Note pChld) 9= pch)

\
Enjoy Spring Break (next week)! ?(Xf;:e))jé
Homework #3 submission closed. Fehttes
Project topic/papers due tonight 10 pm.

— Submit the choice of topic and more than 5 selected
papers in the Canvas discussion thread

— Late policy will apply

Fast Prototyping Exercise #2 on Mean Shift
starts today.

— https://bidal.sfsu.edu/~kazokada/csc872/PD2.pdf
— https:/Ibidal.sfsu.edu/~kazokada/csc872/DATA/Segmentation_Data.zip
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Parametric’ Statistical
- Modeling

CSC 872
Pattern Analysis and Machine Intelligence

References
Andrew Moore’s great slides at
http://www.cs.cmu.edu/~awm/tutorials
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PF: Statistical Modeling: Review

* Problem

— Estimating probability distribution from data

— Data = Samples drawn from an unknown underlying
distribution

— What is the underlying distribution given these data?

{x1,.., xn}
N R

X
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Non-Parametric Modeling: Review

—

: , ... kD
* Histogram & Kernel Density Estimation
— No prior assumption about the density function

« Advantages
— Flexible (for any shape of distribution)

* Disadvantages
— Needs Quantization or Bandwidth Parameter Tuning
— High Time and Space Complexity
— Needs to store all data points for KDE!
— Takes a lot of time to build and use these things
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New Strategy: Parametric Modeling

Let’s use prior knowledge/assumption of the
target distribution !!!

Two-Step Strategy

(1) Choose A Parameterized Function

— Pick a function with parameters that control its shape and location

— ltis up to us what function we use

— You need to choose the function according to your prior knowledge!!!

(2) Do Parameter Estimation -~ YMOOQSJ -&W ﬁejm»m

— Basically fit the function to the data ...in another words ...
— Estimate the parameters that make the function fit best to the data
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New Strategy: Parametric Modeling

Let’s use prior knowledge/assumption of the
target distribution !!!

Why we do this?
Parameters are typically much fewer so...

(1) Greatly improve time and space complexity
Parameter Estimation is a well-studied field

(2) Nice mathematical framework that is called...
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PF: Maximum Likelihood Estimation

 Maximum Likelihood Estimate (MLE)

* You saw this first in Bayesian Reasoning Lec
* Foundation of pattern analysis and learning

* NOT Bayesian Inference!

+ Maximum A Posteriori Estimate (MAP)

* MLE is used more than MAP

* Why?

| get back to this later
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PF: Maximum Likelihood Estimation !!!

ik
« Suppose we have independent ahdidenticaﬂv
distributed samples drawn from a distribution
parameterized by « —taon s Shape v locatn

—Xqy Xgy o s Xy~ (i.i.d.) p(X]|@) = f(x,c)
—You know a form of fBUT you don’t know the
value of o

 For what o are these samples most likely?

a™e = argmax,p(xq,..,xXy|Q)

likelihood
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MLE for Gaussian (Normal) Mean

« Suppose we have x,,..,xy ~ (i.i.d.) N(i,c?)
 But you don’t know u (known N and &?)
* MLE: For which g is x,..,x, most likely?

mle _ 2
pu"c = argmax,p(xq,.., Xy|u, 0%)
—1N\2

N, 0%) = exp(-UH)

Algebra&Calculus to simplify the problem &

Solving Vp(x) = 0 to maximize the likelihood
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Some Algebra L — e =pee)

u™e = argmax,p(xq,.., Xy|p, 0%) wE
N

= argmax,, 1_[ p(xnlu, 0?) i.i.d. assumption
n=1
N . .
= argmax,log “_[ 1p (Xp |1, %) l Log monotonisity
n=
N
= argmax, Z _ log[p(xnlu, )] log[1=2log 2
et Log-likelihood !!! —ad
N 5 IOJO e
= argmax, Z —% +Y ¢ Plugging in Gaussian
N
= argminy, Z (xp, — pn)? Removing parts that are not
n=1

related to the optimization
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More Algebra

N
= argmin, Z 1(xn — 1)?
n=

N
u s.t0 =:_#[Z (x, — n)?

N NMM& = Z L
= - Z(x, — ™€) ' Do differentiation
AN
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Argmin/Argmax is
Solving VNOt p(x,a) =0

What do we get?

MLE g™ of a normal distribution is a sample mean

ume = lzN Xn
N Lup=

In another word
Computing the sample mean =
Computing MLE of the true population mean =

Computing MLE of the center of a Gaussian fitted to
your data

CSC872: PAMI — Kazunori Okada (C) 2025 12

12




How do we do that? (Recipe for MLE)

TASK: Find 8 assuming known form of p(Datalé....)

Derive log-likelihood (LL): LL = log p(Data|é,...)
Do calculus/algebra on oLL/06
Create an equation by setting oLL/06= 0

ok ON =

or saddle point
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Solve oLL/06&= 0 about @for maximizing p(Data|é, ...)
Check if the solution is a maximum instead of minimum
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For more than one parameters

1. Derive log-likelihood (LL): LL = log p(Datalé,,..,6,)
2. Do calculus/algebraon oLL/06,,.., 0LLIOG,
3. Create a set of equations by setting

oLLIo6, = 0

oLLIoG, =0

oLL/0g,= 0
4. Solve the simultaneous equations about 6=6,,..,6,
5. Check if the solution is a maximum
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STOP: Back to MLE of Gaussian

emle — argmaxep(xl’ “e) xN|H: (,u; 0-2))

LL =log[p(xy,.., Xy, 02)]

= —0.5Nlog2m — 0.5Nloga?® — -1, SN (xy —11)?
VI N

N 1 N
> G—w =0 - o2 x,
n=1 N n=1

N
oLL _ _ N . 1 E _ itz
307 = 202 T 357 n=1(x" 1) 0

JLL
ou

QNl N

Sample variance!!!
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Unbiased Estimator

* Unbiased Estimator

— Expected value of the estimate is the same as the
true value of the estimate

« Suppose X,,..,xy ~ (i.i.d.) N(u,c?)

1N P 421 =pN
um""=ﬁz o Eld=u PR
n=

E[u™e] =E [%Z:ﬂxn] = %Z:ﬂ Elxn] = %Z:zlﬂ =.= B3
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Biased Estimator

* Biased Estimator

— Expected value of the estimate is different from the
true value of the estimate

. SuppoNse X4, Xy ~ (i.i.d.) N(1,6°)
Ohte = %anl(xn — pmiey?
okl = B[y ) Gon =) | = 3B[Y =3 Y 3 s
N-1
:> ome is biased!!! 7 ., Fleh —NE L2 -
CsCs72 ri Okada (C) 2025 17

E[x*] — E[x]? = a?
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RN (AL IR L3k, Z@u‘&)

ERs) :-ML [0} :NMM‘\MN
=lME[Z(’(u — A~ “!‘)1] dl )
- §E S pA() +</A L= 2 ) )1
E(E[Z(Xuﬂ ¢s N = 2. () o
- LE(30eA) LM N < (gl
-y BLatA - gy m
:E‘LZE(X«M - M E (p S y

'[GZK NN} J‘(N@w‘) o

http://www.ee.columbia. edu/~dhang/ﬁles/mle biased.pdf
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What we gonna do?

Bias: E[9™] - 6

Bias[o2,]| = E[0Z;e] — 0% =102 — 0% = —207?

Unbiased estimator from a biased‘one
%?‘Ni:e(lx’r‘)}'

2 _ N-1 2 —
Elomie] = TUZ Eloinpiaseal = o*

2 _ N 2 _ 1 N *‘%2
Ounbiased = N=1%mle = mzn=1(xn_ﬂ

|s unbiased estimator always better?

estl — X4

u

t2 1 N
est2 _ x
# N+ 10 anl n

Asymptotically unbiased estimator

2

2 _ N-1_2
Elome] = =g=0" 520
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And more ... what if
« TASK: Find #assuming known form of p(Data|8=6,..,6,)
1. Derive log-likelihood (LL): LL = log p(Datalé,,..,,)
2. Do calculus/algebraon 6LL/06,,.., 0LLIOG,
3. Create an equation by setting
oLL/o6, =0
oLLI0G, =0 What if we cannot solve them???
oLL/og,= 0
4. Solve the simultaneous equations about 6=6,,..,6,
5. Check if the solution is a maximum
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Alternative to Our MLE Recipe

oLL/06,=0,..,0LLI66,=0
. Ohno ...

* Go lterative !!!
(Examples: Mean Shift, EM Algorithm)

—  Find MLE of the (quadratic) lower-bound

nearest mode of the density function
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+ Bad News: for many functions you choose, you
CANNOT SOLVE the simultaneous equations

. But there is a savior ... O)Mb«'?a'tm

» Variational Method (below is the recipe)
— Define a simplified problem using inequality ... in another words ...
— Define an analytical lower-bound of your complex density function

—  This solution provides an iterative step (like mean shift vector!)
— A sequence of this iterator can be proven to asymptotically converge to a

21
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Maximum A Posteriori Estimation

* Suppose we have x,,..,xy ~ (i.i.d.) p(x|6)
* But you don’t know &
* MLE: For which @is xy,..,xy most likely?

Remember our Bayesian inference
lecture. Treating a likelihood as a
posterior yielded a wrong inference.
In the same sense, we should be
using a posterior for our parameter
estimation problem!

* MAP: Which & maximizes posterior p(dxy,..

™€ = argmaxgp(xy,.., Xy|6)

0™ = argmaxgp(8|xq,..,Xy)

= argmaxg p(xq,..xn10)p(60)
fel p(x1,.xN01)p(81) dO!

= argmaxgp(x4,.., Xxy|0)p(0)

You need to provide a
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MAP for Gaussian (Normgl) Mean

pa

« Suppose we have x;,..,xy ~ (i.i.d.) N(u,c°)

* But you don’t know u ‘
MAP: Which ¢ maximizes posterior p(u |X4,..,Xy, 02) /7
?
Set the prior also as a Gaussian N(uy, 652 <
p™*® = argmax,p(u|xq,.., Xy, 0%) Y Gope A N Se=R
= argmax,p(xy,.., Xy|t, 0° )p(u) Y Pid ——
o
= argmax, N(; o, 08) | | N(xnin0?)
n=1 _ 0210 +08 Xiioq Xn

— : 2 =
= argmax, N (4; 4, 01) Hq 52 +0ZN
2.2

0_2 — 070
@ MLE recipe: log+Vp=0 17 o2+a2N

e
o2uo+od YN_, xp o > 0 verysure M *ﬂ\”

o2+04N 0¢ - o  very unsurefl =t
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Great! But why not MAP?

+ Why did we choose Gaussian as a prior?

+ Well, we did not need to really ... but

» Because of its analytical simplicity, meaning

* You get a posterior as the same form as prior!!!

» Conjugate Prior

+ This allows us use our MLE recipe to get a closed-form soln.

+ For more complex distributions, algebra gets bad (your
headache)

+ So why not MAP

— Too much algebra being nuisance (simpler better!)

— But really, for larger N, it may not differ much from MLE !

— But really, my nice conjugate prior does not represent my specific problem
— But really, for my specific problem, | don’t have conjugate prior
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PF: Is it learning?

Mpﬁm Zfa@

» Just some algebra to derive formulae?

— Yes, but at the end, you really get a probability distribution
approximated by your function whose shape is fit to your data.

— So these provides a valid means for probabilistic learning!
— if you are lucky and you get a closed-form solution
— If not, go ITERATIVE NUMERICAL! (e.g., mean shift / EM)

» What designer must choose?
— Function form of distributions ( likelihood (+ prior) )
— Type of estimation (MLE or MAP or Iterative)

* What must be derived from data?
— Parameter values
— Approximated Distributions in an Analytical Form (if you are lucky)
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Summary

« Parametric Statistical Modeling A

Statistical Modeling via Parameter Estimation

MLE: Maximum Likelihood Estimation A/ /W\
MAP: Maximum A Posteriori Estimation

Gaussian is your friend! (or analytical nature of your function matters)
For more complex distributions, you can go iterative.
DISADVANTAGE:

— How to pick right function to your data?

— What if my data does not fit the function | want to choose (e.g.,
Gaussian)?

— Most useful function like Gaussian has a limited expression power...

* Next

— Mixture Model: Parametric Clustering & EM-Algorithm
— Pattern Classification: PCA and LDA
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