Note

• Submission of HW1 closed. Reminder sent last night. No late submission allowed.
• Fast Prototyping Exercise #1 on PCA starts next week
 – HW assignment: Continue studying MATLAB
 – Download: https://bidal.sfsu.edu/~kazokada/csc872/FaceRecognition_Data.zip
Review

- Last Lecture: Search Methods
 - One instance of the AI agent
 - Problem-Solving Agent
 - Goal-based (Uninformed Search)
 - Utility-based (Informed Search)

- Today: knowledge-based agent!
 - Another instance for realizing AI agent
 - (Simple or Model-based) Reflex Agent
 - How do we describe the condition-action rules for more complex problem?

Knowledge-Based Agent

- **TELL** agent what to know
- **ASK** agent to query what to do
- **Knowledge Base (KB):** contains a set of representations of facts about the Agent’s environment
 - **Sentence** = each representation
- **Knowledge Representation Language** = formal language used to TELL facts
 - **Inference** = reasoning to answer the query by deducing new facts from TELLed facts
 - versus Condition-Action Rules...
 - Use a formal language = **Logic**
 - Use a general inference algorithm
Toy Problem: Wumpus World

Percepts: Breeze, Glitter, Smell

Actions: Left turn, Right turn, Forward, Grab, Release, Shoot

Goals: Get gold back to start without entering pit or wumpus square

Environment:
- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter if and only if gold is in the same square
- Shooting kills the wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up the gold if in the same square
- Releasing drops the gold in the same square

Wumpus World Characteristics

- **Fully Observable No** — only local perception
- **Deterministic Yes** — outcomes exactly specified
- **Episodic No** — sequential at the level of actions
- **Static Yes** — Wumpus and Pits do not move
- **Discrete Yes**
- **Single-agent Yes** — Wumpus is essentially a natural feature
Exploring Wumpus World

A = Agent
B = Breeze
S = Smell
P = Pit
W = Wumpus
OK = Safe
V = Visited
G = Glitter

Some Tight Spots

Breeze in (1,2) and (2,1)
⇒ no safe actions

Assuming pits uniformly distributed,
(2,2) is most likely to have a pit

Smell in (1,1)
⇒ cannot move

Can use a strategy of coercion:
shoot straight ahead
wumpus was there ⇒ dead ⇒ safe
wumpus wasn’t there ⇒ safe
KR: Logic

- **Logic** is formal language for representing information such that conclusions can be drawn.

- **Syntax**: defines the sentences in the language.

- **Semantics**: define the "meaning" of sentences or "truth" of a sentence in a world.

- E.g., the language of arithmetic:
 - \(x + 2 \geq y \) is a sentence; \(xz + 2 \geq \{ \} \) is not a sentence.
 - \(x + 2 \geq y \) is **true** iff the number \(x + 2 \) is no less than the number \(y \).
 - \(x + 2 \geq y \) is **true** in a world where \(x = 7, y = 1 \).
 - \(x + 2 \geq y \) is **false** in a world where \(x = 0, y = 6 \).

PF: Entailment

- **Entailment** means that one sentence follows from another:
 \[KB \models \alpha \]

- Knowledge base \(KB \) entails sentence \(\alpha \) if and only if \(\alpha \) is true in all worlds where \(KB \) is true.
 - E.g., the KB containing "the GGate won" and "the Giants won" entails "Either the GGate won or the Giants won".
 - E.g., \(x + y = 4 \) entails \(4 = x + y \).
 - Entailment is a relationship between sentences (i.e., syntax) that is based on semantics.
 - Entailment is different from Inference.
Knowledge Representation by Logic

Models

- Logicians typically think in terms of **models**, which are formally structured **worlds/interpretations** with respect to which truth can be evaluated.

- We say \(m \) is a model of a sentence \(\alpha \) if \(\alpha \) is true in \(m \)
 - \(\alpha: x + 7 \geq y \)
 - \(m: (x, y) = (3, 4) \)

- \(M(\alpha) \) is the set of all models of \(\alpha \)
 - \(M(\alpha): \{(x, y): x + 7 \geq y\} \)

- \(KB \models \alpha \) iff \(M(KB) \subseteq M(\alpha) \)
 - \(KB: \) GGate won and Giants won
 - \(A: \) either GGate or Giants won
Entailment in the Wumpus World

- $\textbf{KB} = \text{wumpus-world rules } + \text{ observations}$
- $\alpha_1 = \text{"[1,2] is safe"}, \text{ } \textbf{KB} \models \alpha_1$
- $\alpha_2 = \text{"[2,2] is safe"}, \text{ } \textbf{KB} \not\models \alpha_2$

PF: Model Checking

PF: Logical Inference

- $\textbf{KB} \models_i \alpha$
 - sentence α can be derived from \textbf{KB} by procedure i
 - α is inferred from \textbf{KB} by using procedure i
 - Query "Is α true given \textbf{KB}?" is proven true by "i"
 - Deductive Reasoning

- Property of the inference procedure "i"
 - **Soundness**: All inference is entailment
 - "i" is sound if whenever $\textbf{KB} \models_i \alpha$, it is also true that $\textbf{KB} \models \alpha$
 - **Completeness**: All entailment is inference
 - "i" is complete if whenever $\textbf{KB} \models \alpha$, it is also true that $\textbf{KB} \models_i \alpha$

\[\text{Sound } \& \text{ Complete } \iff \text{ } \textbf{KB} \models_i \alpha \iff \text{ } \textbf{KB} \models \alpha \]
Propositional Logic: Syntax

- The simplest logical language
- If P and Q are sentences, following are also sentences with logical connectives:
 \(\neg, \lor, \land, \rightarrow, \leftrightarrow \)

 - \(P \) "P is true"
 - \(\neg P \) negation "P is false"
 - \(P \lor Q \) disjunction "either P is true or Q is true or both"
 - \(P \land Q \) conjunction "both P and Q are true"
 - \(P \rightarrow Q \) implication "if P is true, then Q is true"
 - \(P \leftrightarrow Q \) equivalence "P and Q are either both true or both false"

Propositional Logic: Semantics

- Propositional logic only deal with facts:
 - Symbols and expressions only evaluate to either "true" or "false"
 - A model "m" specifies true/false for each proposition symbol

 - E.g. \(S_1, S_2, S_3 \)
 - \(m_1 \):
 - false true false
 - \(m_2 \):
 - true true false

Rules for evaluating truth with respect to a model \(m \):

\[
\begin{align*}
\neg S & \text{ is true iff } S \text{ is false} \\
S_1 \land S_2 & \text{ is true iff } S_1 \text{ is true and } S_2 \text{ is true} \\
S_1 \lor S_2 & \text{ is true iff } S_1 \text{ is true or } S_2 \text{ is true} \\
S_1 \rightarrow S_2 & \text{ is true iff } S_1 \text{ is false or } S_2 \text{ is true} \\
\text{i.e.,} & \text{ is false iff } S_1 \text{ is true and } S_2 \text{ is false} \\
S_1 \leftrightarrow S_2 & \text{ is true iff } S_1 \Rightarrow S_2 \text{ is true and } S_2 \Rightarrow S_1 \text{ is true}
\end{align*}
\]
Wumpus World by Propositional Logic

Let $P_{i,j}$ be true if there is a pit in $[i,j]$.
Let $B_{i,j}$ be true if there is a breeze in $[i,j]$.

- "Pits cause breezes in adjacent squares"
 \[
 B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \\
 B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1})
 \]

Truth Table

- Truth value: whether a sentence is true or false.
- Truth table: complete list of truth values for a sentence given all possible values of the individual atomic expressions (defining their semantics).

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$P \land Q$</th>
<th>$P \lor Q$</th>
<th>$P \Rightarrow Q$</th>
<th>$P \Leftrightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>
Proof Methods as KB Query

- The procedure we are interested is essentially the same as performing mathematical proof!!!
- Two types of proof methods:
 - **Application of inference rules (Deductive)**
 - **Inference rule** = Sound generation of new sentences from old ones
 - **Proof** = a sequence of inference rule applications
 - Use inference rules as operators in a standard search algorithm
 - Typically require transformation of sentences into a normal form
 - **Model checking (Enumerative)**
 - truth table enumeration (always exponential in \(n \))
 - improved backtracking,
 - e.g., Davis–Putnam-Logemann-Loveland (DPLL)
 - heuristic search in model space (sound but incomplete)
 - e.g., min-conflicts-like hill-climbing algorithms
Validity and Satisfiability

A sentence is **valid** if it is true in **all** worlds,
e.g., \(A \lor \neg A, True, \neg False, A \implies A, (A \land (A \implies B)) \implies B \)

A sentence is **satisfiable** if it is true in **some** world

e.g., \(A, \neg A, True, A \lor B \)

A sentence is **unsatisfiable** if it is true in **no** worlds

e.g., \(A \land \neg A, False, \neg True \)

Validity is connected to inference via the **Deduction Theorem**:

\[KB \vDash \alpha \iff (KB \implies \alpha) \text{ is valid} \]

Satisfiability is connected to inference via the following:

\[KB \vDash \alpha \iff (KB \land \neg \alpha) \text{ is unsatisfiable} \]

Logical Equivalence

- Two sentences are **logically equivalent**

\[\alpha \equiv \beta \iff \alpha \vDash \beta \land \beta \vDash \alpha \]

\[
\begin{align*}
(\alpha \land \beta) & \equiv (\beta \land \alpha) & \text{commutativity of } \land \\
(\alpha \lor \beta) & \equiv (\beta \lor \alpha) & \text{commutativity of } \lor \\
((\alpha \land \beta) \land \gamma) & \equiv (\alpha \land (\beta \land \gamma)) & \text{associativity of } \land \\
((\alpha \lor \beta) \lor \gamma) & \equiv (\alpha \lor (\beta \lor \gamma)) & \text{associativity of } \lor \\
\neg(\neg\alpha) & \equiv \alpha & \text{double-negation elimination} \\
(\alpha \implies \beta) & \equiv (\neg\beta \implies \neg\alpha) & \text{contraposition} \\
(\alpha \implies \beta) & \equiv (\neg\alpha \lor \beta) & \text{implication elimination} \\
(\alpha \iff \beta) & \equiv ((\alpha \implies \beta) \land (\beta \implies \alpha)) & \text{biconditional elimination} \\
\neg(\alpha \land \beta) & \equiv (\neg\alpha \lor \neg\beta) & \text{de Morgan} \\
\neg(\alpha \lor \beta) & \equiv (\neg\alpha \land \neg\beta) & \text{de Morgan} \\
(\alpha \land (\beta \lor \gamma)) & \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) & \text{distributivity of } \land \text{ over } \lor \\
(\alpha \lor (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) & \text{distributivity of } \lor \text{ over } \land
\end{align*}
\]
(Sound) Inference Rules

\(\alpha: \text{ I'm hungry} \)
\(\beta: \text{ I eat} \)

\[\alpha \rightarrow \beta, \quad \alpha \]
\[\beta \]

\(\alpha \land \alpha_2 \land \ldots \land \alpha_n \)
\[\alpha_i \]

\(\alpha_1, \alpha_2, \ldots, \alpha_n \)
\[\alpha_1 \land \alpha_2 \land \ldots \land \alpha_n \]

\(\alpha \lor \alpha_2 \lor \ldots \lor \alpha_n \)
\[\alpha_i \]

\(\alpha \lor \beta, \quad \neg \beta \)
\[\alpha \quad \text{disjunctive syllogism} \]

\(\alpha \lor \beta, \quad \neg \beta \lor \gamma \)
\[\alpha \lor \gamma \]

or equivalently
\[\neg \alpha \rightarrow \beta, \quad \beta \rightarrow \gamma \]
\[\neg \alpha \rightarrow \gamma \]
PS: Resolution

- **Conjunctive Normal Form (CNF)**
 - conjunction of disjunctions of literals/ clauses

 \[(A \lor \neg B) \land (B \lor \neg C \lor \neg D) \]

- **Resolution** inference rule (for CNF):

 \[
 \frac{l_i \lor ... \lor l_k, \quad (m_1 \lor ... \lor m_n)}{l_i \lor ... \lor l_{i-1} \lor l_{i+1} \lor ... \lor l_k \lor m_1 \lor ... \lor m_{j-1} \lor m_{j+1} \lor ... \lor m_n}
 \]

 where \(l_i \) and \(m_j \) are complementary literals.

 \[
 \text{E.g.,} \quad (P_{1,3} \lor P_{2,2}), \quad \neg P_{2,2} \\
 \]

- **Resolution** is **sound and complete for propositional logic**

PS: Conversion to CNF (example)

\[
B_{1,1} \leftrightarrow (P_{1,2} \lor P_{2,1})
\]

1. **Eliminate** \(\leftrightarrow \), replacing \(\alpha \leftrightarrow \beta \) with \((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha) \).

 \[
 (B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})
 \]

2. **Eliminate** \(\Rightarrow \), replacing \(\alpha \Rightarrow \beta \) with \(\neg \alpha \lor \beta \).

 \[
 (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})
 \]

3. **Move** \(\neg \) **inwards** using de Morgan’s rules and double negation:

 \[
 (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})
 \]

4. **Apply distributivity law** (\(\land \) over \(\lor \)) and flatten:

 \[
 (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})
 \]
PS: Resolution Algorithm

- **Proof by Contradiction** of \(KB \models \alpha \)
- *i.e., show \((KB \land \neg \alpha)\) is unsatisfiable*

1) First convert \((KB \land \neg \alpha)\) into CNF.
2) Then apply the resolution rule to resulting clauses.
3) The process continues until:
 a) *there are no new clauses* that can be added
 (KB does not entail \(\alpha \))
 b) two clauses *resolve to yield empty clause*
 (KB entails \(\alpha \))

Resolution Example

- There is no PIT in (1,2)?
- \(KB = (B_{1,1} \iff (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1} \)
- \(\alpha = \neg P_{1,2} \)
PS: Resolution Algorithm

- Proof by Contradiction of \(KB \models \alpha \)

```python
def PL-RESOLUTION(KB, \alpha)
    returns true or false
    clauses ← the set of clauses in the CNF representation of \( KB \land \neg \alpha \)
    new ← \{ \}
    loop do
        for each \( C_i, C_j \) in clauses do
            resolvents ← PL-RESOLVE(\( C_i, C_j \))
            if resolvents contains the empty clause then return true
            new ← new \cup resolvents
            if new \subseteq clauses then return false
        clauses ← clauses \cup new
    end loop
    return false
```

PS: Forward & Backward Chaining

- **Horn Form:**
 - conjunction of Horn Clauses

- **Horn Clause:**
 - proposition symbol; or
 - (conjunction of symbols) \(\Rightarrow \) symbol
 - E.g., \(C \land (B \Rightarrow A) \land (C \land D \Rightarrow B) \)

- **Modus Ponens:**
 \[
 \alpha_1, \ldots, \alpha_n, \alpha_1 \land \ldots \land \alpha_n \Rightarrow \beta
 \]

- **Forward Chaining and Backward Chaining**
 - uses Modus Ponens on Horn Forms.
- They are sound and complete for Horn Form
- They run in \textit{LINEAR} time
PS: Forward Chaining

- Idea: fire any rule whose premises are satisfied in the KB,
 - add its conclusion to the KB, until query is found

\[
P \Rightarrow Q \\
L \land M \Rightarrow P \\
B \land L \Rightarrow M \\
A \land P \Rightarrow L \\
A \land B \Rightarrow L \\
A \\
B
\]

PS: FC Algorithm Example

\[
KB \models Q ?
\]

\[
P \Rightarrow Q \\
L \land M \Rightarrow P \\
B \land L \Rightarrow M \\
A \land P \Rightarrow L \\
A \land B \Rightarrow L \\
A \\
B
\]
PS: FC Algorithm

function PL-FC-ENTAILS?(KB, q) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do
 p ← POP(agenda)
 unless inferred[p] do
 inferred[p] ← true
 for each Horn clause c in whose premise p appears do
 decrement count[c]
 if count[c] = 0 then do
 if HEAD[c] = q then return true
 PUSH(HEAD[c], agenda)
 return false

• Forward chaining is sound and complete for Horn-Form KB

PS: Backward Chaining

• Motivation: Need goal-directed reasoning in order to keep from getting overwhelmed with irrelevant consequences
• Main idea:
 – Work backwards from query q
 – Prove by backward chaining all premises of some rule concluding q
PS: Forward & Backward Chaining

- **Forward Chaining** is *data-driven*
 - automatic, unconscious processing,
 - e.g., object recognition, routine decisions
 - May do lots of work that is irrelevant to the goal

- **Backward Chaining** is *goal-driven*
 - appropriate for problem-solving,
 - e.g., Where are my keys? How do I get into a PhD program?
 - Complexity of BC can be *much less* than linear in size of KB

Limitation of Propositional Logic

- **Limited expressiveness**
 - Each situation (e.g., location, time) requires separate rule sentence
 - e.g., “don’t go forward if the wumpus is in front of you” takes 64 rules when you have an 8x8 grid
 - e.g., to track 100 steps over time, we’ll then need 6400 rules for the previous example. -> cannot keep track of changes over time

- **Huge Knowledge- and Rule-Base**
 - Hard to write and maintain such huge base
 - Inference becomes intractable
Summary

• Knowledge-Based Agents: apply inference to a knowledge base to derive new information and make decisions

• Basic concepts of logic:
 – syntax: formal structure of sentences
 – semantics: truth of sentences wrt models
 – entailment: necessary truth of one sentence given another
 – inference: deriving sentences from other sentences
 – soundness: derivations produce only entailed sentences
 – completeness: derivations can produce all entailed sentences

• Resolution is complete for propositional logic

• Forward, backward chaining are linear-time, complete for Horn clauses

• Propositional logic lacks expressive power

• Next
 – First Order Logic
 – Fast Prototyping #1: READ THE PAPER!!!