Note

 Homework #1
— Accessible in Canvas’s “Assignment” section, click the link
— On Lecture 1-3
— Due in one week (2/18)

— Save your hand-written or typed answers into a single
PDF file, combining all pages in order of questions. Use
any PDF scan app (e.g., CamScanner) or multifunction
printers.

— Submit the PDF file to “Submission for HW #1” link by
2/18 4pm. No late submission allowed! mm:ﬁ

— Must check all pages are present and readable after you
submit!

CSC872: PAMI — Kazunori Okada (C) 2025

1

[FR-£F -fS

PF/PS: Search Methods

CSC 872
Pattern Analysis and Machine Intelligence

CSC872: PAMI — Kazunori Okada (C) 2025

2

Revi
eview (\{(A\{ﬂo A ’ /

v

» Last Lecture: Agent-based Al (KR&PF in Al)

— Learned how to formulate a problem as an Al agent

— View as the cycle of Percept-Reason-Action interacting with
Environment

— Environment types: PEAS

— Agent types:
— simple and model-based refle

— goal- and utility-based agents
— learning agents
* Today

— We will look at one instance of actual implementation of
the agent-based program for Goal- and Utility-based ones

CSC872: PAMI — Kazunori Okada (C) 2025 . 3

3

Measuring with Bucket

Problem: Using these three buckets,
measure 7 liters of water.

From CSC561@USC

CSC872: PAMI — Kazunori Okada (C) 2025

4

Measuring with Bucket

A Solution:

a

b

C

oo start

CSC872: PAMI — Kazunori Okada (C) 2025

a b C

5

Measuring with Bucket

Another Solution:

a

b

C

oo o start

CSC872: PAMI — Kazunori Okada (C) 2025

a b

6

Which solution is preferred?

e Solution 1: e Solution 2:

a b C a b c

w w w o
U O N U
N N O O

— WO WoOWwWwoWw
U W wooooo
A OO O W WOo

Q
o
L

CSC872: PAMI — Kazunori Okada (C) 2025 7

7

Problem-Solving Agent

Four general steps to design this type of agent:

Goal formulation Pecortion

— What are the successful world states

Problem formulation

— What actions and states to consider given the goal

Search strategy (Find Solution)

Execute

— Give the solution perform the actions.

CSC872: PAMI — Kazunori Okada (C) 2025 8

8

Problem-Solving Agent

function SIMPLE-PROBLEM-SOLVING-AGENT(erce@eturns an action
static:(segan action sequence, initially empty

some description of the current world state

» goal, initially null

roflem)a problem formulation

state <+ UPDATE-STATE(state, percept)

if seq is empty then do

goal+— FORMULATE-GOAL(state)

problem < FORMULATE-PROBLEM(state, goal)
seg < SEARCH(problem)

action < FIRST(seq)

seq + REST(seq)

return action

CSC872: PAMI — Kazunori Okada (C) 2025

9

Example: Measuring with Bucket

* Formulate goal:

— Have 7 liters of water in 9-liter bucket

Formulate problem:
— States: amount of water in the 3 buckets

— Operators: fill bucket from source, empty bucket to

others

* Find Solution:
— Sequence of operators that bring you from current

state (0,0,0) to the goal state (x,x,7)

CSC872: PAMI — Kazunori Okada (C) 2025

10

Problem Types

» Deterministic, fully observable
- single-state problem (chess) (buc/«#»)

— Agent knows exactly which state it will be in; solution is a sequence

» Non-observable Dead Focoma
-> sensorless problem (walking in dark) /g\f
— Agent may have no idea where it is; solution is a sequence

» Nondeterministic and/or partially observable

-> contingency problem (poker)
— percepts provide new information about current state
— often interleave search and execution

* Unknown state space
-> exploration problem (maze)

CSC872: PAMI — Kazunori Okada (C) 2025 1

11

Toy Problem/Model

. In_tended to illustrate or exerc_ise various methods
with concise and exact description

— Vacuum World
— Measuring with Buckets

* Real-World Problem is the one we want to solve but
often hard to describe and solve

— Robot navigation
— Playing the game of Go

* Toy problem is used to explore and understand
behavior of an algorithm for certain type of problem

CSC872: PAMI — Kazunori Okada (C) 2025 12

12

Toy Problem: Romania

/:\Oradea
\ Neamt

Ij/Zerind \ D\q _

Arad

Timisoara

Lugoj

Mehadia

Dobreta

13

Toy Problem: 8-puzzie

4]
an

art state goal state

= Jf -]
=0
BoR

o+

S

CSC872: PAMI — Kazunori Okada (C) 2025

14

Selecting a State Space

Real world is absurdly complex
— State space must be abstracted for problem solving

Abstracting a set of real states

— "Arad” or “Zerind" represents a complex multi-aspect real city whose boundary
may be difficult to define.

Abstracting a complex combination of real actions

— Abstraction is to say “going from the city A to B costs L,g” rather than
actually driving from A to B on possible routes, detours, rest stops etc.

Abstracting a set of real paths that are solutions in the real
world

— What is true in the abstracted state space must also be true in the real world
(correctness).

Finding the right level of abstraction is difficult
Each abstraction should be "easier" than the original problem

CSC872: PAMI — Kazunori Okada (C) 2025

15

Problem Formulation

CSC872: PAMI — Kazunori Okada (C) 2025 16

* A problem is defined by four items given a state space &

a goal: Arad = Sibrw
Si t:v o =9 FGEW%
+ initial state: Fryae = gl
- e.g., “at Arad” A= —
« operator (or successor function S(x)): .
— e.g., “Arad - Zerind” and “Arad > Sibiu” etc | = ¥ o
+ goal test: vl o /
— Explicit: “at Bucharest?” biia N i .l
— Implicit: Checkmate(x) o L e .
+ path cost (additive: how long traveled?): o

— e.g., ‘the sum of distances” and “number of operators applied” etc

* A solution is a sequence of operators leading from the
initial state to a goal state

16

Example: 8-puzzle

’7 2 || 4 1] 2
BRI
‘B SIE 6l 7|l s
Start State Goal State

» states?

e actions?

» goal test?

» path cost?

CSC872: PAMI — Kazunori Okada (C) 2025

17

STOP: Example: Robot Hand

» states?

* actions?
» goal test?
 path cost?

°
CSC872: PAMI — Kazunori Okada (C) 2025

18

Search (Finding Solutions) %

Basic idea: offline, systematic exploration of
simulated state-space by generating successqrs
of explored states (expanding) o/ (&

Function General-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state
loop do
if no more candidates for expansion then return failure
choose a leaf node for expansion according to the strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add resulting nodes to the search tree
end

Strategy: the order of node expansion

o ke o s O0IUTION: @ SEQUENce from initial to goal states

19

Tree Search Example

CSC872: PAMI — Kazunori Okada (C) 2025

20

20

10

State Space vs. Search Tree

» Tree node encapsulates state information
— Node: State, Parent, Action, Depth, Path-Cost
— Expand: create new nodes
— Operator: create corresponding state

AcTion = right
Node DeptH =106

Pars-CosT =6

CSC872: PAMI — Kazunori Okada (C) 2025 21

21

Search Strategy

» Order of node expansion defines a search strategy

 Strategies are evaluated in terms of:
completeness: does it always find a solution if one exists?
time complexity: number of nodes generated

space complexity: maximum number of nodes in memory
optimality: does it always find a least-cost solution?

» Time and space complexity are measured in:
— b: maximum branching factor of the search tree
— d: depth of the least-cost solution
— m: maximum depth of the state space (may be)

CSC872: PAMI — Kazunori Okada (C) 2025 22

22

11

Search

Uninformed Search Stuetegy

Use only information available in the
problem formulation (Blind Search)

Breadth-first
Uniform-cost
Depth-first
Depth-limited
lterative deepening
* Bidirectional

CSC872: PAMI — Kazunori Okada (C) 2025

23

23

Breadth-First Search [t

« Expand shallowest unexpanded node
» Implementation: build a FIFO queue

0 Gra e

AT

LXK

SCXRER)
XL

CSC872: PAMI — Kazunori Okada (C) 2025

Rimnicy
Acad Oradea ° Oradea Fagaras ik Arad Lugo)

24

24

12

Breadth-First Search 6t

Completeness: Yes, if b is finite

Time complexity: 1+b+b%+...+bd = O(bY), i.e., exponential in d
Space complexity: O(b?) all visited must be stored

Optimality: Yes (assuming cost = 1 per step)

Move downwards
level by level,
until goal is reached

CSC872: PAMI — Kazunori Okada (C) 2025

25

25

Uniform-Cost Search

« Expand node with lowest path-cost
* Implementation: a queue sorted by path-cost

Path-Cost g(n)

Ol ciurgiu

Romania with step cost in KM

CSC872: PAMI — Kazunori Okada (C) 2025

26

13

Uniform-Cost Search

Completeness: Yes, if step cost > £>0

Time complexity: <09

Space complexity: < O(b%)

Optimality: Yes, as long as path cost never decreases

CSC872: PAMI — Kazunori Okada (C) 2025 27

27

Depth-First Search D S

* Expand deepest unexpanded node
* Implementation: build a LIFO queue (stack)

IR IR,
SR
K AANANRLL
é.-' LK ::/‘

R

l.e., depth-first search can perform infinite cyclic excursions
Need a finite, non-cyclic search space (or repeated-state checking)

CSC872: PAMI — Kazunori Okada (C) 2025 28

28

14

Depth-First Search

CSC872: PAMI — Kazunori Okada (C) 2025

Completeness: No, fails in infinite or cyclic state-space
Time complexity: om™)

Space complexity: O(bm)

Optimality: No

Move downwards
as deep as you can,
then back up

29

29
Informed Search
» Use problem-specifigmmﬂsim'/'ﬁkfguide
search
« Utility-based vs Goal-based Agent
« Best-First Search
* Greedy Search
« A* search
» Local Search (Revisited Later)
— Hill-Climbing
— Simulated Annealing
CSC872: PAM\:azuLngg;kg! CBZESam SearCh 30
30

15

Best-First Search Vsl Fanc o,

Idea: Use evaluation function f(n) to estimate
desirability of each node

Implementation: a queue sorted by desirability

Special Case of f(n)

Expand node that appears best (most desirable)

— Greedy Search
— A* Search
CSC872: PAMI — Kazunori Ok ada (C) 2025
31
N P
Heuristics —Z__pn) 7
S
QuteX Z

« [dictionary]“A rule of thumb, s7mpliﬁcation,
or educated guess that reduces or limits
the search for solutions in domains that are
difficult and poorly understood.”

» h(n) = estimated cost of the cheapest
path from node n to goal node.

* If nis goal then i(n)=0

16

Straight-Line Heuristics

* hg p(n) = straight-line distance from n to
Bucharest SLD

Straight-line distance
to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151

L]

5 I ‘erind l 374
‘ ™

Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
374

omania with istiesin KM

CSC872: PAMI — Kazunori Okada (C) 2025 33

33

Greedy Search

« Expand node that appears to be closest to goal

1 onca

+ Impl on: f(n) = hsip(n) .~
mplementation: f(n sip(n) 4
fyrimeses e, boes /
o
o Qs | o i Ll
< -t Lk
< D) G
T N EES B
52 _' i ., T
366 e 380 193
A
- \\
253 a
CSC872: PAMI — Kazunori Okada (C) 2025 34

34

17

Greedy Search

Completeness: No (cf. DF-search)

Time complexity: O(b™) but good heuristic can improve this
Space complexity: ~ O(b™) keep all nodes in memory
Optimality? No (cf. DF-search)

CSC872: PAMI — Kazunori Okada (C) 2025

35

35

A* Search

« Avoid expanding paths that are already

expensive part futne
* Implementation: f(n) = g(n) + h(n)
porh et

646=280+366 - . 671=2014380 "H

EG1=338+253 450=450+0 E26=366+ 180 o T~ 553=300+253

PETD o> G

418=41840 615=455+160 G07=4144193

CSC872: PAMI — Kazunori Okada (C) 2025

36

36

18

Admissible Heuristics

* A heuristic is admissible if it never
overestimates the true cost to reach a goal

* h(n) <h*(n) for all n where h*(n) is the frue
cost from n.
— hg p(n) is admissible because it never overestimates

actual road distance. /"""2

pr

» Admissible heuristic is optimistic

CSC872: PAMI — Kazunori Okada (C) 2025 37

37

Optimality of A*

| Theorem: If h(n) is?mis%ible, A’ using
TREE-SEARCH is optimal

+ Complete?

— Yes (unless there are infinitely many nodes with f < f(G))
e Time?
— Exponential in length of solution \

» Space?

— Keeps all nodes in memory

» Optimal?

— Yes if h(n) is admissible

CSC872: PAMI — Kazunori Okada (C) 2025 38

38

19

Summary

Overview

— PF: Problem-Solving Agent

— PF: Goal-based Problem Formulation

— PS: Uninformed Search (Breadth-First, Depth-First)
— PS: Informed Search (Greedy, A*)

MATLAB exercise 2 after the break
Work on HW1!

Next Lecture

— PF: Knowledge-based Agent

— KR: Propositional Logic

— PF: Logical Inference

— PS: Resolution, Model Checking, Forward Chaining
— MATLAB exercise 3 GSC872: PAMI Kazunor Okada (C) 2025

