Fast Prototyping Exercise 2

Exercises, 8, 9, 10
CSC872
Pattern Analysis and Machine Intelligence

https://bidal.sfsu.edu/~kazokada/csc872/
Segmentation_Data.zip

Fast Prototyping Exercise

• Fast Prototyping
 – Learn how to do a quick proof of concept by building a prototype
 – Correctness matters (no sloppy algorithm!)
 – Speed matters (no beautification!)
 – No perfect SE necessary
 – No copying of codes online.
 – Parameterization/Visualization/Experimentation
 – Find out what are free parameters in your algorithm whose value must be
 hand-picked by you
 – Learn how to view internal variable’s current values
 – Learn how to visualize your prototype’s results in plots/images etc
 – Tweak the parameter values and study your prototype’s behavior to
 understand the how algorithm works

• Group Work
 – You are encouraged to freely exchange ideas and codes
 – Contributions to others are as valuable as making your own work
Fast Prototyping Exercise

- Please upload your matlab codes thru iLearn forum for my grading and your playing!
 - First two exercises: Due on midnight of the day (just what you did during the exercise)
 - Third last exercise: Due on midnight next day (complete version with some doc/screen shots of running the code)

- Your grade on FP exercise will be partly based on these submitted codes and what I observe during the in-class exercises.

- If received helps from others and/or used codes from others, please credit the person who helped you.

Platforms

- MATLAB
 - MathWorks: http://www.mathworks.com/

- MATLAB @ SFSU
 - https://at.sfsu.edu/at-mathworks-matlab

- Various tutorials available online
 - https://matlabacademy.mathworks.com/?s_tid=acb_tut
Public Libraries

- OpenCV (Computer Vision)

- ITK (Medical Imaging)
 - http://www.itk.org/

- WEKA (Machine Learning)

Segmentation

- Image Segmentation
 - Label pixels according to the image intensity such that pixels with similar intensity have same label

 1) Intensity-based Features: use only proximity in intensities
 - Pixels placed far away can be grouped together due to similar value

 2) Spatio-intensity-based: Features use both space and intensity proximity
 - Segment a connected-components with similar intensity values!
Segmentation cond.

- Segmentation is a labeling process
- Edge-preserved smoothing
- Density-based smoothing
- Grouping of Modes

Paper 2

- D. Comaniciu, P. Meer,
- http://comaniciu.net
Data

- I provide a set of nine test images
 - [Link to data set](https://bidal.sfsu.edu/~kazokada/csc872/Segmentation_Data.zip)
- 3 Color images \((r, g, b)\)
 - Baboon, Lena, Pepper
 - A set of pixels with a 3D 8bit (0-255) RGB feature
 - Feature space is a 3D histogram of RBG colors (Color space) or 5D RBG-Space feature \((r, g, b)\)
- 6 Grayscale images \((z, x)\)
 - Baboon, Lena, Pepper, Barbara, Cameraman, Goldhill
 - A set of pixels with a 1D 8bit (0-255) feature
 - Feature space is a 1D histogram of intensity values or 3D intensity-Space feature \((z, x)\)

Mean shift

- "Conceptual" Steps
 1) Do KDE on \(x_1, \ldots, x_N\) for \(p(x)\)
 2) Do Clustering of \(x_1, \ldots, x_N\) according to the estimated \(p(x)\)
 3) Re-label each \(x_i\) by its cluster center value

- Mean Shift
 - Adaptive step-size gradient-ascent in a feature space \(x\)
 - Convergent to nearest mode/peak \(x_{mle}\)
 - **No need for explicitly computing a density estimate!!!**
 - Bandwidth parameter must be hand-picked though
Algorithm

Vector Norm: $||\mathbf{x}|| = \sqrt{x_1^2 + \cdots + x_d^2}$

- Suppose we are given N samples $x_1, \ldots, x_n, \ldots, x_N$
- And we model $p(x)$ by KDE with bandwidth h
- **Mean Shift Vector** defined at arbitrary location \mathbf{x}
 - Compute arithmetic mean of the samples with a weight function g
 $$m(\mathbf{x}; h) = \frac{\sum_{n=1}^{N} x_n g\left(\left\|\frac{x-x_n}{h}\right\|^2\right)}{\sum_{n=1}^{N} g\left(\left\|\frac{x-x_n}{h}\right\|^2\right)} - \mathbf{x}$$
- With Epanechnikov Kernel, you get
 - We can simplify the above MS because you get a constant weight function
 $$g\left(\left\|\frac{x-x_n}{h}\right\|^2\right) = \begin{cases} C & \|x - x_n\| \leq h \\ 0 & \text{otherwise} \end{cases}$$
- With (isotropic) Gaussian Kernel
 - We have smooth KDE $p(x)$ so we expect better behavior
 $$g\left(\left\|\frac{x-x_n}{h}\right\|^2\right) = \exp\left(-\frac{\|x-x_n\|^2}{h^2}\right)$$

Algorithm Cond.

- **Mean Shift Procedure**
 - Given N samples $x_1, \ldots, x_n, \ldots, x_N$
 - Iteratively compute $y_1, \ldots, y_k, \ldots, y_K \rightarrow y_{mle}$ (until convergence)
 $$y_{1} \leftarrow x_{init}$$
 loop over k
 $$y_{k+1} = m(y_k, h) + y_k = \frac{\sum_{n=1}^{N} x_n g\left(\left\|\frac{y_k-x_n}{h}\right\|^2\right)}{\sum_{n=1}^{N} g\left(\left\|\frac{y_k-x_n}{h}\right\|^2\right)}$$
 $$y_k \leftarrow y_{k+1}$$
 - **Stopping Criteria**
 $$\left\|\frac{m(x; h)}{h}\right\|^2 \leq TH^2$$
Hints

- First try grayscale image then color image next if you can
- Try small image size like 64 by 64 (should take about 1min)
- How to make an output image by doing MS clustering?
 - Define a new image J whose size is the same as the input I
 - For each pixel of the input image $I(x,y)$,
 - Initialize the iterator variable y by the intensity of the pixel $y_1 = x_{init} = I(x,y)$
 - Do the mean shift procedure shown in the previous slide $y_i \rightarrow y_{mle_k}$
 - Set the corresponding intensity value of the output image $J(x,y) = y_{mle_k}$
 - This is known as Mean Shift Filtering
- Free parameters to be hand-picked
 - Bandwidth h
 - Stop threshold TH
 - Max iteration K
- Think of how to group the convergence points?
- Think how to visualize the density and each mean shift step
- Think how to extend to color image

Useful MATLAB Codes

For Mean Shift

- $vec = Matrix(:)$ colon operator to vectorize a matrix
- $val = exp()$, exponential function
- $M = double(M)$, casting the data type to double
- $figure$, display a figure window
- $Imagesc(IMG)$, display a matrix as an image (scaling the values to 8bit range)