Fast Prototyping Exercise 2

Exercises, 8, 9, 10
CSC872
Pattern Analysis and Machine Intelligence

https://bidal.sfsu.edu/~kazokada/csc872/Segmentation_Data.zip

Fast Prototyping Exercise

• Fast Prototyping
 – Learn how to do a quick proof of concept by building a prototype
 – Correctness matters (no sloppy algorithm!)
 – Speed matters (no beautification!)
 – No perfect SE necessary
 – No copying of codes online.
 – Parameterization/Visualization/Experimentation
 – Find out what are free parameters in your algorithm whose value must be hand-picked by you
 – Learn how to view internal variable’s current values
 – Learn how to visualize your prototype’s results in plots/images etc
 – Tweak the parameter values and study your prototype’s behavior to understand the how algorithm works

• Group Work
 – You are encouraged to freely exchange ideas and codes
 – Contributions to others are as valuable as making your own work
Fast Prototyping Exercise

- Please upload your matlab codes thru iLearn forum for my grading and your playing!
 - First two exercises: Due on midnight of the day (just what you did during the exercise)
 - Third last exercise: Due on midnight next day (complete version with some doc/screen shots of running the code)
- 5% extra credit for those who completed all three algorithms in-class

Platforms

- MATLAB
 - MathWorks: http://www.mathworks.com/
- MATLAB @ SFSU
 - https://at.sfsu.edu/at-mathworks-matlab
- Various tutorials available online
Public Libraries

- OpenCV (Computer Vision)

- ITK (Medical Imaging)
 - http://www.itk.org/

- WEKA (Machine Learning)

Segmentation

- Image Segmentation
 - Label pixels according to the image intensity such that pixels with similar intensity have same label

 1) Intensity-based Features: use only proximity in intensities
 - Pixels placed far away can be grouped together due to similar value

 2) Spatio-intensity-based: Features use both space and intensity proximity
 - Segment a connected-components with similar intensity values!
Segmentation cond.

- Segmentation is a labeling process
- Edge-preserved smoothing
- Density-based smoothing

- Grouping of Modes

Paper 2

- D. Comaniciu, P. Meer,
- http://comaniciu.net
Data

- I provide a set of nine test images
 - https://bidal.sfsu.edu/~kazokada/csc872/Segmentation_Data.zip
- 3 Color images
 - Baboon, Lena, Pepper
 - A set of pixels with a 3D 8bit (0-255) RGB feature
 - Feature space is a 3D histogram of RBG colors (Color space) or 5D RBG-Space feature
- 6 Grayscale images
 - Baboon, Lena, Pepper, Barbara, Cameraman, Goldhill
 - A set of pixels with a 1D 8bit (0-255) feature
 - Feature space is a 1D histogram of intensity values or 3D intensity-Space feature

Mean shift

- “Conceptual” Steps
 1) Do KDE on x_1, \ldots, x_N for $p(x)$
 2) Do Clustering of x_1, \ldots, x_N according to the estimated $p(x)$
 3) Re-label each x_i by its cluster center value

- Mean Shift
 - Adaptive step-size gradient-ascent in a feature space x
 - Convergent to nearest mode/peak x^{mle}
 - **No need for explicitly computing a density estimate!!!**
 - Bandwidth parameter must be hand-picked though
Algorithm

Vector Norm: \(\|x\| = \sqrt{x_1^2 + \cdots + x_d^2} \)

- Suppose we are given \(N \) samples \(x_1, \ldots, x_n, \ldots, x_N \)
- And we model \(p(x) \) by KDE with bandwidth \(h \)
- **Mean Shift Vector** defined at arbitrary location \(x \)
 - Compute arithmetic mean of the samples with a weight function \(g \)
 \[
 m(x; h) = \frac{\sum_{n=1}^{N} x_n g \left(\frac{\|x - x_n\|^2}{h} \right)}{\sum_{n=1}^{N} g \left(\frac{\|x - x_n\|^2}{h} \right)} - x
 \]
- With Epanechnikov Kernel, you get
 - We can simplify the above MS because you get a constant weight function
 \[
 g \left(\frac{\|x - x_n\|^2}{h} \right) = \begin{cases} C & \|x - x_n\| \leq h \\ 0 & \text{otherwise} \end{cases}
 \]
- With (isotropic) Gaussian Kernel
 - We have smooth KDE \(p(x) \) so we expect better behavior
 \[
 g \left(\frac{\|x - x_n\|^2}{h} \right) = \exp \left(-\frac{\|x - x_n\|^2}{h^2} \right)
 \]

Algorithm Cond.

- **Mean Shift Procedure**
 - Given \(N \) samples \(x_1, \ldots, x_p, \ldots, x_N \)
 - Iteratively compute \(y_1, \ldots, y_k, \ldots, y_K \) \(\rightarrow \) \(y_{\text{mle}} \) (until convergence)
 \[
 y_1 \leftarrow x_{\text{init}} \quad \text{This loops at each pixel}
 \]
 loop over \(k \)
 \[
 y_{k+1} = m(y_k, h) + y_k = \frac{\sum_{n=1}^{N} x_n g \left(\frac{\|y_k - x_n\|^2}{h} \right)}{\sum_{n=1}^{N} g \left(\frac{\|y_k - x_n\|^2}{h} \right)}
 \]
 \[
 y_k \leftarrow y_{k+1}
 \]
- **Stopping Criteria**
 \[
 \left\| \frac{m(x; h)}{h} \right\|^2 \leq TH^2
 \]
 This sums over the sample set
Hints

- First try grayscale image then color image next if you can
- Try small image size like 64 by 64 (should take about 1 min)
- How to make an output image by doing MS clustering?
 - Define a new image J whose size is the same as the input I
 - For each pixel of the input image $I(x,y)$,
 - Initialize the iterator variable y by the intensity of the pixel $y_1 = x_{	ext{init}} = I(x,y)$
 - Do the mean shift procedure shown in the previous slide $y_i \rightarrow y_{\text{mle}}^k$
 - Set the corresponding intensity value of the output image $J(x,y) = y_{\text{mle}}^k$
 - This is known as Mean Shift Filtering
- Free parameters to be hand-picked
 - Bandwidth h
 - Stop threshold TH
 - Max iteration K
- Think of how to group the convergence points?
- Think how to visualize the density and each mean shift step
- Think how to extend to color image

Useful MATLAB Codes

For Mean Shift
- vec = Matrix(:) colon operator to vectorize a matrix
- val = exp(), exponential function
- M = double(M), casting the data type to double
- figure, display a figure window
- Imagesc(IMG), display a matrix as an image (scaling the values to 8 bit range)