clustering & EM-Algorithm

– Pattern Classification: PCA and LDA
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