CSC872 Pattern Analysis and Machine Intelligence

Fall 2017
Department of Computer Science
San Francisco State University

Ascending and Descending (1960), Waterfall (1961), by Maurits C. Escher
Introduction: the PAMI framework

CSC872
Pattern Analysis and Machine Intelligence

What is PAMI?

• Pattern Analysis and Machine Intelligence is a study for:
 – A modern artificial intelligence
 – Understanding the foundation of different approaches to make machines behave intelligently
 – Applying AI techniques to various engineering tasks
 – Type of researches that get published in IEEE trans on PAMI …
Collectively, we call them PAMI studies.

Well, which one should I use for my program...

QUESTIONs:
- Commonalities?
- Differences?
- Relationships?

Enormous!!!
The 3 questions: Common Framework

- What is PATTERN?
 - Codifying Properties of World
 - Data & Knowledge Representation

- What is MACHINE INTELLIGENCE?
 - Formalizing Intelligence for Machines
 - Problem Formulation

- What is ANALYSIS?
 - Analyzing Data & Knowledge to solve formulated problem
 - Problem Solving

Data & Knowledge Representation

- How to formally describe data/knowledge?
 - Algebraic Variables
 - Boolean, Scalar, Vector, Matrix, Tensor
 - Probabilistic Variables and Distributions
 - Random Variables, Probabilistic Mass/Density Function
 - Formal Rules
 - Rational Statement, Causality
 - Discrete & Continuous Relations
 - Tree, Graph, Function, Ontology
Problem Formulation: Problems?

- **Problems: what is the computational task?**
 - Inference
 - Modeling
 - Learning
 - Classification
 - Regression

Problem Formulation: Formulations?

- **Formalisms: How to describe the task?**
 - Agents
 - First Order Logic
 - Bayesian Inference/Classification
 - Maximum Likelihood Estimation (MLE)
 - Maximum A Posteriori Estimation (MAP)
 - Statistical Regression
 - Energy/Error Minimization
 - Maximum Information
 - Ensemble Learning
Problem Solving: Basics

- How to solve the problem w/ given data?
 - Search: Depth-First, Width-First, A*
 - Logical Inference: Resolution
 - Kernel Density Estimation (KDE)
 - Expectation-Maximization (EM) Algorithm
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - Hill-Climbing/Gradient Descent
 - Simulated Annealing
 - Back Propagation
 - Support Vector Machine (SVM)
 - Markov Chain Monte Carlo (MCMC)
 - AdaBoost, Random Forest, ConvolutionNet, XGBoost...

PAMI Framework

- KR = Data & Knowledge Representation
- PF = Problem Formulation
- PS = Problem Solving
- Make your habit to think everything in the form of (KR-PF-PS)
- Example: you as a PAMI problem…
 - KR: your brain with all the details therein
 - PF: maximize amount and quality of learning
 - PS: taking and working in this course
Course Overview

<table>
<thead>
<tr>
<th>Topic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intro & Agent</td>
<td>AI: Ch1-2</td>
</tr>
<tr>
<td>Search Methods</td>
<td>AI: Ch3-4</td>
</tr>
<tr>
<td>Logic and Inference</td>
<td>AI: Ch7-9</td>
</tr>
<tr>
<td>Bayesian Framework</td>
<td>PR: Ch13-14 etc</td>
</tr>
<tr>
<td>Statistical Modeling</td>
<td>PR: Ch20 etc</td>
</tr>
<tr>
<td>Statistical Classification</td>
<td>PR: Ch3 etc</td>
</tr>
<tr>
<td>Machine Learning</td>
<td>ML: Ch18 etc</td>
</tr>
<tr>
<td>Supervised Classification</td>
<td>ML: Ch3 etc</td>
</tr>
<tr>
<td>Supervised Regression</td>
<td>ML: Ch3 etc</td>
</tr>
<tr>
<td>Function Learning</td>
<td>NN: Ch20 etc</td>
</tr>
</tbody>
</table>

Course Information

- **URL:** https://bidal.sfsu.edu/~kazokada/csc872
- **Instructor**
 - Kaz Okada, kazokada@sfsu.edu
 - OH: TH911, Wed: 4:00 – 5:00pm
- **TA:**
 - Andrew Scott, ats@mail.sfsu.edu
 - OH: SCI241, Tue: 2:00-3:00pm
- **Grading:** homework/project/
 - 50% Homework
 - 25% Final Report
 - 10% Final Presentation
 - 15% Fast Prototyping
- **Policies:** Please read the web.
 Be aware of the deadline and the late policy!!!
Evaluations (Exams?)

- No Midterm/Final Exams
- Homework (50% of total grades)
 - Five HWs (See course webpage for schedule)
 - Due in one/two week(s)
 - Involves some difficult analytical problem solving
- Final Project (25% report, 10% presen)
 - Final Presentation (Presentation) on Dec 12.
 - Assignments given in the course web (follow the link)
- Fast Prototyping (15%: 5% each)
- Extra Credit of 5% for completing them all

Text Books

- AIMA by Russell-Norvig: our text, general AI
 - Duda-Hurt: for PR foundation
 - Hastie: advanced ML
 - Gonzales-Woods: comprehensive IP&CV

- Read the AIMA chapters before the classes
- Additional reading assignments given as appropriate
- Course Slides published online AFTER lectures
Course Schedule

• Consult the course homepage for details of the lecture plan

• First part: lecture 4:00 – 5:30 ca (90min)
• 10 min break
• Next part: in-class exercise 5:40 – 6:45 (65min)

• Drop deadline: Sep 13 (three weeks)
• Oct 31th: No Lecture
• Nov 22nd: No Lecture

MATLAB

• You will learn how to use a powerful prototyping software environment !!!
 – Exercise Tutorials
 – Fast Prototyping

• You need to bring a laptop with MATLAB by the next lecture
 – Student copy at bookstore (reasonably priced)
 – Free copy at COSE: network access. Standard version but only within the SFSU network.
 – Contact Andrew and I as soon as you can!
 – Free MATLAB clones are NOT RECOMMENDED.
In-Class Exercises

• MATLAB Exercises
 – Basics of MATLAB
 – Three exercise sessions
 – Hands-on tutorials
 – TA and my help during office hours
 – End up learning a useful tool

• Fast Prototyping Exercises
 – Hands-on MATLAB software prototyping guided exercise
 – Three algorithms: PCA, Mean Shift, LDA
 – 15% of the total grades!
 – 5% extra credit for completing all of them in-class
 – End up learning how to quickly implement your ideas
defying all the nice thing you learned in SE classes.

• Bring your own laptop with MATLAB!!!

Roll Call

• Adding to the course?
• Pre-reqs?
Review: Basic Concepts

• Some relevant mathematical ideas:
 – Calculus (high-school to lower-division)
 – Algebra (high-school to lower-division)
 – Probability (basic + some advanced)
 – Statistics (basic + some advanced)

• You want to make sure you are comfortable with these concepts and notations

OK… some refresher now;

KR: Variable: Scalar & Vector

• Variable is:
 – Symbolic representation of quantity
 – Unknown quantity that can change in algebraic sense
 – Measurable attribute of a system in statistics

• Scalar X : Variable indicating a single-valued entity

• Vector X : Variable indicating a multiple-valued entity

\[
x = (x, y)^T
x = a \text{ : area}
x = \mu \text{ : angle}
\]

Dimension := number of coeffs
KR: Continuous vs. Discrete

- **Continuous Variable** X
 - indicates real-value entities
 - $x \in \mathbb{R}$
 - $x = (x_1, \ldots, x_n)^T \in \mathbb{R}^n$

- **Discrete Variable** X_i
 - only take a set of predetermined discrete values
 - $x_i \in \mathbb{N}$ Natural number: $i = 1, 2, \ldots$
 - $x_i \in \{MO, TU, WE, TH, FR, SU, SA\}$

KR: Function

- Deterministic dependence of two quantities/sets, associating input X to output Y by a binary relation

 ![Diagram of function](image)

- $f : X \rightarrow Y$
- Map, Mapping, Transformation = Function
- Inverse function: $g = f^{-1} : Y \rightarrow X$
KR: Function Properties

- Rules of f described in a graphical plot or sometimes in analytic formula when known

- Continuous Function
- Differentiability
- Smooth Function
 - All-order differentiable over entire domain

KR: Matrix

- Product does not commute: $AB \neq BA$
- Transpose: $A^T: a_{ij} \leftarrow a_{ji}$ (swapping rows & columns): $(AB)^T = B^T A^T$
- Symmetric matrix A: $A^T = A : a_{ij} = a_{ji}$
- Inverse matrix of $A^{-1}: A A^{-1} = A^{-1} A = I_n$
- Orthogonal matrix A: $A^T = A^{-1}: AA^T = A^T A = I_n$
- Outer and inner product

$x = \begin{pmatrix} x \\ y \end{pmatrix}$

$x^T = (x \ y)^T$

$x x^T = \begin{pmatrix} x^2 & xy \\ xy & y^2 \end{pmatrix}$

$x^T x = x^2 + y^2 = \text{tr}(xx^T)$
PF: Matrix Equations

- **Linear equations**

 \[ax_1 + bx_2 = e \]
 \[cx_1 + dx_2 = f \]
 \[\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A^{-1} \begin{bmatrix} b \\ e \end{bmatrix} \]

- **Linear transform**

 \[\begin{bmatrix} y \\ x \end{bmatrix} = A \begin{bmatrix} q \\ a \\ b \\ c \\ d \end{bmatrix} \]

- **Eigen-values & vectors**

 \[\lambda v = Av; \lambda \in \mathbb{R} \]

KR: Graph

- **Undirected graph**: \(G = (V, E) \)
 - vertices and edges (no direction)

- **Directed graph**: \(G = (V, A) \)
 - vertices and arrows

- **Directed acyclic graph (DAG)**
 - Directed graph without a loop

- **Connected graph**
 - Can reach from any vertex from any other vertices

- **Connected DAG**
 - Tree
KR: Boolean Variable

- A is a Boolean variable if it indicates two-valued system, a statement or event
 - e.g., indicator variable $A = \{\text{Yes, No}\}$
 - e.g., $A = \text{My name is George}$
 - e.g., $A = \text{I teach CSC872}$

- Some event has intrinsic degree of **uncertainty** as to whether A occurs
 - e.g., $A = \text{There will be an earthquake tomorrow}$
 - e.g., $A = \text{My stock price will go up tomorrow}$

- **Random Variable** is a function that chooses a value from the event space $\{\text{True, False}\}$ according to probability $P(A)$

KR: Basic Probability

- $P(A)$ means "the fraction of possible worlds in which A is true"

 - Event space of all possible worlds
 - Its area is 1

 - A is true
 - A is false

 - $P(A)$ is the area of the pink circle

- The axioms of probability !!!
 - $0 \leq P(A) \leq 1$
 - $P(\text{True}) = 1$
 - $P(\text{False}) = 0$
 - $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$

• Joint Probability
 – Probability of two events in conjunction
 – \(P(A \text{ and } B) := P(A \cap B) := P(A, B) \)

• Marginal Probability
 – Probability of one event (A) regardless of the other events (B)
 – Obtained by summing (integrating) a joint probability over the event space \(\Omega \) for unwanted events (B)

 \[
 P(A) = \sum_{v \in \Omega} P(A \cap B = v) = P(A \cap B) + P(A \cap \neg B)
 \]

 – \(P(\text{not } A) := P(\neg A) \)
 – \(P(A) + P(\neg A) = 1 \) \, total probability theorem

• Conditional Probability
 – Probability of an event (A) given other event (B)
 – \(P(A|B) = \frac{\text{area of } A \text{ and } B}{\text{area of } B} \)
 – \(P(A|B) = \frac{P(A \cap B)}{P(B)} \)

X = College Major
Y = Likes “XBOX”

• Product Rule
 – Joint probability can be written as a product of a conditional and a marginal
 – \(P(A \cap B) = P(A|B)P(B) \)
 \(= P(B|A)P(A) \)

• Statistical Independence satisfies
 – \(P(A \cap B) = P(A)P(B) \)
 – \(P(A|B) = P(A) \)
 – \(P(B|A) = P(B) \)
KR: Beyond Boolean Events

- When more than one state (over a discrete variable):
 - e.g., \(X = \text{day}, \Omega := \{\text{Mon,..,Sun}\} \)
 - Discrete Random Variable
 - \(p(X = v_i \text{ and } X = v_j) = 0 \text{ if } i \neq j \) (mutually exclusive)
 - \(p(X = v_i) = \sum_{j=1}^{t} p(X = v_j) = 1 \) (total prob. Th.)
 - \(p(Y) = \sum_{i=1}^{t} p(Y \text{ and } X = v_i) \) (marginal)

- When over continuous variable:
 - Continuous Random Variable
 - e.g., \(X = \text{temperature of SF} \)

KR: Probability Distribution

- For a discrete random variable \(X \)
 - Probability Mass Function
 \[p(X = x_i) \]
 \[\sum_{i=1}^{t} p(X = x_i) = 1 \]

- For a real-valued random variable \(X \)
 - Probability Density Function
 \[p(x) \]
 \[\int_{0}^{1} p(x) \, dx = 1 \]
 \[P(a < X \leq b) = \int_{a}^{b} p(x) \, dx \]
KR: Expectation

- For a discrete random variable X
 - $E[X] = \sum_{\Omega} x_i P(X=x_i) = \mu$ (population mean)
 - $E[f(X)] = \sum_{\Omega} f(X=x_i)P(X=x_i)$

- For a real-valued random variable X
 - $E[X] = \int_{\Omega} xP(y)dy$

- Linearity
 - $E[aX+Y] = aE[X]+E[Y] = a\mu_X + \mu_Y$

PF: Statistics

- Independent and Identically-Distributed (i.i.d.) Random Variable
 - Rolling a fair dice for instance.
 - If $x_1, x_2, x_3, \ldots, x_i, \ldots, x_k$ are i.i.d. of X then
 - $P(x_1, x_2, x_3, \ldots, x_i, \ldots, x_k) = P(X=x_1)P(X=x_2)\ldots P(X=x_k)$

- Central limit theorem
 - The sum of i.i.d. random variables with finite variance will be approximately normally (Gaussian) distributed as we go towards an infinite number of samples.
 - A reason why you see a lot of Gaussians …