
1

Note

• Homework #1
– Accessible in Canvas’s “Assignment” section, click the link

– On Lecture 1-3

– Due in one week (2/18)

– Save your hand-written or typed answers into a single
PDF file, combining all pages in order of questions. Use
any PDF scan app (e.g., CamScanner) or multifunction
printers.

– Submit the PDF file to “Submission for HW #1” link by
2/18 4pm. No late submission allowed! Strictly applied.

– Must check all pages are present and readable after you
submit!

CSC872: PAMI – Kazunori Okada (C) 2025 1

CSC872: PAMI – Kazunori Okada (C) 2025 2

PF/PS: Search Methods

CSC 872

Pattern Analysis and Machine Intelligence

1

2

2

CSC872: PAMI – Kazunori Okada (C) 2025 3

Review

• Last Lecture: Agent-based AI (KR&PF in AI)
– Learned how to formulate a problem as an AI agent
– View as the cycle of Percept-Reason-Action interacting with

Environment
– Environment types: PEAS
– Agent types:

– simple and model-based reflex agents
– goal- and utility-based agents
– learning agents

• Today
– We will look at one instance of actual implementation of

the agent-based program for Goal- and Utility-based ones

CSC872: PAMI – Kazunori Okada (C) 2025 4

Measuring with Bucket

Problem: Using these three buckets,

measure 7 liters of water.

3 l 5 l
9 l

From CSC561@USC

3

4

3

CSC872: PAMI – Kazunori Okada (C) 2025 5

Measuring with Bucket

3 l 5 l
9 l

a b c

A Solution:

a b c
0 0 0 start
3 0 0
0 0 3
3 0 3
0 0 6
3 0 6
0 3 6
3 3 6
1 5 6
0 5 7 goal

CSC872: PAMI – Kazunori Okada (C) 2025 6

Measuring with Bucket

3 l 5 l
9 l

a b c

Another Solution:

a b c
0 0 0 start
0 5 0
3 2 0
3 0 2
3 5 2
3 0 7 goal

5

6

4

CSC872: PAMI – Kazunori Okada (C) 2025 7

Which solution is preferred?

• Solution 1:

a b c
0 0 0 start
3 0 0
0 0 3
3 0 3
0 0 6
3 0 6
0 3 6
3 3 6
1 5 6
0 5 7 goal

• Solution 2:

a b c
0 0 0 start
0 5 0
3 2 0
3 0 2
3 5 2
3 0 7 goal

CSC872: PAMI – Kazunori Okada (C) 2025 8

Problem-Solving Agent

• Four general steps to design this type of agent:

• Goal formulation
– What are the successful world states

• Problem formulation
– What actions and states to consider given the goal

• Search strategy (Find Solution)
– Determine the possible sequence of actions that lead to the states of

known values and then choosing the best sequence.

• Execute
– Give the solution perform the actions.

7

8

5

CSC872: PAMI – Kazunori Okada (C) 2025 9

Problem-Solving Agent

CSC872: PAMI – Kazunori Okada (C) 2025 10

Example: Measuring with Bucket

• Formulate goal:
– Have 7 liters of water in 9-liter bucket

• Formulate problem:
– States: amount of water in the 3 buckets

– Operators: fill bucket from source, empty bucket to
others

• Find Solution:
– Sequence of operators that bring you from current

state (0,0,0) to the goal state (x,x,7)

9

10

6

CSC872: PAMI – Kazunori Okada (C) 2025 11

Problem Types

• Deterministic, fully observable
 single-state problem (chess)
– Agent knows exactly which state it will be in; solution is a sequence

• Non-observable
 sensorless problem (walking in dark)
– Agent may have no idea where it is; solution is a sequence

• Nondeterministic and/or partially observable
 contingency problem (poker)
– percepts provide new information about current state
– often interleave search and execution

• Unknown state space
 exploration problem (maze)

CSC872: PAMI – Kazunori Okada (C) 2025 12

Toy Problem/Model

• Intended to illustrate or exercise various methods
with concise and exact description

– Vacuum World
– Measuring with Buckets
– …

• Real-World Problem is the one we want to solve but
often hard to describe and solve

– Robot navigation
– Playing the game of Go

• Toy problem is used to explore and understand
behavior of an algorithm for certain type of problem

11

12

7

CSC872: PAMI – Kazunori Okada (C) 2025 13

Toy Problem: Romania

CSC872: PAMI – Kazunori Okada (C) 2025 14

Toy Problem: 8-puzzle

start state goal state

13

14

8

CSC872: PAMI – Kazunori Okada (C) 2025 15

Selecting a State Space

• Real world is absurdly complex
– State space must be abstracted for problem solving

• Abstracting a set of real states
– "Arad” or “Zerind" represents a complex multi-aspect real city whose boundary

may be difficult to define.

• Abstracting a complex combination of real actions
– Abstraction is to say “going from the city A to B costs LAB” rather than

actually driving from A to B on possible routes, detours, rest stops etc.

• Abstracting a set of real paths that are solutions in the real
world
– What is true in the abstracted state space must also be true in the real world

(correctness).

• Finding the right level of abstraction is difficult
• Each abstraction should be "easier" than the original problem

CSC872: PAMI – Kazunori Okada (C) 2025 16

Problem Formulation

• A problem is defined by four items given a state space &
a goal:

• initial state:
– e.g., “at Arad”

• operator (or successor function S(x)):
– e.g., “Arad Zerind” and “Arad Sibiu” etc

• goal test:
– Explicit: “at Bucharest?”
– Implicit: Checkmate(x)

• path cost (additive: how long traveled?):
– e.g., “the sum of distances” and “number of operators applied” etc

• A solution is a sequence of operators leading from the
initial state to a goal state

15

16

9

CSC872: PAMI – Kazunori Okada (C) 2025 17

Example: 8-puzzle

• states? locations of tiles
• actions? move blank left, right, up, down
• goal test? = goal state (given)
• path cost? 1 per move
•

CSC872: PAMI – Kazunori Okada (C) 2025 18

STOP: Example: Robot Hand

• states? real-valued coordinates of robot joint
angles, parts of the object to be assembled

• actions? continuous motions of robot joints
• goal test? complete assembly
• path cost? time to execute
•

17

18

10

CSC872: PAMI – Kazunori Okada (C) 2025 19

Search (Finding Solutions)

Function General-Search(problem, strategy) returns a solution, or failure

initialize the search tree using the initial state

loop do

if no more candidates for expansion then return failure

choose a leaf node for expansion according to the strategy

if the node contains a goal state then return the corresponding solution

else expand the node and add resulting nodes to the search tree

end

Basic idea: offline, systematic exploration of
simulated state-space by generating successors
of explored states (expanding)

Strategy: the order of node expansion
Solution: a sequence from initial to goal states

CSC872: PAMI – Kazunori Okada (C) 2025 20

Tree Search Example

19

20

11

CSC872: PAMI – Kazunori Okada (C) 2025 21

State Space vs. Search Tree

• Tree node encapsulates state information
– Node: State, Parent, Action, Depth, Path-Cost

– Expand: create new nodes

– Operator: create corresponding state

CSC872: PAMI – Kazunori Okada (C) 2025 22

Search Strategy

• Order of node expansion defines a search strategy

• Strategies are evaluated in terms of:
– completeness: does it always find a solution if one exists?

– time complexity: number of nodes generated

– space complexity: maximum number of nodes in memory

– optimality: does it always find a least-cost solution?

• Time and space complexity are measured in:
– b: maximum branching factor of the search tree

– d: depth of the least-cost solution

– m: maximum depth of the state space (may be ∞)

21

22

12

CSC872: PAMI – Kazunori Okada (C) 2025 23

Uninformed Search

• Use only information available in the
problem formulation (Blind Search)

• Breadth-first
• Uniform-cost
• Depth-first
• Depth-limited
• Iterative deepening
• Bidirectional

CSC872: PAMI – Kazunori Okada (C) 2025 24

Breadth-First Search

• Expand shallowest unexpanded node

• Implementation: build a FIFO queue

23

24

13

CSC872: PAMI – Kazunori Okada (C) 2025 25

Breadth-First Search

S

A D

B D A E

C E E B B F

D F B F C E A C G

G

GG FC

Move downwards
level by level,
until goal is reached

Completeness: Yes, if b is finite
Time complexity: 1+b+b2+…+bd = O(bd), i.e., exponential in d
Space complexity: O(bd) all visited must be stored
Optimality: Yes (assuming cost = 1 per step)

CSC872: PAMI – Kazunori Okada (C) 2025 26

Uniform-Cost Search

• Expand node with lowest path-cost

• Implementation: a queue sorted by path-cost

Romania with step cost in KM

Path-Cost g(n)

25

26

14

CSC872: PAMI – Kazunori Okada (C) 2025 27

Uniform-Cost Search

Completeness: Yes, if step cost >0
Time complexity: O(bd)
Space complexity: O(bd)
Optimality: Yes, as long as path cost never decreases

CSC872: PAMI – Kazunori Okada (C) 2025 28

Depth-First Search

• Expand deepest unexpanded node

• Implementation: build a LIFO queue (stack)

27

28

15

CSC872: PAMI – Kazunori Okada (C) 2025 29

Depth-First Search

B

C E

D F

G

S

A

Move downwards
as deep as you can,
then back up

Completeness: No, fails in infinite or cyclic state-space
Time complexity: O(bm)
Space complexity: O(bm)
Optimality: No

CSC872: PAMI – Kazunori Okada (C) 2025 30

Informed Search

• Use problem-specific heuristic to guide
search

• Utility-based vs Goal-based Agent

• Best-First Search
• Greedy Search
• A* search
• Local Search (Revisited Later)

– Hill-Climbing
– Simulated Annealing
– Local Beam Search

29

30

16

CSC872: PAMI – Kazunori Okada (C) 2025 31

Best-First Search

• Idea: Use evaluation function f(n) to estimate
desirability of each node

• Expand node that appears best (most desirable)

• Implementation: a queue sorted by desirability

• Special Case of f(n)
– Greedy Search

– A* Search

CSC872: PAMI – Kazunori Okada (C) 2025 32

Heuristics

• [dictionary]“A rule of thumb, simplification,
or educated guess that reduces or limits
the search for solutions in domains that are
difficult and poorly understood.”

• h(n) = estimated cost of the cheapest
path from node n to goal node.

• If n is goal then h(n)=0

31

32

17

CSC872: PAMI – Kazunori Okada (C) 2025 33

Straight-Line Heuristics

• hSLD(n) = straight-line distance from n to
Bucharest

•

374

329

253

Romania with Heuristics in KM

CSC872: PAMI – Kazunori Okada (C) 2025 34

Greedy Search

• Expand node that appears to be closest to goal

• Implementation: f(n) = hSLD(n)

33

34

18

CSC872: PAMI – Kazunori Okada (C) 2025 35

Greedy Search

Completeness: No (cf. DF-search)
Time complexity: O(bm) but good heuristic can improve this
Space complexity: O(bm) keep all nodes in memory
Optimality? No (cf. DF-search)

CSC872: PAMI – Kazunori Okada (C) 2025 36

A* Search

• Avoid expanding paths that are already
expensive

• Implementation: f(n) = g(n) + h(n)

35

36

19

CSC872: PAMI – Kazunori Okada (C) 2025 37

Admissible Heuristics

• A heuristic is admissible if it never
overestimates the true cost to reach a goal

• h(n) h*(n) for all n where h*(n) is the true
cost from n.
– hSLD(n) is admissible because it never overestimates

actual road distance.

• Admissible heuristic is optimistic

CSC872: PAMI – Kazunori Okada (C) 2025 38

Optimality of A*

• Theorem: If h(n) is admissible, A* using
TREE-SEARCH is optimal

• Complete?
– Yes (unless there are infinitely many nodes with f ≤ f(G))

• Time?
– Exponential in length of solution

• Space?
– Keeps all nodes in memory

• Optimal?
– Yes if h(n) is admissible

37

38

20

CSC872: PAMI – Kazunori Okada (C) 2025 39

Summary

• Overview
– PF: Problem-Solving Agent
– PF: Goal-based Problem Formulation
– PS: Uninformed Search (Breadth-First, Depth-First)
– PS: Informed Search (Greedy, A*)

• MATLAB exercise 2 after the break
• Work on HW1!
• Next Lecture

– PF: Knowledge-based Agent
– KR: Propositional Logic
– PF: Logical Inference
– PS: Resolution, Model Checking, Forward Chaining
– MATLAB exercise 3

39

