Prototype Exercise 3

Exercises 11, 12, 13
CSC872
Pattern Analysis and Machine Intelligence

https://bidal.sfsu.edu/~kazokada/csc872/Face Classification_Data.zip

Fast Prototyping Exercise

• Fast Prototyping
 – Learn how to do a quick proof of concept by building a prototype
 – Correctness matters (no sloppy algorithm!)
 – Speed matters (no beautification!)
 – No perfect SE necessary
 – No copying of codes online.
 – Parameterization/Visualization/Experimentation
 – Find out what are free parameters in your algorithm whose value must be hand-picked by you
 – Learn how to view internal variable’s current values
 – Learn how to visualize your prototype’s results in plots/images etc
 – Tweak the parameter values and study your prototype’s behavior to understand the how algorithm works

• Group Work
 – You are encouraged to freely exchange ideas and codes
 – Contributions to others are as valuable as making your own work
Fast Prototyping Exercise

• Please upload your matlab codes thru iLearn forum for my grading and your playing!
 – First two exercises: Due on midnight of the day (just what you did during the exercise)
 – Third last exercise: Due on noon next day (complete version with some doc/screen shots of running the code)

• 5% extra credit for those who completed all three algorithms in-class
 – Those who finished during the 3 exercises received a note from me in iLearn.
 – Please remind me if you had finished during the exercises but did not receive my note of your successful completion in ilearn.

Platforms

• MATLAB
 – MathWorks: http://www.mathworks.com/

• MATLAB clones
 – Octave: http://www.gnu.org/software/octave/
 – SciLab: http://www.scilab.org/
Public Libraries

- OpenCV (Computer Vision)

- ITK (Medical Imaging)
 - http://www.itk.org/

- WEKA (Machine Learning)

Classification of Facial Gender

- Learn an LDA classifier that classify input image to either female or male (binary classification)
- Smaller sized images are provided
Paper 3

- **Swets and Weng**
- **Using Discriminant Eigenfeatures for Image Retrieval**
- **PAMI, 18(8): (1996)**

- A.M. Martinez, A.C. Kak,
- http://www.ece.osu.edu/~aleix/

Data

- The same but reorganized data from the FP#1 for face recognition
- https://bidal.sfsu.edu/~kazokada/csc872/FaceClassification_Data.zip

- Images are organized in 2 folders
- Female: 54 32x32 8bit facial images
- Male: 45 32x32 8bit facial images
Linear Discriminant Analysis

- Supervised learning for classification
- Input: Grayscale Image
 - 8bit (0-255) grayscale images of 32x32 size
- LDA projection: linear transformation to a 1D space
- Threshold-based Classification: find the Bayes optimal threshold for the data after projection.
- Output: binary class labels
 - E.g., female (+1), male (-1)

LDA Setting

- Feature extraction (projection): \(y = w^T x \)
- LDA: Find \(w \) such that within-class scatter (\(S_w \)) is minimized and between-class scatter (\(S_b \)) is maximized.
- LDA solution is given by solving a generalized eigen-value problem
 \[S_b w = \lambda S_w w \]
 \[[V D] = \text{eig}(S_b, S_w) \]
LDA Limitations

• You get only $K-1$ non-zero eigen-vectors where K is the # of classes

• You need at least $K+d$ samples to have non-singular S_w where d is the dimensionality of inputs
 – Singular matrix cannot be inverted!!!

PCA+LDA Solution

• Because S_w is singular you cannot solve the generalized eigenvalue problem

• Soln:
 – First Perform PCA on the entire data set
 – Find a subset with K top PCs that capture most of data variance
 – Project all the input data points to the PCA subspace
 – Compute the S_w and S_b with the projected datapoints in the PCA space (low-dimensional space)
 – Perform LDA
 – Compute the slope and intercept of the discriminant function from the LDA results
Formulae

\[X = \{x_1, x_2, \ldots, x_k, \ldots, x_K\} \]
\[M_k = |X_k|: \text{ the number of samples in } k\text{–th class} \]
\[\mu_k = \frac{1}{M_k} \sum_{i=1}^{M_k} x_i: \text{ mean of } k\text{–th class} \]
\[\mu = \frac{1}{|X|} \sum_{k=1}^{K} M_k \mu_k: \text{ mean of } X \]
\[S_w = \sum_{k=1}^{K} \sum_{i=1}^{M_k} (x_i - \mu_k)(x_i - \mu_k)^t \]
\[S_b = \sum_{k=1}^{K} M_k (\mu_k - \mu)(\mu_k - \mu)^t \]

LDA: find \(w \) that maximizes \[J(w) = \frac{w^t S_b w}{w^t S_w w} \]

Formulae

LDA: find \(w \) that maximizes \[J(w) = \frac{w^t S_b w}{w^t S_w w} \]

\[S_b w_m = \lambda_m S_w w_m \]
\[(S_w^{-1} S_b) w_m = \lambda_m w_m \]
Algorithm

1) Given labeled data $X = \{X_p, X_n\}$: female (p), male (n)
2) Do PCA
 \[CV = VD \]
 \[V = \{PC_1, ..., PC_N\} \]
 \[D = \text{diag}(ev_1, ..., ev_N) \]
3) Find top K PCs that cover $9X\%$ of the variance
4) Form PCA model F
 \[F = \{PC_1, ..., PC_K\}^T \]
5) Project all data points to $FX = \{P_p, P_n\}$:
6) Compute S_w and S_b from $\{P_p, P_n\}$
 \[p_i = F \cdot (x_i - \mu) \]
7) Solve a generalized eigen-value problem with S_w and S_b
8) This results in a single PC: v
9) Compute discriminant slope $w = v^\prime \cdot F$
10) Compute discriminant intercept $b = v^\prime \cdot (meanP_p + meanP_n)/2$
11) The result if $w^\prime (x-\mu) - b$ is positive then $+1$ otherwise -1, (check if the sign is right)

Useful MATLAB Codes

For LDA
- Set X as a matrix with each row is a vectorized face
- $m = \text{mean}(X)$: sample mean of X
- $S = \text{cov}(X)$: covariance matrix (mean removed)
- Scatter matrix = $\text{cov}(X) \cdot (N-1)$
 N: # of samples in X
- $[V D]=\text{eig}(A, B)$: generalized eigenvalue problem solver
- hist (projected $X1$ and $X2$): create a histogram