Note

• Homework #2
 – On Lecture 4-5
 – Due in one week
 – Submit your answers on 10/3 Tuesday 4pm in class

• Fast Prototyping Exercise starts today
 – You must have read the reference paper:

Knowledge-Based Agents with First-Order Predicate Logic

CSC 872
Pattern Analysis and Machine Intelligence
Review

• **Limitation of Propositional Logic**

 - Even for a simple problem like the Wumpus world, KB gets quickly very large.
 - This is because *Propositional Logic* only represents facts in the world.

Propositional Logic Revisited

Ontological commitments: what a language assumes about the nature of the *world*.

Representation:

- **Sentences** entail **Sentence**
- Refers to (Semantics)

World

- **Facts** follows **Fact**
First Order Logic (FOL)

- First-order logic (like natural language) assumes the world contains:
 - **Objects**: car, wheel, door, body, engine, seat, passenger, driver
 - **Relations**: Properties (unary): Red(car), Healthy(body), IsOn(engine)
 N-ary relations: Inside(car, passenger), Bigger(car, driver)
 - **Functions**: ColorOf(car), MakeOf(car), SizeOf(engine)

- **Function** returns an object.
- **Relation** returns a truth value.
Models for FOL

- Propositional: sets of truth values for all prop. symbols
- FOL: same above + objects & relations!!!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>¬P</th>
<th>P ∧ Q</th>
<th>P ∨ Q</th>
<th>P ⇒ Q</th>
<th>P ⇔ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

Syntax: Basic Elements

Example Symbols

- Constants: King, 2, Wumpus,...
- Predicates: Brother, >, HasBreeze,...
- Functions: LeftLegOf, Sqrt,...
- Variables: x, y, a, b,...
- Connectives: ¬, ⇒, ∧, ∨, ⇔
- Equality: =
- Quantifiers: ∀, ∃
Syntax: Terms

- **Term**: logical expression referring to an object

 \[
 \text{Term} \rightarrow \text{Function(Term, \ldots)} \\
 \quad | \text{Constant} \\
 \quad | \text{Variable}
 \]

- **Examples**:
 - TeacherOf(Cody), StudentOf(Kaz)
 - Kaz, Sabiha, Ajinkya, Soumithri, Arjan, Raya, Prateek, Shubhankar, Rohan, Saman, David, Ahmed…
 - \(x\), referring to \{Reed, Ryan,\ldots | all students in csc872\}

Syntax: Atomic Sentences

- **Atomic sentence**: a sentence that states a fact (indicating a proposition)

 \[
 \text{AtomicSentence} \rightarrow \text{Predicate(Term, \ldots)} \\
 \quad | \text{Term = Term}
 \]

- **Examples**:
 - Classmate(Jianhong, Umang),
 - TeacherOf(Khanh) = TeacherOf(Jose)
Syntax: Complex Sentences

Sentence → AtomicSentence
| (Sentence Connective Sentence)
| Quantifier Variable, … Sentence
| ¬ Sentence

• Examples:
 – ((S1 ∧ S2) ∨ S3), ((S1 ∨ S3) ⇒ S2), (S1 ⇔ S3)
 – Student(Kaz, Raghav) ⇒ Teacher(Raghav, Kaz)
 – ∀ x Smart(x, CSC872)
 – ¬ ∀ x Perfect(x, CSC872)

Syntax: Predicate & Function

• Function := Term
 – Returns an object

• Predicate := Sentence
 – Either true or false

• Correspondence between them
 – Function: father_of(Mary) = Bill
 – Predicate: father_of(Mary, Bill)
Semantics: Models & Interpretations

- **Model + Interpretation** → truth of sentences
- **Model** contains
 (objects=domain elements, relations)
- **Interpretation** specifies referents for symbols
 - constant symbols → objects
 - predicate symbols → relations
 - function symbols → functional relations

Semantics: Truth Assignments

- `predicate(term_1,...,term_n)` is true
 iff the objects referred to by `term_1,...,term_n` are in the relation referred to by `predicate`
- `term_1 = term_2` is true under an interpretation
 iff `term_1` and `term_2` refer to the same object
- For complex sentences: Use the same rules for propositional logic
Quantifiers

• Goal: expressing sentences about \textit{collections} of objects without enumeration
• Aim: avoid naming every constants (propositional logic must do this: e.g. Wumpus)

• Variable: x, y, a, b
• Universal quantification (for all): \(\forall \)
 – e.g., All students in CS872 are smart
• Existential quantification (there exists): \(\exists \)
 – e.g., Someone in the class is sleeping

Universal Quantification (for all): \(\forall \)

Syntax: \(\forall <\text{variables}> <\text{sentence}> \)

• English: “All students in CS872 are smart”:
• FOL: \(\forall x \ In872(x) \Rightarrow Smart(x) \)

\(\forall x \) corresponds to the \textit{conjunction} of all instantiations of \(x \)

\[
\begin{align*}
\text{In872(Weisong)} & \Rightarrow \text{Smart(Weisong)} \\
\wedge \text{In872(Ray)} & \Rightarrow \text{Smart(Ray)} \\
\wedge \ldots & \\
\wedge \text{In872(Trent)} & \Rightarrow \text{Smart(Trent)}
\end{align*}
\]
Universal Quantification (for all): \forall

- \Rightarrow is a natural connective to use with \forall
- Common mistake: to use \land together with \forall

- e.g: $\forall \ x \ \text{In(CS872, } x) \land \text{Smart}(x)$
- means “every one is in CS872 and everyone is smart”

Existential quantification (there exists): \exists

Syntax $\exists \ <\text{variables}> \ <\text{sentence}>$

- English: “Someone in the class is sleeping”:
- FOL: $\exists \ x \ \text{In(CS872, } x) \land \text{Sleeping}(x)$

- $\exists \ x$ corresponds to the disjunction of all instantiations of x

$$
(\text{In(CS872, Sudha)} \land \text{Sleeping(Sudha)}) \lor \\
(\text{In(CS872, Ammar)} \land \text{Sleeping(Ammar)}) \lor \\
... \lor \\
(\text{In(CS872, Gary)} \land \text{Sleeping(Gary)})
$$
Existential quantification (there exists): ∃

• ∧ is a natural connective to use with ∃

• Common mistake: to use ⇒ together with ∃

 – e.g: ∃ x \(\text{In(CS872, x)} \Rightarrow \text{Sleeping(x)} \)
 – True even for someone not in CS872!
 – (False ⇒ True/False) are Valid!

Properties of quantifiers

∀x ∀y is the same as ∀y ∀x (why??)
∃x ∃y is the same as ∃y ∃x (why??)
∃x ∀y is not the same as ∀y ∃x

∃x ∀y Loves(x, y)
"There is a person who loves everyone in the world"
∀y ∃x Loves(x, y)
"Everyone in the world is loved by at least one person"

Quantifier duality: each can be expressed using the other
∀x Likes(x, IceCream) → ∃x ¬Likes(x, IceCream)
∃x Likes(x, Broccoli) → ∀x ¬Likes(x, Broccoli)
Translating FOL to English

The kinship domain:

- \(\forall x,y \ broccoli(x,y) \Rightarrow \ sibling(x,y) \)
 - Brothers are siblings

- \(\forall m,c \ mother(c) = m \Rightarrow (female(m) \land parent(m,c)) \)
 - One's mother is one's female parent

- \(\forall x,y \ sibling(x,y) \Leftrightarrow sibling(y,x) \)
 - "Sibling" is symmetric

Translating English to FOL

- Every gardener likes the sun.
 \(\forall x \ gardener(x) \Rightarrow likes(x, Sun) \)

- You can fool some of the people all of the time.
 \(\exists x \forall t \ (person(x) \land time(t)) \Rightarrow can-fool(x,t) \)

- You can fool everyone some of the time.
 \(\forall x \exists t \ (person(x) \land time(t)) \Rightarrow can-fool(x,t) \)

- All purple mushrooms are poisonous.
 \(\forall x \ (mushroom(x) \land purple(x)) \Rightarrow poisonous(x) \)

- No purple mushroom is poisonous.
 \(\neg \exists x \ broccoli(x) \land purple(x) \land poisonous(x) \)
 \(\equiv \ \forall x \ (mushroom(x) \land purple(x)) \Rightarrow \neg poisonous(x) \)
Higher-Order Logic

- First-order logic allows quantification over objects (= the first-order entities that exist in the world).

- Higher-order logic also allows quantification over relations and functions.

 e.g., “two objects are equal iff all properties applied to them are equivalent”:
 \[\forall x, y \ (x=y) \iff (\forall p, p(x) \iff p(y)) \]

- Higher-order logics are more expressive than first-order; however, so far we have little understanding on how to effectively reason with sentences in higher-order logic (no sound and complete inference procedure known)

Using FOL in KB Agent

- Ground Terms: a term without variables
- Substitution/Binding List: \{variable/GTerm\}
 - Given a sentence \(S \) e.g., Faster(x,y)
 - Given a substitution \(\sigma \) e.g., \(\{x/Car\}, \{y/Turtle\} \)
 - Plugging \(\sigma \) to \(S \): \(S_\sigma \) e.g., Faster(Car, Turtle)

- Knowledge-Based Agent
 - ASK(\(KB, S \))
 - KB Agent answers if KB entails \(S \) with any \(\sigma \); and also return some/all \(\sigma \) such that \(KB \models S_\sigma \)

- Example
 - TELL(\(KB, Percept([\{Smell,Breeze,\ldots\}], t=5) \))
 - ASK(\(KB, \exists a \ Action(a, t=5) \))
 - Answers: Yes (True) \(\{a/Shoot\} \)
Inference for FOL

- **Propositionalization**
- **Lifting**
 - Generalized Modus Ponens
 - Unification
 - Forward chaining
 - Backward chaining
 - Resolution

Universal Instantiation: UI

- A new inference rule for FOL for eliminating \forall for any sentence α, variable x and ground term τ, $\forall x \alpha \vdash \alpha[x/\tau]$

- e.g., $\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)$
 - $\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)$
 - $\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)$
 - $\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)$
 - $\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)$
Existential Instantiation: EI

- A new inference rule for FOL for eliminating \exists for any sentence α, variable x and constant symbol k not in KB,

$$\exists x \alpha \quad \frac{\alpha(x_1) \lor \alpha(x_2) \lor \ldots \lor \alpha(x_n)}{\alpha \{x/k\} \quad k \notin U}$$

- e.g., $\exists x \text{Crown}(x) \land \text{OnHead}(x, John)$

$$\frac{\text{Crown}(C_1) \land \text{OnHead}(C_1, John)}{C_1 \notin U}$$

- C_1 Skolem constant

Propositionalization

- Every KB in FOL can be propositionaled so as to preserve entailment
 - Reducing KB in FOL to the new one in PL using UI and EI rules
 - Perform propositional inference on the new KB

- Herbrand (1930) If a sentence α is entailed by an FOL KB, it is entailed by a finite subset of the propositionalized KB

- Idea: For $n = 0$ to ∞ do
 - create a propositional KB by instantiating with depth-n terms
 - see if α is entailed by this KB
Problems of Propositionalization

- Infinitely many ground terms
 - e.g., \(\text{Father}(\text{Father}(\text{Father}(\text{John}))) \)

- Generate lots of irrelevant sentences

- The approach based on Herbrand’s theorem works only for entailed sentences

- Turing-Church Theorem (1936):
 - Entailment for FOL is semidecidable
 - Algorithms exist that say yes to every entailed sentence, but no algorithm exists that also says no to every nonentailed sentence.

Lifting

- Raising an inference rule from propositional to first-order logic and apply them directly to FOL KB

- Generalized Modus Ponens (GMP)
 \[
 p_1, p_2, \ldots, p_n, \quad (p_1 \land p_2 \land \ldots \land p_n \Rightarrow q) \quad \text{where } p'_i \theta = p_i \theta \text{ for all } i
 \]
 \[
 \text{King(John)}, \text{Greedy(y)}, \quad (\text{King(x)} \land \text{Greedy(x)} \Rightarrow \text{Evil(x)})
 \]

 with \(\theta = \{x/\text{John}\} \)

- GMP used with KB of definite clauses (Horn clause with exactly one positive literal)
- All variables assumed universally quantified
Unification

- \textbf{Unify(\(\alpha, \beta\)) = \theta\) if \(\alpha\theta = \beta\theta\)
- \(\theta\) is called unifier

\[
\begin{align*}
\text{Knows}(\text{John},x) & \quad \text{Knows}(\text{John},\text{Jane}) \quad \{x/\text{Jane}\} \\
\text{Knows}(\text{John},x) & \quad \text{Knows}(y,\text{OJ}) \quad \{x/\text{OJ},y/\text{John}\} \\
\text{Knows}(\text{John},x) & \quad \text{Knows}(y,\text{Mother}(y)) \quad \{x/\text{Mother}(\text{John}),y/\text{John}\} \\
\text{Knows}(\text{John},x) & \quad \text{Knows}(x,\text{OJ}) \quad \{\text{fail}\}
\end{align*}
\]

- \textbf{Standarizing apart}
 - Changing \(x\) in \text{Knows}(x,\text{OJ})\) to \(z\) that does not clash

- \textbf{Most General Unifier}
 - Unique unifier that is most general when more than one unifier possible

Forward & Backward Chaining

- \textbf{Transform KB to Definite Clauses}
- \textbf{Apply Generalized Modus Ponens}
 - From premises: Forward Chaining
 - From conclusion: Backward Chaining
- \textbf{Sound and Complete for FOL in definite clauses}

- \textbf{Forward Chaining}
 - Basis for Deductive Databases (e.g., expert systems)
- \textbf{Backward Chaining}
 - Basis for Logical Programming (e.g., Prolog)
Resolution

- Forward & backward chaining are NOT complete in general FOL
- Complete theorem (Gödel, 1930)
 - any sentence entailed by a set of sentences can be proven from that set.
 - shows that it is possible to find sound and complete inference rules.
- Resolution (Robinson, 1965)
 - Proof by contradiction: (KB ∧ ¬α) is unsatisfiable → KB ⊨ α
 - Conjunctive Normal Form
 - Apply the resolution inference rule sequentially until finding unsatisfiable sentence (empty clause).

Lifted Resolution Rule

\[\frac{\alpha \lor \beta, \neg \beta \lor \gamma}{\alpha \lor \gamma} \]
\[\frac{p_1 \lor \ldots p_j \ldots \lor p_m,}{q_1 \lor \ldots q_k \ldots \lor q_n} \]
\[\frac{(p_1 \lor \ldots p_{j-1} \lor p_{j+1} \ldots p_m \lor q_1 \lor \ldots q_{k-1} \lor q_{k+1} \ldots \lor q_n) \sigma}{U_{h,R}(F, \neg G) \sigma} \]
where \[p_j \sigma = \neg q_k \sigma \]

For example,

\[\frac{\neg Rich(x) \lor Unhappy(x)}{Rich(Me)} \]
\[\frac{Unhappy(Me)}{\neg Rich(x) \lor Unhappy(x)} \]

with \[\sigma = \{x/Me\} \]
CNF Conversion for FOL

\[(\neg v_1 \lor \neg v_2) \land (\neg v_3) \land (v_4 \lor \neg v_5) \land v_6. \quad \]

Any FOL KB can be converted to CNF as follows:

1. Replace \(P \Rightarrow Q \) by \(\neg P \lor Q \)
2. Move \(\neg \) inwards, e.g., \(\neg \forall x \, P \) becomes \(\exists x \, \neg P \)
3. Standardize variables apart, e.g., \(\forall x \, P \lor \exists x \, Q \) becomes \(\forall x \, P \lor \exists y \, Q \)
4. Move quantifiers left in order, e.g., \(\forall x \, P \lor \exists x \, Q \) becomes \(\forall x \exists y \, P \lor Q \)
5. Eliminate \(\exists \) by Skolemization (next slide)
6. Drop universal quantifiers
7. Distribute \(\land \) over \(\lor \), e.g., \((P \land Q) \lor R \) becomes \((P \lor Q) \land (P \lor R) \)

Resolution Example

- \(\neg \text{American}(y) \lor \text{Weapon}(y) \lor \text{Sells}(x,y) \lor \text{Hostile}(x) \lor \text{Criminal}(x) \)
- \(\neg \text{Criminal}(x) \)
- \(\neg \text{American}(y) \lor \neg \text{Weapon}(y) \lor \text{Sells}(x,y) \lor \text{Hostile}(x) \)
- \(\neg \text{American}(x) \lor \neg \text{Weapon}(x) \lor \text{Sells}(x,x) \lor \text{Hostile}(x) \)
- \(\neg \text{Sells}(x,x) \lor \text{Hostile}(x) \lor \text{Criminal}(x) \)
- \(\neg \text{Hostile}(x) \lor \text{Criminal}(x) \)
- \(\neg \text{American}(x) \lor \neg \text{Weapon}(x) \lor \text{Sells}(x,x) \lor \text{Hostile}(x) \)
- \(\neg \text{American}(y) \lor \neg \text{Weapon}(y) \lor \text{Sells}(x,y) \lor \text{Hostile}(x) \)
- \(\neg \text{Sells}(x,x) \lor \text{Hostile}(x) \lor \text{Criminal}(x) \)
- \(\neg \text{Hostile}(x) \lor \text{Criminal}(x) \)
- \(\neg \text{American}(y) \lor \neg \text{Weapon}(y) \lor \text{Sells}(x,y) \lor \text{Hostile}(x) \)
- \(\neg \text{American}(x) \lor \neg \text{Weapon}(x) \lor \text{Sells}(x,x) \lor \text{Hostile}(x) \)
- \(\neg \text{Sells}(x,x) \lor \text{Hostile}(x) \lor \text{Criminal}(x) \)
- \(\neg \text{Hostile}(x) \lor \text{Criminal}(x) \)
- \(\neg \text{American}(y) \lor \neg \text{Weapon}(y) \lor \text{Sells}(x,y) \lor \text{Hostile}(x) \)
- \(\neg \text{American}(x) \lor \neg \text{Weapon}(x) \lor \text{Sells}(x,x) \lor \text{Hostile}(x) \)
- \(\neg \text{Sells}(x,x) \lor \text{Hostile}(x) \lor \text{Criminal}(x) \)
- \(\neg \text{Hostile}(x) \lor \text{Criminal}(x) \)
More Complex Applications

- **Ontological Engineering (Ch.10)**
 - Objects, Categories, Inheritance, Taxonomic hierarchy

- **Situation Calculus (Ch.10)**
 - Conventions for describing actions and changes

- **Planning (Ch.11)**
 - Deriving a sequence of actions that will achieve a goal
 - Can formulate planning as inference on a situation calculus KB

Logic/Knowledge-Based Agents?

- You are driving a car
- You are now at an intersection
- You check the traffic signal
- Signal turns to green
- You move forward
- A car suddenly run over and clash you and you die.
- What went wrong as an agent-based picture???

- Multi-agent (different agents different models)
- Stochastic/Dynamic environment
- Probability Theory (Facts + Uncertainty)
Summary

• FOL is more powerful
 – Objects + Relations as Ontological Commitments
 – Quantifiers introduced

• Sound and Complete Inference available
 – Propositionalization
 – Forward & backward chaining
 – Resolution

• Next
 – Ontological Commitment: Facts + Uncertainty?
 – Probability Theory
 – Bayesian Framework

• Fast Prototyping Exercise #1 after the break.