Homework Exercise

- Start project coding work according to the project plan
- Adjust project plans according to my comments (reply iLearn threads)
- **New Exercise**: Install VTK & FLTK. Find a simple hello world apps in VTK & FLTK. Then build/execute them. Send me snapshot of results by iLearn within one week for extra credits.
- Once you finish this. Work on connecting your ITK apps and VTK/FLTK. And incorporate it into your project work.
Overview

• Last lecture
 – Practical Foundation of Digital Image Processing I
 – Spatial Domain Analysis
 – Image Enhancement
 – Point Processing: Intensity Transformations
 – Neighbor Processing: Spatial Smoothing Filtering

• Today’s lecture
 – Practical Foundation of Digital Image Processing II
 – Sharpening Filtering in Spatial Domain

Review: Purpose of Image Filtering

• The basic procedure for image processing for
 – Improving image quality for human perception
 – Extracting information for autonomous machine perception

• Manipulate images for
 – Smoothing, Sharpening, Denoising, Restoration, Compression, Edge detection, Shape morphology

• Transform an image to another image
Review: Spatial Image Filtering: Process

The above is repeated for every pixel in the original image to generate the filtered image.

Review: Spatial Image Filtering: Formula

Filtering can be given in equation form as shown above.
Notations are based on the image shown to the left.
Image Enhancement by Sharpening

- Smoothing filters are used to remove fine details from the original images
- **Sharpening spatial filters** seek to highlight fine detail
 - Remove blurring from images
 - Highlight edges
- Sharpening filters are based on *spatial differentiation*

Spatial Differentiation

- Finding the **derivative** of a function with respect to the spatial variable
 - How function’s output change as location changes
 - Rate of change of a function
 - Slope of a function

\[
f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}
\]
Order of Derivatives

- First derivative
 - Speed: change of location
 - Slope
 - Gradient
 - Divergence

- Second derivative
 - Acceleration: change of speed
 - Curvature
 - Hessian
 - Laplacian

Sharpening Filtering: Examples

- Let’s consider a simple 1 dimensional example
Spatial Differentiation: 1st Derivative

- The discrete approximated formula for the 1st derivative of a function \(f \) is as follows:
 \[
 \frac{\partial f}{\partial x} = f\left(x + 1\right) - f\left(x\right)
 \]

- It’s just the difference between subsequent values and measures the rate of change of the function
- High value at the location of changes

Example: 1st Derivative
Spatial Differentiation: 2nd Derivative

- The discrete approximated formula for the 2nd derivative of a function is as follows:
 \[
 \frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)
 \]
- Takes into account the values both before and after the current value
- High value at the location of high curvature

Example: 2nd Derivative

- The image strip and its second derivative are shown in the diagram.
Derivative Image Filtering

• Given a N-D image (N = 2, 3…)
• Construct a k by k filter derived from the spatial derivatives
 – k value? 3 or 5 or 4 size of filter?
 – Dimension (N): k by k by k by….
 – Derivative order? First or Second?
 – Continuous to discrete?
• Perform filtering of the input image
 – Convolution
 – How to solve border problem?

1st vs 2nd Derivatives for Enhancement

• The 2nd derivative is more useful for image enhancement than the 1st derivative
 – Stronger response to fine detail
 – Simpler implementation
 – We will come back to the 1st order derivative later on

• The first sharpening filter we will look at is the Laplace filter
 – Based on 2nd spatial derivative
 – Look at a discrete implementation
Laplace Filter Concept

- One of the simplest sharpening filters
- Based on 2nd spatial derivative
- Isotropic
 - Radially symmetric \(\rightarrow\) Concentric Circle
 - Respond equality to any direction
- Sum to zero
- Useful for sharpening and edge detection
 - Laplace sharpening
 - Zero crossing edge detection (later)
- We will look at a discrete implementation

Laplace Filter Derivation

- The 2D Laplacian function is defined by:
 \[\Delta f = \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \]
- where the partial 2nd order derivative in the \(x\) direction is defined as follows:
 \[\frac{\partial^2 f}{\partial x^2} = f(x+1, y) + f(x-1, y) - 2f(x, y) \]
- and in the \(y\) direction as follows:
 \[\frac{\partial^2 f}{\partial y^2} = f(x, y+1) + f(x, y-1) - 2f(x, y) \]
Laplace Filter Cond.

• So, the 2D Laplacian can be given as follows:
\[
\nabla^2 f = [f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1)] - 4f(x, y)
\]

• We can easily build a filter based on this:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Digital Laplace Filtering

• Using the Laplace filter:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

• Perform the neighborhood transformation via image filtering
Laplace Filter Examples

- Applying the Laplacian to an image we get a new image that highlights edges and other discontinuities

Examples of Laplace Filtering

- Retina
Issues for Laplace Filtering

- The result of a Laplace filtering is not an enhanced image (It indicates Curvature)
- We have to do more work in order to sharpen an image
- **Subtract the Laplacian result from the original image to generate our final sharpened enhanced image**

\[g(x, y) = f(x, y) - \nabla^2 f \]

Image Enhancement by Laplace Filtering

In the final sharpened image edges and fine detail are much more obvious
Laplace Enhancement

Integrating Steps into Single Filter

- The entire enhancement can be combined into a single filtering operation

\[
g(x, y) = f(x, y) - \nabla^2 f
\]

\[
= f(x, y) - [f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1) - 4f(x, y)]
\]

\[
= 5f(x, y) - f(x+1, y) - f(x-1, y) - f(x, y+1) - f(x, y-1)
\]
Digital Laplace Sharpening

- This gives us a new filter which does the whole job for us in one step

![Example of Laplace Sharpening 1](image)

![Example of Laplace Sharpening 1](image)
Variants (Due to Discretization)

- There are lots of slightly different versions of the Laplacian that can be used:

```
0 1 0
1 -4 1
0 1 0
```
Simple Laplacian

```
1 1 1
1 -8 1
1 1 1
```
Variant of Laplacian
Summary

• Practical Foundation of Digital Image Processing II
 – Sharpening Filtering in Spatial Domain

• Next Week:
 – Practical Foundation of Digital Image Processing III
 – Sharpening Filtering in Spatial Domain cond
 – Edge Detection in Spatial Domain
 – Filter Combination
 – Multiple-Image Operation
 – Frequency Domain Techniques

• Homework Exercise/Project:
 – VTK, FLTK \(\rightarrow \) Extra credit by submitting hello world!
 – Start project coding work according to the project plan
 – Adjust project plans according to my comments (reply iLearn threads)