Overview

• Last lecture
 – Medical Image Registration II
 – Intensity-based registration
 – Non-rigid registration
 – Thin Plate Splines/Cubic B-Splines & Demons

• Today’s lecture
 – After Segmentation
 – Feature Extraction
 – Classification/Recognition
 – After Registration
 – Change Analysis
 – Course Overview
Goal of What We Study Today

• Segmentation and Registration are pre-process to do …
• What?
• Segmentation
 – Object classification / Recognition
 – Diagnosis/Screening
• Registration
 – Comparison / Change Analysis
 – Follow-up study
• We learn today basics of what comes next…

After Segmentation

• Segmentation is the first step for many post processes: pre-processing
• Yields different image representation
 – Boundary
 – Medial Axis
 – Region
1. Feature extraction
2. Classification/Recognition
Feature Extraction

- Features express intrinsic characteristics of an object & extracted from a result of segmentation
 - Often designed to be independent to scaling, rotation, translation
 - Used for later detection, classification, recognition tasks
- Shape (Geometry)
 - Boundary
 - Medial Axis
 - Binarized Image
- Topology (well,,, topology)
- Texture (Intensity distribution)
 - Intensity Statistics

Invariant Descriptors

- We want features that does not depend on location, orientation and scale

Feature space distance
Boundary Detection

- Object boundary can be detected by
 - Any contour-based segmentation (Snake, Level set)
 - Use morphological operations from the region-based segmentation results (midterm 2)
 - Use watersheds on gradient image
 - Edge linking / Border tracking

- Boundary Features (see Ch.11 of DIP book)
 - Signature
 - Chain code
 - Polygonal Approximation
 - Boundary segments
 - Geometric Measures

Signature

- 2D boundary to 1D function
- Invariant to location, but will depend on rotation and scaling.

\[r(\theta) = \begin{cases}
A \sin \theta & \text{for } 0 \leq \theta \leq \pi/4 \\
A \csc \theta & \text{for } \pi/4 < \theta \leq \pi/2
\end{cases} \]
Boundary Segments

• **Boundary segments**: decompose a boundary into segments.

• Use of the **convex hull** of the region enclosed by the boundary is a powerful tool for robust decomposition of the boundary.

![Boundary Segments Diagram](image)

Geometric Measures of Boundary

• **Boundary Length**
 – the number of pixels along a boundary gives a rough approximation of its length.

• **Curvature**
 – the rate of change of slope
 – to measure a curvature accurately at a point in a digital boundary is difficult
 – the difference between the slopes of adjacent boundary segments is used as a descriptor of curvature at the point of intersection of segments

![Geometric Measures Diagram](image)
Medial Axis / Skelton

- Produce a one pixel wide graph that has the same basic shape of the region, like a stick figure of a human. It can be used to analyze the geometric structure of a region which has bumps and “arms”.

![Figure 11.7](image-url)

Thinning Algorithm

- Iteratively thin a binary image into a Skelton
 - A contour point is any pixel with value 1 and having at least one 8-neighbor valued 0
 - Let

\[
N(p_i) = p_2 + p_3 + \ldots + p_8 + p_9
\]

\[
T(p_i) : \text{the number of 0-1 transitions in the ordered sequence}
\]

\[
P_2, P_3, \ldots, P_8, P_9, P_2
\]
Thinning Algorithm: Step 1

- Flag a contour point p_1 for deletion if the following conditions are satisfied:
 1. $2 \leq N(p_1) \leq 6$
 2. $T(p_1) = 1$
 3. $p_2 \cdot p_4 \cdot p_6 = 0$
 4. $p_4 \cdot p_6 \cdot p_8 = 0$

Figure 11.9 Illustration of conditions (a) and (b) in Eq. (11.1-1). In this case $N(p_1) = 4$ and $T(p_1) = 3$.

Thinning Algorithm: Step 2

- Flag a contour point p_1 for deletion again. However, conditions (a) and (b) remain the same, but conditions (c) and (d) are changed to:
 1. $p_2 \cdot p_6 \cdot p_8 = 0$
 2. $p_2 \cdot p_4 \cdot p_8 = 0$

Figure Illustration of conditions (c') and (d) in Eq. (11.1-1). In this case $N(p_1) = 4$ and $T(p_1) = 3$.
Overall Procedure for TA

- A thinning algorithm:
 - (1) applying step 1 to flag border points for deletion
 - (2) deleting the flagged points
 - (3) applying step 2 to flag the remaining border points for deletion
 - (4) deleting the flagged points
 - This procedure is applied iteratively until no further points are deleted.

Skelton Example

- Structure
- Handwriting

FIGURE 11.10
Human leg bone and skeleton of the region shown superimposed.
Region-based Features

• Features extracted from a region

• Binary region
 – First compute binary connected-component by thresholding followed by connected components labeling
 – Then extract feature from the binary region.

• Greyscale regions
 – Assume a segmentation process provides a form of binary mask or a condition to tell which pixel/voxel belongs to a region
 – Extract features from a set of intensity values in the region

Binary Image Characteristics

• Extract some useful features from a binary connected component
 – Area/Volume
 – Compactness
 – Centroid
 – Circularity
 – Bounding box
 – Extremal points
 – Spatial moments
 – Moment Invariants
Area/Volume

- We denote the set of pixels in a binary connected component region by \(R \) (intensity value is 1).
- Assuming square pixels/voxels, area \(A \) is given by counting the number of pixels in \(R \):
 \[
 A = \sum_{(x,y) \in R} 1
 \]
- Volume is given by counting in 3D:
 \[
 V = \sum_{(x,y,z) \in R} 1
 \]
- When voxel is not squared,
 \[
 V = \sum_{(x,y,z) \in R} (x_{\text{size}}) \times (y_{\text{size}}) \times (z_{\text{size}})
 \]

Compactness

- The perimeter \(P \) of a region \(R \):
 - the length of its boundary \(B \)
 - Cardinality of a set of all boundary pixels/voxels
- The compactness of a region:
 \[
 C = \frac{\left(\sum_{(x,y) \in B} 1 \right)^2}{\sum_{(x,y) \in R} 1} \left(\frac{\# \text{boundary pixels}}{A} \right)^2
 \]
Centroid

- Center of mass: given by spatial average

\[
\bar{x} = \frac{1}{A} \sum_{(x,y) \in R} x \\
\bar{y} = \frac{1}{A} \sum_{(x,y) \in R} y
\]

- In 3D, replace A by V and also compute an average of z coordinates

\[
\bar{z} = \frac{1}{V} \sum_{(x,y,z) \in R} z
\]

Circularity

- Measure the deviation from a perfect circle

- Circularity:

\[
C = \frac{\mu_R}{\sigma^2_R}
\]

where \(\mu_R \) and \(\sigma^2_R \) are the mean and variance of the distance from the centroid of the shape to the boundary pixels \((x_k, y_k)\).

- Mean radial distance:

\[
\mu_R = \frac{1}{K} \sum_{k=0}^{K-1} \| (x_k, y_k) - (\bar{x}, \bar{y}) \|
\]

- Variance of radial distance:

\[
\sigma^2_R = \frac{1}{K} \sum_{k=0}^{K-1} \left[\| (x_k, y_k) - (\bar{x}, \bar{y}) \| - \mu_R \right]^2
\]
Bounding Box

- Given a binary connected component R,
- A bounding box is defined by a rectangle (2D) or polygon (3D) with its corners defined by

\[
\begin{align*}
&\text{Extremal Points: Break} \\
&\text{Thirion introduced} \text{ extremal points, which are points of} \text{ locally maximal curvature in both principal directions of the surface}. \text{These points are specific points on the crest lines and can be seen as the generalization of corner points for smooth surfaces in 3D.}
\end{align*}
\]
Moments (Shape Statistics)

- Binary connected component is denoted by $b(x, y)$, then k-th moment for x is defined by
 \[M(k) = \iint x^k b(x, y) \, dx \, dy \]
 - 0th Moment = Area A
 \[A = \iint b(x, y) \, dx \, dy = \sum_{(x, y) \in R} b(x, y) \]
 - 1st Moment = Center of Mass
 \[\bar{x} = \frac{1}{A} \iint x \, b(x, y) \, dx \, dy \]
 \[\bar{y} = \frac{1}{A} \iint y \, b(x, y) \, dx \, dy \]
 - 2nd Moment = Variance
 \[\sigma_x^2 = \iint x^2 b(x, y) \, dx \, dy \]
 \[\sigma_y^2 = \iint y^2 b(x, y) \, dx \, dy \]

Central Moments

- R is a subset of image pixels (region).
- Central $(j, k)^{th}$ moment defined as:
 \[\mu_{jk} = \sum_{x} \sum_{y} (x - \bar{x})^j (y - \bar{y})^k \, b(x, y) = \sum_{(x, y) \in R} (x - \bar{x})^j (y - \bar{y})^k \]
- Invariant to translation of R.
- Interpretation:
 - 0th central moment: area
 - 1st central moment: mean
 - 2nd central moment: variance
 - 3rd central moment: skewness
 - 4th central moment: kurtosis
Moment Invariants

- Normalized central moments
 \[\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}}, \quad \gamma = \frac{p + q}{2} + 1 \]
 \[\left(\sum_{(x,y) \in R} (x-x_c)^p(y-y_c)^q \right)^\frac{1}{\gamma} \]
- From those, a set of invariant moments can be defined for object description.
 \[\phi_1 = \eta_{20} + \eta_{02} \]
 \[\phi_2 = (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2 \]
 \[\phi_3 = (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{23})^2 \]
 \[\phi_4 = (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{23})^2 \]
 (Additional invariant moments \(\phi_5, \phi_6, \phi_7 \) can be found in the literature).
- Robust to translation, rotation & scaling, but don’t expect wonders (still summary statistics).

More Invariants

\[\phi_5 = (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{23})^2] \]
\[+ (3\eta_{21} - \eta_{23})(\eta_{21} + \eta_{23})[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{23})^2] \]
\[\phi_6 = (\eta_{20} - \eta_{02})[(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{23})^2] \]
\[+ 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{23}) \]
\[\phi_7 = (3\eta_{21} - \eta_{23})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{23})^2] \]
\[+ (3\eta_{12} - \eta_{30})(\eta_{21} + \eta_{23})[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{23})^2] \]
Orientation

• **Difficult to define!**
 - Axis of least second moment
 - For mass: Axis of minimum inertia

Minimize:

\[E(\rho, \theta) = \iint r^2 b(x, y) \, dx \, dy \]

Axis of Least Second Central Moment

• Invariance to orientation?
 - Need a common alignment
 - Compute Eigenvectors of 2nd moment matrix (Matlab: eig(A))

\[
\begin{bmatrix}
\lambda_1 & 0 & 0 \\
0 & \lambda_2 & 0 \\
0 & 0 & \lambda_3 \\
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2 \\
v_3 \\
\end{bmatrix}
\]

Axis for which the squared distance to 2D object points is minimized (maximized).
Summary of Binary Image Characteristics

- **Pros**
 - Fast to compute, easy to store
 - Simple processing techniques
 - Can be very useful for constrained scenarios

- **Cons**
 - Hard to get “clean” silhouettes
 - Noise is common in realistic scenarios
 - Can be too coarse a representation
 - Cannot deal with 3D changes

Topological Features

Topological property 1:
- **the number of holes** (H)

![Figure 11.17](image1.png)

FIGURE 11.17 A region with two holes

Topological property 2:
- **the number of connected components** (C)

![Figure 11.18](image2.png)

FIGURE 11.18 A region with three connected components
Topological Features: Euler Number

Topological property 3:
Euler number: the number of connected components subtract the number of holes

\[E = C - H \]

![Diagram showing regions with Euler number equal to 0 and -1, respectively.](image)

Largest Connected Component

Topological property 4:
the largest connected component.

![Images of infrared and thresholded images, with the largest connected component highlighted](image)
What is Texture?

• What is texture?

Texture Types

• Defined as the smoothness or roughness of a surface.
• Visual appearance of the uniformity or lack of uniformity of brightness and color.
• There are two types of texture: random and regular.
 – Random texture cannot be exactly described by words or equations; it must be described statistically. The surface of a pile of dirt or rocks of many sizes would be random.
 – Regular texture can be described by words or equations or repeating pattern primitives. Clothes are frequently made with regularly repeating patterns.
 – Random texture is analyzed by statistical methods.
 – Regular texture is analyzed by structural or spectral (Fourier) methods.
Statistical Approach (Intensity Statistics)

- Let z denote gray levels and let $p(z)_i, i=0,1,...,L-1$, be the corresponding normalized histogram, where L is the number of distinct gray levels
 - The n-th moment of z: (intensity mean, variance, skewness...)
 \[\mu_n(z) = \sum_{i=0}^{L-1} (z_i - m)^n p(z_i) \quad \text{where} \quad m = \sum_{i=0}^{L-1} z_i p(z_i) \]
 - The regularity: \[R = 1 - \frac{1}{1 + \sigma^2(z)} \]
 - The uniformity: \[U = \sum_{i=0}^{L-1} p^2(z_i) \]
 - The Shannon entropy: \[e = -\sum_{i=0}^{L-1} p(z_i) \log_2 p(z_i) \]

Example of Intensity Statistics

<table>
<thead>
<tr>
<th>Texture</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>R (normalized)</th>
<th>Third moment</th>
<th>Uniformity</th>
<th>Entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth</td>
<td>82.64</td>
<td>11.79</td>
<td>0.002</td>
<td>-0.105</td>
<td>0.026</td>
<td>5.434</td>
</tr>
<tr>
<td>Coarse</td>
<td>143.56</td>
<td>74.63</td>
<td>0.079</td>
<td>-0.151</td>
<td>0.008</td>
<td>7.783</td>
</tr>
<tr>
<td>Regular</td>
<td>99.72</td>
<td>33.73</td>
<td>0.047</td>
<td>0.750</td>
<td>0.013</td>
<td>6.674</td>
</tr>
</tbody>
</table>

TABLE 11.2
Texture measures for the subimages shown in Fig. 11.22.
Structural Approach

- Structural concepts:
 - Suppose that we have a rule of the form $S \rightarrow aS$, which indicates that the symbol S may be rewritten as aS.
 - If a represents a circle [Fig. 11.23(a)] and the meaning of “circle to the right” is assigned to a string of the form $aaaa…$ [Fig. 11.23(b)].

Template Matching

Spectral Approach

- Extract frequency information about texture patterns via Fourier transform of an image
- $S(r, \theta)$ is called spectrum function which is the result of Fourier transform of an image. It is described in polar coordinate, r is radius/frequency and θ is angle
 - For each direction θ, $S(r, \theta)$ may be considered a 1-D function $S_\theta(r)$.
 - For each frequency r, $S_r(\theta)$ is a 1-D function.
 - A global description:
 $$S(r) = \sum_{\theta=0}^{\pi} S_\theta(r) \quad S(\theta) = \sum_{r=1}^{R_n} S_r(\theta)$$
 Summed over all angles Summed over all radius
Example of Spectral Signatures

After Feature Extraction

- You can do …

- Classification/Recognition
- Detection (this is a little bit different but another application of the classification)
Classification

- A task to differentiate input types

![Diagram](Image)

- Preprocessing
 - Segmentation
 - Feature Extraction
- Extract ROI with tumor
- Volume, circularity, moments...

- Classification

- Salmon
- Sea Bass
- Benign
- Malign

Pattern Classes & Object Recognition

- **Pattern classes**
 - A pattern class is a family of patterns that share some common properties
 - Yellow Fish and Green Fish
 - Malignant and Benign

- **Pattern recognition**
 - to assign a given pattern to its respective class

- **Training/Learning:**
 - to find a function that assigns a class to arbitrary input pattern from a set of training examples:
 - \{$(\text{pattern1}, \text{class1}), (\text{pattern2}, \text{class2}), \ldots$\}
Type of Classifiers

- **Supervised**: know the answer
 - Nearest-neighbor classifier
 - k-nearest-neighbor classifier
 - same class as majority of k-closest training set
 - Bayes classifier
 - Neural Net, Convolutional NN
 - Support Vector Machine, Random Forest etc.

- **Unsupervised**: don’t know the answer
 - K-mean clustering
 - Parzen window

Feature Space

- First agree on a set of features that you use for your classifier (fea1, fea2, fea3,..)
- Feature Space

```
+-----------------+-----------------+
| width/curvature | lightness/circularity |
+-----------------+-----------------+
| Salmon/Benign   | Sea bass/Malign |
```

49
Decision Function & Boundary

- Class assigning function!

- Tune decision boundary model
- Complexity
- Overfitting
 “Less performance in training data better performance in novel patterns”

- How do we find decision boundary from data?
- In a simple 1D example
- Make a histogram of a feature (length/volume) for each class (e.g., salmon or sea bass/malignant or benign)
- And find the best threshold function!

Decision Function Learning
Feature Extraction vs Classifier

• Small number of features → simpler decision regions, easier to train and quicker response
• Ideal Feature Extraction → Trivial Classifier
• Perfect Classifier → Simple Features
• General purpose recognition system is a very difficult challenge
• Practice defines what is the best approach
• For example: how many features do you need?

Classifiers Overview: Break

• Pros
 – Being noniterative, classifiers are relatively computationally efficient during runtime
 – Can be applied to any types of images

• Cons
 – Do not perform any spatial modeling
 – Require manual interaction to obtain training data
 – Preparing training data is tedious and time-consuming
 – Performing training is iterative and often time-consuming
Detection

- It is a task to locate a region of interest
 - Find a fish in an image of aquarium
 - Find a tumor in a CT image
- In medical imaging, this is one of the most important task
 - Computer-aided detection of X
 - Automating a semi-automatic segmentation (automatic seeding)

Template matching

- Simplest way for detection
 1. have a template (small image showing the region of interest)
 2. raster scan the input image,
 3. at each pixel location, compute a similarity value of the template and corresponding image region
 4. After finish scan, find a pixel location that gave the highest similarity
What’s wrong with it?

- **How to compute similarity?**
 - Many similarity functions
 - You can extract invariant features first then compare
- **How to select template?**
 - Object appearance may change (tumor)
- **How many templates should I use?**

How to improve?

- Notice that template matching is essentially a binary nearest neighbor classifier
- So you can use more advanced classifier to detect your target
 - SVM
 - Adaboost
- Machine learning…
- Cons: Training of your detectors take loooooong time…
After Registration

• Registration is the first step for comparing images
• After alignment you can
 – Detect any abnormal changes
 – Analyze the extent of changes
 – Provide a basis for a follow-up study to look for recurrence of cancers
 – Provide a basis for therapy monitoring to see if lesions are improving

Change Detection

• Given an image $A(x)$ and $B(x)$ or $(A(x,t)$ and $A(x,t+dt))$,
• find a set of locations $y \in x$ that indicates a change between A and B
 – Difference Image
 – Ratio Image
 – Local Comparison with model (training)
 – General classification
Difference Image

Image 1

<table>
<thead>
<tr>
<th>8</th>
<th>10</th>
<th>8</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>11</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>205</td>
<td>210</td>
<td>205</td>
<td>54</td>
</tr>
<tr>
<td>220</td>
<td>98</td>
<td>88</td>
<td>46</td>
</tr>
</tbody>
</table>

Image 2

<table>
<thead>
<tr>
<th>5</th>
<th>9</th>
<th>7</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>9</td>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td>98</td>
<td>100</td>
<td>205</td>
<td>222</td>
</tr>
<tr>
<td>103</td>
<td>98</td>
<td>254</td>
<td>210</td>
</tr>
</tbody>
</table>

Difference Image = Image 1 - Image 2

Threshold the absolute values

Difference Image Over View

- **Pros**
 - Simple (some say it’s the most commonly used method)
 - Easy to interpret
 - Robust
- **Cons:**
 - Difference value is absolute, so same value may have different meaning depending on the starting class
Ratio Image

- Instead of subtraction, use the ratio $\frac{I_{m1}}{I_{m2}}$
- If no change, you have 1
- Threshold the image for detection

Pros
- Simple
- May mitigate problems with viewing conditions, esp. sun angle

Cons
- Asymmetric as to the direction of change: 5/2 and 2/5

Local Comparison

- Local comparison
 - After alignment of A & B,
 - Raster-scan with nxn local window pair from A & B.
 - Extract the same features from both images
 - Compute dissimilarity at each location
 - Threshold the dissimilarity values to find change locations

Cons
- You don’t know if the change come from alignment errors or real changes…
Local Comparison with Model

- Training phase
 - Align N number of images into the same coordinate
 - At each pixel location, compute the standard deviation of pixel value differences for \(\frac{N(N-1)}{2} \) pairs
- Then align A & B to the same N images
- Then at each pixel/voxel location
 - Compute the pixel value difference
 - If the difference is within the standard deviation of the location, no change
 - Otherwise it is a change!

General Classifier

- The local comparison can be generalized by using a general classifier
 1. Train a region classifiers
 2. Perform the classifier to subregions of A & B
 3. Then compare the resulting class labels between A & B.
- Pros
 - Avoids need for strict calibration
 - Designates type of change occurring
- Cons
 - Error is multiplicative from two parent maps
Summary

• **Image Quantification**
 – After Segmentation
 – Feature Extraction
 – Classification/Recognition
 – After Registration
 – Change Analysis
 – **Course Overview**

• Next Week:
 – Project presentations in next week!
 – Practicals: Only 20 min. (overshooting times will be negatively graded).
 – If use Mac, please bring your own connector dongle
 – Submit your power-point slides to me by 5/14 5pm

Course Overview

• You learned about
 – How medical images are generated
 – How to handle images
 – How to process images
 – How to represent images

• Things to think
 – Extending 2D algorithms to 3D
 – Could be a research work!

• **Online tutorial and Java demos available on**
How medical image are generated

- Lec 2-3,
- Principle of Optical Image Generation
- Biological imaging
- X-ray/CT
- MRI
- PET/SPECT
- US
- Fusion
- Different Physics exploited for different modalities

How to handle images

- Lec 1 & 4
- Image Data Structures
- Image As a Function / Lattice
- Sampling/Resolution/Quantization
- Graylevels & Colors
- Image Standard & Viewers
 - DICOM, ANALYZE
- Image Visualization
 - MPR, MIP, Interpolation
How to process images

• Lec 6-8
 • Point process vs Neighboring process
 • Enhancement: histogram equalization
 • Smoothing: average, Gaussian, anisotropic diff.
 • Sharpening/Edge detection: Laplace, LoG, Sobel
 • Mathematical Morphology
 • Connected Components Labeling
 • Fourier analysis / aliasing

• Lec 9-12
 • Segmentation
 – Thresholding: Otsu method
 – Region growing
 – Watersheds
 – Classification
 – Level Sets
 • Registration
 – Rigid Landmark-based: Singular Value Decomposition (markers)
 – Rigid Surface-based: Iterative Closest Point algorithm
 – Rigid Intensity-based: Mutual Information Maximization
 – Nonrigid Landmark-based: Thin-Plate Splines, Cubic B-splines
 – Nonrigid Intensity-based: Demons algorithm
How to represent images

• Lec 13
• Feature extraction after segmentation
 – Boundary
 – Skelton
 – Region
 – Statistical moments
• Change analysis after registration
 – Difference image
 – Classifier

To your future

• Visualization
• GPU-parallelization
• Clinical studies with engineering minds
• Machine learning (learn from data)
• Computer vision (geometry from data)
• Data mining (pattern detection)
• Artificial Intelligence (logical reasoning)
Next Class if you are interested.

- CSC872 Pattern Analysis Machine Intelligence
- AI & Machine Learning in depth
- Learn about the recognition & learning
- Old syllabus
- https://bidal.sfsu.edu/~kazokada/csc872/