CSC872 Pattern Analysis and Machine Intelligence

Fall 2020
Department of Computer Science
San Francisco State University

Course Information

• **URL:** https://bidal.sfsu.edu/~kazokada/csc872/
• Instructor
 – *Kaz Okada*, kazokada@sfsu.edu
 – OH: Zoom, Wed: 12:00 – 1:00pm
• TA:
 – *Luis Chumpitaz*, lchumpit@mail.sfsu.edu
 – OH: Zoom, Wed: 4:00-5:00pm

• See the *iLearn* course page for Zoom IDs and passcodes of the office hours.

• Policies: Please read the course website above.
• Be aware of the deadline and the late policy etc!!!
Zoom Lecture

- Zoom lecture links are in your iLearn course page
- Keep your video on during the lecture
- Voice muted but can be activated by the instructor
- Use Chat to ask questions
- Course slides shared online after each lecture through the course website: Click links in the “note” column of the “lecture plan” table.
- Zoom lectures recorded and shared in the iLearn course page in “Recorded Lectures”. Stay tuned

Attendance

- Your attendance is kept using iLearn attendance link (see under the zoom link)
- Passcode shared at the beginning of each lecture.
- Today’s passcode: “welcome”
- Go click the link and give that passcode.
- And report your presence there.
- We will do this for every lecture.
Waitlisted

- For those who are waitlisted still, email me from SFSU email account with your student ID# and official name.
- Automatic email should be sent to you with the permit number that you can use to add to this course. Hope to resolve this tomorrow.

Evaluations

- **No Midterm/Final Exams**
- **Homework (50% of total grades)**
 - **Five** HWs (See course website for schedule)
 - **Shared from/Submitted to** [iLearn](#) links
 - Due in one/two week(s)
 - Involves some difficult analytical problem solving
- **Final Project (25% report, 10% presen)**
 - Final Presentation (Presentation) on Dec 8.
 - Assignments given in the course website (follow the link)
- **Fast Prototyping (15%: 5% each)**
Text Books

- **AIMA by Russell-Norvig**: our text, general AI
 - Duda-Hurt: for PR foundation
 - Hastie: advanced ML
 - Gonzales-Woods: comprehensive IP&CV

- **Read the AIMA chapters before the classes**
- Additional reading assignments given as appropriate

Course Schedule

- Consult the course website for details of the **lecture plan**

- First part: lecture 4:00 – 5:30 ca (90min)
- 10 min break, for exercise and restroom
- Next part: in-class exercise 5:40 – 6:45 (65min)

- Drop deadline: Sep 14 (three weeks)
Course Overview

- Intro & Agent (AI: Ch1-2)
- Search Methods (AI: Ch3-4)
- Logic and Inference (AI: Ch7-9)
- Bayesian Framework (PR: Ch13-14 etc)
- Statistical Modeling (PR: Ch20 etc)
- Statistical Classification (PR: Ch3 etc)
- Machine Learning (ML: Ch18 etc)
- Supervised Classification (ML: Ch3 etc)
- Supervised Regression (ML: Ch3 etc)
- Function Learning (NN: Ch20 etc)
- Deep Learning (NN)

MATLAB

- You will learn how to use a powerful prototyping software environment !!!
 - Exercise Tutorials
 - Fast Prototyping
- You need to bring a laptop with MATLAB by the next lecture
 - Free copy available for all SFSU students: https://at.sfsu.edu/at-mathworks-matlab
 - Follow instruction to install and make sure it can start on your laptop
 - Play a little before next lecture
In-Class Exercises

- MATLAB Exercises
 - Basics of MATLAB
 - Three exercise sessions
 - Hands-on tutorials
 - TA and my help during office hours
 - End up learning a useful tool
- Fast Prototyping Exercises
 - Hands-on MATLAB software prototyping guided exercise
 - Three classic algorithms: PCA, Mean Shift, LDA
 - Three computer vision problems
 - 15% of the total grades!
 - End up learning how to quickly implement your ideas defying all the nice thing you learned in SE classes.

- Bring your own laptop with MATLAB!!!
What is PAMI?

- Pattern Analysis and Machine Intelligence is a study for:
 - A modern artificial intelligence
 - Understanding the foundation of different approaches to make machines behave intelligently
 - Applying AI techniques to various engineering tasks
 - Type of researches that get published in IEEE trans on PAMI …
What is PAMI?

Collectively, we call them PAMI studies

Well, which one should I use for my program...

QUESTIONS: Commonalities? Differences? Relationships?

Enormous!!!

What is PAMI?

Focus on AI, PR, ML, NN & Statistics

Emphasizing - the three questions - quantitative statistical approach

Upon further interests, you should study each subject further
The 3 questions: Common Framework

- **What is PATTERN?**
 - Codifying Properties of World
 - Data & Knowledge Representation

- **What is MACHINE INTELLIGENCE?**
 - Formalizing Intelligence for Machines
 - Problem Formulation

- **What is ANALYSIS?**
 - Analyzing Data & Knowledge to solve formulated prob.
 - Problem Solving

Data & Knowledge Representation

- How to formally describe data/knowledge?
- **Algebraic Variables**
 - Boolean, Scalar, Vector, Matrix, Tensor
- **Probabilistic Variables and Distributions**
 - Random Variables, Probabilistic Mass/Density Function
- **Formal Rules**
 - Rational Statement, Causality
- **Discrete & Continuous Relations**
 - Tree, Graph, Function, Ontology
Problem Formulation: Problems?

- Problems: what is the computational task?
 - Inference
 - Modeling
 - Learning
 - Classification
 - Regression

Problem Formulation: Formulations?

- Formalisms: How to describe the task?
 - Agents
 - First Order Logic
 - Bayesian Inference/Classification
 - Maximum Likelihood Estimation (MLE)
 - Maximum A Posteriori Estimation (MAP)
 - Statistical Regression
 - Energy/Error Minimization
 - Maximum Information
 - Ensemble Learning
Problem Solving: Basics

• **How to solve the problem w/ given data?**

 – Search: Depth-First, Width-First, A*
 – Logical Inference: Resolution
 – Kernel Density Estimation (KDE)
 – Expectation-Maximization (EM) Algorithm
 – Principal Component Analysis (PCA)
 – Linear Discriminant Analysis (LDA)
 – Hill-Climbing/Gradient Descent
 – Simulated Annealing
 – Back Propagation
 – Support Vector Machine (SVM)
 – Markov Chain Monte Carlo (MCMC)
 – AdaBoost, Random Forest, XGBoost, CNN, RNN…

PAMI Framework

• **KR** = Data & Knowledge Representation
• **PF** = Problem Formulation
• **PS** = Problem Solving

• Make your habit to think everything in the form of (KR-PF-PS)

• Example: you as a PAMI problem…

 – KR: your brain with all the details therein
 – PF: maximize amount and quality of learning
 – PS: taking and working in this course
Review: Basic Concepts

• Some relevant mathematical ideas:
 – Calculus (high-school to lower-division)
 – Algebra (high-school to lower-division)
 – Probability (basic + some advanced)
 – Statistics (basic + some advanced)

• You want to make sure you are comfortable with these concepts and notations
• OK… some refresher now;

KR: Variable: Scalar & Vector

• **Variable** is:
 – Symbolic representation of quantity
 – Unknown quantity that can change in algebraic sense
 – Measurable attribute of a system in statistics

• **Scalar X**: Variable indicating a single-valued entity
• **Vector X**: Variable indicating a multiple-valued entity

\[
\begin{align*}
 x &= (x \ y)^T \\
 x &= a : \text{area} \\
 x &= \mu : \text{angle} \\
 \text{Dimension} &:= \text{number of coeffs}
\end{align*}
\]
KR: Continuous vs. Discrete

- **Continuous Variable X**
 - indicates real-value entities
 - $x \in R$
 - $x = (x_1, ..., x_n)^T \in \mathbb{R}^n$ \quad N-Dim vector

- **Discrete Variable X_i**
 - only take a set of predetermined discrete values
 - $x_i \in \mathbb{N}$ \quad Natural number: $i = 1, 2,$
 - $x_i \in \{MO, TU, WE, TH, FR, SU, SA\}$

KR: Function

- Deterministic dependence of two quantities/sets, associating input X to output Y by a binary relation

- $f: X \rightarrow Y$
- Map, Mapping, Transformation = Function
- Inverse function: $g = f^{-1}: Y \rightarrow X$
KR: Function Properties

• Rules of \(f \) described in a graphical plot or sometimes in analytic formula when known

\[
y = f(x) \\
x \in X \\
y \in Y
\]

• Continuous Function
• Differentiability
• Smooth Function
 – All-order differentiable over entire domain

KR: Matrix

• Product does not commute: \(AB \neq BA \)
• Transpose: \(A^T : a_{ij} \rightarrow a_{ji} \) (swapping rows & columns): \((AB)^T = B^TA^T \)
• Symmetric matrix \(A \): \(A^T = A \) : \(a_{ij} = a_{ji} \)
• Inverse matrix of \(A^{-1} \): \(A A^{-1} = A^{-1} A = I_n \)
• Orthogonal matrix \(A \): \(A^T = A^{-1} \); \(AA^T = A^TA = I_n \)
• Outer and inner product

\[
xx^T \\
x^Tx = x^2 + y^2 = \text{tr}(xx^T)
\]
PF: Matrix Equations

- Linear equations
 \[ax_1 + bx_2 = e \]
 \[cx_1 + dx_2 = f \]
 \[Ax = b; \quad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}; \quad b = \begin{pmatrix} e \\ f \end{pmatrix} \]
 \[x = A^{-1}b \]

- Linear transform
 \[y = Ax; \quad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \]

- Eigen-values & vectors
 \[\lambda v = Av; \quad \lambda \in \mathbb{R} \]

KR: Graph

- Undirected graph: \(G = (V, E) \)
 - vertices and edges (no direction)
- Directed graph: \(G = (V, A) \)
 - vertices and arrows
- Directed acyclic graph (DAG)
 - Directed graph without a loop
- Connected graph
 - Can reach from any vertex from any other vertices
- Connected DAG
 - Tree
KR: Boolean Variable

- A is a Boolean variable if it indicates two-valued system, a statement or event
 - e.g., indicator variable A = \{Yes, No\}
 - e.g., A = My name is George
 - e.g., A = I teach CSC872

- Some event has intrinsic degree of **uncertainty** as to whether A occurs
 - e.g., A = There will be an earthquake tomorrow
 - e.g., A = My stock price will go up tomorrow

- **Random Variable** is a function that chooses a value from the event space \{True, False\} according to probability \(P(A) \)

KR: Basic Probability

- \(P(A) \) means "the fraction of possible worlds in which A is true"

- The axioms of probability !!!
 - \(0 \leq P(A) \leq 1 \)
 - \(P(True) = 1 \)
 - \(P(False) = 0 \)
 - \(P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \)

- **Joint Probability**
 - Probability of two events in conjunction
 - \(P(A \text{ and } B) := P(A \land B) := P(A, B) \)

- **Marginal Probability**
 - Probability of one event (A) regardless of the other events (B)
 - Obtained by summing (integrating) a joint probability over the event space \(\Omega \) for unwanted events (B)

 \[
 P(A) = \sum_{v \in \Omega} P(A \land B = v) = P(A \land B) + P(A \land \neg B)
 \]

 - \(P(\neg A) := P(\neg A) \)
 - \(P(A) + P(\neg A) = 1 \) \text{ total probability theorem}

- **Conditional Probability**
 - Probability of an event (A) given other event (B)
 - \(P(A|B) = \frac{\text{area of A and B}}{\text{area of B}} \)
 - \(P(A|B) = \frac{P(A \land B)}{P(B)} \)

- **Product Rule**
 - Joint probability can be written as a product of a conditional and a marginal
 - \(P(A \land B) = P(A|B)P(B) \)
 - \(= P(B|A)P(A) \)

- **Statistical Independence satisfies**
 - \(P(A \land B) = P(A)P(B) \)
 - \(P(A|B) = P(A) \)
 - \(P(B|A) = P(B) \)

\begin{array}{c|c|c}
\hline
X & Y & \\
\hline
Math & Yes & \\
History & No & \\
CS & Yes & \\
Math & No & \\
Math & No & \\
CS & Yes & \\
History & No & \\
Math & Yes & \\
\hline
\end{array}

X = College Major
Y = Likes “XBOX”
KR: Beyond Boolean Events

- When more than one state (over a discrete variable):
 - e.g., $X = \text{day}$, $\Omega := \{\text{Mon,...,Sun}\}$
 - Discrete Random Variable
 - $P(X = v_i \text{ and } X = v_j) = 0 \text{ if } i \neq j$ (mutually exclusive)
 - $P(X = v_1, \ldots, X = v_k) = \sum_{i=1}^{k} P(X = v_i) = 1$ (total prob. Th.)
 - $P(Y) = \sum_{i=1}^{k} P(Y \text{ and } X = v_i)$ (marginal)

- When over continuous variable:
 - Continuous Random Variable
 - e.g., $X = \text{temperature of SF}$

KR: Probability Distribution

- For a discrete random variable X
 - Probability Mass Function
 - $P(X = x_i)$
 - $\sum_{i=1}^{k} P(X = x_i) = 1$

- For a real-valued random variable X
 - Probability Density Function
 - $\int_{a}^{b} P(x) \, dx \leq 1$
 - $P(a < X \leq b) = \int_{a}^{b} p(x) \, dx$
KR: Expectation

• For a discrete random variable X
 - $E[X] = \sum_{\Omega} x_i P(X=x_i) = \mu$ (population mean)
 - $E[f(X)] = \sum_{\Omega} f(X=x_i) P(X=x_i)$

• For a real-valued random variable X
 - $E[X] = \int_{\Omega} x P(y) dy$

• Linearity
 - $E[aX+Y] = aE[X]+E[Y] \approx a\mu_X + \mu_Y$

PF: Statistics

• Independent and Identically-Distributed (i.i.d.) Random Variable
 - Rolling a fair dice for instance.
 - If $x_1, x_2, x_3, \ldots, x_i, \ldots, x_k$ are i.i.d. of X then
 - $P(x_1, x_2, x_3, \ldots, x_i, \ldots, x_k) = P(X=x_1)P(X=x_2)\ldots P(X=x_k)$

• Central limit theorem
 - The sum of i.i.d. random variables with finite variance will be approximately normally (Gaussian) distributed as we go towards an infinite number of samples.
 - A reason why you see a lot of Gaussians …