Note

• Project topic/papers due in two weeks (10/24).
 – Your literature survey topic and papers must be approved by me. (Submit it to iLearn forum thread).
 – Late policy will be applied.

• Homework #3
 – On Lecture 6-7
 – Due in one week
 – Submit your answers on 10/17 Tuesday 4pm in class

Note

• Complete the Exercise #1
 – HW Assignment: Complete FP#1 on PCA and make your final submission of your code and results (screen shots/short doc report) via iLearn by tomorrow midnight.
 – Submit the code by midnight tonight for extra credit

• Fast Prototyping Exercise #2 on Mean Shift Segmentation starts next week
 – HW Assignment: Read carefully and thoroughly the reference paper:
 https://bidal.sfsu.edu/~kazokada/csc872/PD2.pdf
Non-Parametric Statistical Modeling

CSC 872
Pattern Analysis and Machine Intelligence

References
Andrew Moore’s great slides at http://www.cs.cmu.edu/~awm/tutorials

Statistical Modeling: Review

- **Problem**
 - Estimating probability distribution from data (Bayesian framework: needs likelihood & prior)

- **Assumption**
 - Data = Samples drawn from an unknown underlying distribution

- **Question**
 - What is the underlying distribution given these data?

\[
P(X) \xrightarrow{\text{data}} \{x_1, \ldots, x_N\}
\]
KR: Probability Distribution

- **Probability Mass Function**
 - For a discrete random variable X
 - $P(X): \sum x_i P(X = x_i) = 1$
 - $\forall x P(X = x) \geq 0$

- **Probability Density Function**
 - For a continuous random variable $X = x$
 - $p(x): \int_{-\infty}^{\infty} p(x)dx = 1$
 - $\forall x p(x) \geq 0$
 - $P(a < X < b) = \int_{a}^{b} p(x)dx$

What for?

- Bayesian X (= **inference**, classification etc)

- Computing Expectation
 - $E[X] = \sum x_i P(x_i) = \mu$ (population mean)
 - $E[f(X)] = \sum x_i f(x_i) P(x_i)$
 - $E[aX + Y + b] = aE[X] + E[Y] + b$ (linear operator)

- Solving Maximum Likelihood Estimation Numerically

- Anomaly Detection
 - Sort events by associated probability (anomaly=small prob)

- Clustering/Segmentation/VectorQuantization!!!
Non-Parametric Modeling

- **Most simple way** for representing distribution
- Density Estimation
- Basically Two Steps
 1) Domain quantization (Binning)
 2) Measure Frequency / Density (Counting)

- Useful **when no known prior information about functional property** of the distribution

PF: Basic Density Estimation

- Given a sample x, a density estimator M can tell you how likely each data item is:
 $$\hat{p}(x|M) \sim p(x)$$

- Given a sample set $\{x_1, \ldots, x_N\}$, find a density estimator M that most accurately estimate the likelihood function

- You can model this with constructing a **normalized histogram** from $\{x_1, \ldots, x_N\}$
PF: Histogram as a Density Estimator

- Given a dataset \(\{x_1, \ldots, x_N\} \)
- Quantization of data space
- Frequency counts

- **Normalization** = divide by total counts
- Modeling Probability Mass Function \(P(x) \)
- Modeling Joint Distribution
 - \(P(x, y, z, \ldots) \)
 - Frequency counting in \(N \)-D feature space

Issues: Bin Size

- Estimation results are very sensitive to quantization!

- For continuous RV, quantization may be difficult
- You cannot cover entire domain accurately
Issues: Differentiability

• For some quantization, you may have some bins having zero values… So what?

• You cannot compute dataset density

\[\hat{p}(\text{dataset}|M) = \hat{p}(x_1 \land x_2 \land \cdots \land x_N|M) = \prod_{n=1}^{N} \hat{p}(x_n|M) \]

• You cannot differentiate \(P(x|M) \) at bins with zero
 – You cannot compute gradient
 – Later you will see how you don’t like this..

Modeling Probability Density Function

• Probability that \(x \), drawn from unknown density function \(p(x) \), fall inside some region \(R \) (\(V \) is volume of \(R \))

\[P = \int_{R} p(x') \, dx' \approx p(x) \, V \]

• Given \(N \) points, probability that \(K \) of them fall into inside region \(R \) follows the binomial law. Thus

\[E[K/N] = P \]

• Since the variance vanishes as \(N \to \infty \), we approximate

\[P \approx K/N \]

• With above results (two approximations) we have

\[p(x) \approx \frac{K}{NV} \]

Biship: p50-55
PF: Kernel Density Estimation

- Set region R as a hypercube of edge-length h

- **Kernel function** $H(x, h)$ is used to count data points lying inside the hypercube (also known as Parzen window)

$$H(x - x_n, h) = \begin{cases}
1 & \frac{|x_j - x_{nj}|}{h} < 0.5 \quad j = 1, \ldots, d \\
0 & \text{otherwise}
\end{cases}$$

- So a kernel is a windowing function!!!

PF: Kernel Density Estimation cond

- Counting with the kernel

$$K = \sum_{n=1}^{N} H\left(\frac{|x - x_n|}{h}\right)$$

- **Kernel Density Estimate (KDE)**

$$\hat{p}(x) \approx \frac{K}{NV} = \frac{1}{Nh^d} \sum_{n=1}^{N} H\left(\frac{|x - x_n|}{h}\right)$$
Is KDE different from Histogram?

- Both do simple counting but.....
 - histogram defines the bins in advance
 - YES, KDE removes this quantization step all once!
 - Bin size = Hypercube size = h
 - Ok. This seems more flexible but what about the differentiability?
 - **NO!** still discontinuous. $H()$ may not be able to be differentiated at everywhere.

A Good News

- You can generalize the original KDE to a smooth function simply by choosing a right kernel function !!!

- What should we use then?

- **Gaussian**
 - among others ...
KR: Gaussian (Normal) PDF

- Univariate Gaussian PDF

 \[p(x; \mu, h) = N(x; \mu, h) = \frac{1}{\sqrt{2\pi h^2}} \exp\left(-\frac{(x-\mu)^2}{2h^2}\right) \]

- Multivariate Gaussian PDF

 \[p(x; \mu, \Sigma) = \frac{1}{|2\pi\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\right) \]

1) Define \(\delta = x - \mu \)
2) Count number of contours crossed by \(\delta \)
3) \(D = \text{Constant} = \sqrt{(\delta^T\Sigma^{-1}\delta)} = \text{Mahalanobis distance} \)
4) \(\exp(-D^2/2) \)
5) \(x \) close to \(\mu \) in the squared Mahalanobis distance gets higher weight!

Why Gaussian?

- We like Gaussian because

 - It is very useful to understand basic PAMI concepts
 - Smooth function: derivative of \(\exp \) is \(\exp \)
 - Fourier transform of Gaussian is Gaussian
 - Gaussian marginal, conditional are Gaussian
 - Linear transform of Gaussian is still Gaussian

- OK. there are much more to this

KDE with Gaussian

• Now we have smooth density estimator without the quantization hassle!!!

\[\hat{p}(x) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{|2\pi\Sigma|^{1/2}} \exp(-\frac{(x-x_n)^T\Sigma^{-1}(x-x_n)}) \]

It’s a weighted sum!

Any Catch?

• No quantization hassle but
• You still need to tune the **bandwidth**!
• Which is another research topic…

• **And its complexity is high**
• You need to keep all data points
• For every location, you also need to evaluate every data points
• So it is a lot of computation with lots of data…
PF: Finding Peaks of PDF

- We want to find a peak of PDF because
 - Statistical Modes
 - (Locally) Maximum Likelihood Estimate

This can mean correct location estimate of your video tracker
This could mean there are quite a few pixels with pink color
This could mean that we have aging society (more older people)

PEAKS ARE IMPORTANT

Color=pink X=“at target” Age=80

PS: Hill-Climbing

- Find a peak iteratively from an initial point \(x^{init} \)
- Local peak defined as \(\nabla p(x) = 0 \) (horizontal tangent!)
 \[x^* = \arg \max_x p(x | x_1, \ldots, x_N) \]
- Hill-Climbing by Gradient Ascent
 - Iterative update by \(x_{n+1} = x_n + \eta \nabla p(x_n) \) with small positive \(\eta \)
 - It could oscillate & diverge, depending on \(\eta \)
 - Small \(\eta \) sure-convergence; large \(\eta \) faster convergence
PS: Mean Shift

- Adaptive step-size gradient ascent for PDFs constructed by KDE
 - no η!
- Provably convergent
 - no oscillation and no divergence!
- Implicit construction of KDE
 - It is local hill-climbing so there is no need to construct KDE for entire domain at once
 - Local density is computed only when needed

Basic Algorithm

Goal: Find the most dense point
Data Sample (Darts/Stars/BodySize)
Goal: Find the most dense point
Data Sample (Darts/Stars/BodySize)

Slides from “Mean Shift Theory and Applications” by Ukrainitz and Sarel
Basic Algorithm

Goal: Find the most dense point
Data Sample (Darts/Stars/BodySize)

Mean Shift Vector
Region of Interest
Mean

Goal: Find the most dense point
Data Sample (Darts/Stars/BodySize)
Basic Algorithm

Goal: Find the most dense point
Data Sample (Darts/Stars/BodySize)

Mean Shift Vector

Region of Interest

Mean
PS: Mean Shift Formulae

- Mean Shift Vector given samples \(x_1, \ldots, x_n, \ldots, x_N\)
 \[
 m(x, h) = \frac{\sum_{n=1}^{N} x_{n} g\left(\left\|\frac{x-x_{n}}{h}\right\|^{2}\right)}{\sum_{n=1}^{N} g\left(\left\|\frac{x-x_{n}}{h}\right\|^{2}\right)} - x
 \]

- Epanechnikov Kernel
 \[g\left(\left\|\frac{x-x_{n}}{h}\right\|^{2}\right) = \begin{cases} C & \left\|x-x_{n}\right\| \leq h \\ 0 & \text{otherwise} \end{cases}\]

- Gaussian Kernel
 \[g\left(\left\|\frac{x-x_{n}}{h}\right\|^{2}\right) = \exp\left(-\frac{\left\|x-x_{n}\right\|^{2}}{h^{2}}\right)\]

- Mean Shift Procedure (iterate this from \(x_i\) to \(x_i^{\text{mean}}\))
 \[x_{k+1} = m(x_k, h) + x_k\]

- Stopping Criteria
 \[
 \frac{\|m(x_k, h)\|^2}{h^2} < TH^2
 \]

PF: Relation to Clustering

- MS is a solution for adaptive clustering!
- No need to know how many clusters are there in data \textit{a priori}

1) For all data points, perform the MS procedure, recording their convergence to nearby modes
2) Label each mode by grouping
3) Re-assign each data points with mode labels
Mean Shift Clustering in 2D

• Advantages
 – No need to know the number of clusters a priori
 – The shape of cluster does not need to be regular

PF: Is it learning?

• Just summarizing data?
 – Descriptive Statistics
 – Inferential Statistics

• What designer must choose?
 – Quantization / Bin Size / Kernel Bandwidth
 – Types of estimation

• What must be derived from data?
 – Data Count / Frequency / Density
Summary

• Non-Parametric Statistical Modeling
 – Work with arbitrary distributions
 – Histogram
 – Kernel Density Estimation
 – Mean Shift Mode Seeking
 – Clustering
 – Memory and Time Complexity…

• Next
 – How to make use of prior knowledge of distribution?
 – Parametric Modeling!
 – FP#2 on Mean Shift Segmentation: READ THE PAPER!!!