Fast Prototyping Exercise 1

Exercises 5, 6, 7
CSC872
Pattern Analysis and Machine Intelligence

Fast Prototyping Exercise

- **Fast Prototyping**
 - Learn how to do a quick proof of concept by building a “prototype” (from papers you read, no public codes)
 - **Correctness** matters (no sloppy algorithm!)
 - **Speed** matters (no beautification!)
 - No perfect SE necessary
 - No copying of codes online.
 - **When Done: Parameterization/Visualization/Experimentation**
 - Find out what are **free parameters** in your algorithm whose value must be hand-picked by you
 - Learn how to view internal variable’s current values
 - Learn how to visualize your prototype’s results in plots/images etc
 - Tweak the parameter values and study your prototype’s behavior [quantitatively](#) to understand the how algorithm works

- **Group Work**
 - You are encouraged to freely exchange ideas and codes
 - Contributions to others are as valuable as making your own work

https://bidal.sfsu.edu/~kazokada/csc872/FaceRecognition_Data.zip
Fast Prototyping Exercise

- Please upload your matlab codes thru iLearn forum for my grading and your playing!
- Every week at the end of your excise, please submit your codes/scripts to the specified iLearn forum by midnight of the day. Your grade on FP exercise will be partly based on these submitted codes and what I observe during the in-class exercises.
- If received helps from others, please credit the person who helped you.

Platforms

- MATLAB
 - MathWorks: http://www.mathworks.com/

- MATLAB clones
 - Octave: http://www.gnu.org/software/octave/
 - SciLab: http://www.scilab.org/
Public Libraries

- **OpenCV (Computer Vision)**

- **ITK (Medical Imaging)**
 - http://www.itk.org/

- **WEKA (Machine Learning)**

Face Recognition by Eigenface

- Let’s create a face recognition system using one of the most basic algorithm called “**Eigenface**”.
 - You have not studied this in the lecture yet but
 - You read a paper on this (Turk & Pentland)

- You will need to implement
 - Image I/O + visualization
 - PCA for learning
 - Recognition by nearest neighbor classification
Paper 1

- M. Turk, A. Pentland,

 - http://portal.acm.org/citation.cfm?id=1326887.1326894&coll=&dl=

Data

- I provide a set of facial images
- https://bidal.sfsu.edu/~kazokada/csc872/FaceRecognition_Data.zip
- Images are organized in 3 folders
- FA: 12 32x32 8bit facial images (for Known faces DB)
- FB: 23 facial images (for Test Set)
- ALL = FA+FB (for Training)
Principal Component Analysis

- **Conceptual Steps**
 1) Collect M Training Images (must be aligned, $N \times N$ by N matrix)
 2) Vectorize the Images: $X = \{x_1, \ldots, x_M\}$ Each of M images is a column vector with N coefficients where $N = N \times N$
 3) Compute mean image: $\mu = mean(X)$; a vector of N coeffs
 4) Construct Covariance Matrix: $C = (X - \mu)(X - \mu)^T$ N by N mat
 5) Solve Eigenvalue Problem: $Cv_i = \lambda_i v_i$
 6) Sort resulting eigen vectors in decreasing order of corresponding eigen values.
 7) Select the top K Eigenvectors $W = \{v_1, \ldots, v_K\}$, resulting in a face model $\{\mu, W\}$

Nearest Neighbor Recognition

- **Learning & Database Construction**
 1) Do PCA, yielding a face model $\{\mu, W\}$
 2) Construct DB of known faces with codes $y_j = W^T(x_j - \mu^T)$ for all known faces $\{x_j\}$

- **Face Recognition by NN Classification**
 1) Test face z is also projected to the model $W^T(z - \mu^T) = y_z$
 2) Nearest neighbor classification of y_z with $\{y_j\}$ by picking the index "i" that best match to y_z according to Euclidean distance
Useful MATLAB Codes

For PCA
- Set X as a matrix with each row is a vectorized face
- \(m = \text{mean}(X) \): sample mean of X, pay attention to dim.
- \(M = \text{repmat}(\mu', 1, N) \); create a matrix by repeating a column matrix \(\mu' \) N times (M will be length of \(\mu \times N \))
- \(S = \text{cov}(X) \): covariance matrix (mean removed)
- \([V D] = \text{eig}(S) \): eigen value decomposition of a matrix S
 - Each column of V is an eigen vector.
 - D is a diagonal matrix of eigen values.
 - Columns of V and D are corresponding to each other
- \(d = \text{diag}(D) \); vectorize the diagonal component of a matrix
- Use for-loop to get cumulative distribution of eigen values then divide it by the total variance (\(\text{sum(diag(D))} \))
- Plot(cumulative distribution of eigen values)