Project Teams

- **EARTH:** Jesse, Mathew, Ryan, Gayoung, Alexander-T
- **WIND:** Karan, Lance, Mark, Rosalba
- **FIRE:** Justin, Udara, Charul, Xisheng
- **WATER:** Nikita, Albert, Regine, Ivan
- **SKY:** Amelie, James, Chen-Feng, Dilraj
- **FOREST:** Peter, Amelia, Flavy, Veronica
- **ROCK:** Wagner, Abigail, Alexander-H, Cody

Initial Team Set-Up Tasks
- Have a team meeting (first during breaks in this lecture) and set up a common IDE & regular meeting schedule
- Decide how to share codes.
- Make sure all can run ITK/VTK/FLTK (Check everyone’s ITKs and help each other to set them up for all if there are any remaining issues)

Project Design: Due in one week!

- Choose one of two approaches:
 - A) Implement **one best method** and test it with **multiple data**
 - B) Implement **multiple methods** and compare it against **one data set**

- Choose datasets & algorithms to be tested for segmentation, registration, and quantification/visualization parts.
 - Assign individuals responsible for each task within next one week (e.g., 2 for segmentation&eval, 2 for registration&eval, 1 for quantification and code integration)
 - Each group is to submit me the design plan in one week for my approval. Use iLearn forum to do this.
Project Planning Tips

- Use existing ITK functions/apps as much as possible.
- GUI can be optional (ImageJ, ITK-snap) to focus on algorithms
- Spend time in parameter tuning/testing the ITK apps with various data with specific focus of interest you can choose
- Allocate enough time for code integration and performance evaluation experiments.
- Allocate enough time for preparing group presentation
- Make sure to report individual task assignments in your team’s project plan submitted in iLearn forum.
- The plan is working documents. You can revise it. Consult me when any issue arises asap.

Image Data Structure & Visualization

CSC621-821
Biomedical Imaging and Analysis
Dr. Kazunori Okada
Overview

- Last lecture: **Imaging Methods & Physics II**
 - MRI
 - PET
 - US
 - PET-CT

- Today’s lecture
 - Image Data Structure
 - Image File Formats & Visualization

Data Structure of Images: Overview

- How to organize numbers encoding all information present in an image?
- Graphical/Numerical Representation of Images
- Standard required because
 - Viewing
 - Database
 - Algorithm Development
Image as Spatial Lattice and Feature

Two-Dim Lattice

Annotated Features

Image = Feature annotated lattice

Spatial Coordinates

\[x_{ij} = (i, j) \]

\[N_j \]

\[N_i \]
Spatial Dimension

1D

\[x_i = (i) \]

2D

\[x_{ij} = (i, j) \]

3D

\[x_{ijk} = (i, j, k) \]

N-Dimensional Image?

Pixel and Voxel: Image Unit

Pixel is a feature-annotated node of 2D image lattice

Voxel is a feature-annotated node of 3D image lattice

\[x_{ij} = (i, j) \]

\[x_{ijk} = (i, j, k) \]

Intensity Feature

\[I(x_{ij}) \]

\[I(x_{ijk}) \]
Raster Scan

- Successively scanning each lattice node for entire image

```
for (j=0; j<N; j++) {
  for (i=0; i<N; i++) {
    ...for (k=0; k<M; k++) {
      // Process pixel at (i, j, k)
    }
  }
}
```

Double loop!

Temporal Dimension

- 1D space: independent (perpendicular) to the spatial dimensions
 - Video is 3D data: (2D + time)
 - 4D imaging: (3D + time, 3D video)
Types of Intensity Feature

Scalar: 8-bit Grayscale (1D, 256 possible tones)

\[v = I(x_{ij}) \]

Scalar: 1-bit Binary (1D, 2 possible values)

\[v = I(x_{ij}) \in \{0, 255\} \]

Vector: 24-bit Color Feature (3D)

\[(r, g, b) = I(x_{ij}) \]

Types of Vector Feature

Vector: Spatial-Intensity Feature (3D)

Spatial coordinates can also be a feature!

Vector: Intensity-Time Feature (2D)

Video!

Vector: Multispectral feature (n-D)

\[(v_1, v_2, \ldots, v_n) = I(x_{ij}) \]

\[\text{wavelength} \]

Matrix: Covariance Feature (m x m-D)

\[\begin{pmatrix} c_{11} & c_{21} \\ c_{12} & c_{22} \end{pmatrix} = I(x_{ij}) \]
Image Matrix

\[A_{ij} = \begin{pmatrix}
 a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
 a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\
 a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn}
\end{pmatrix} \]

3D Matrix

Color Image Matrices

\[\begin{pmatrix}
 A_{ijk} \\
 (A_{ij1}, A_{ij2}, A_{ij3}) \\
 A_{i,j,k,\ldots,z}
\end{pmatrix} \]

ND Matrix

Nature of 2D Image: Projection

- 3D-to-2D projection causes **information loss**
- Reflected Lights
 - Only viewing the visible surface
 - Behind mountain?
- Refracted Lights
 - Superimposition over depth
 - Depth information lost
Nature of 3D Image: Volumetric Image

- “3D volume” as spatial coordinates
- No dimensional reduction
 - The world is in 3D
 - Image is also 3D
 - No apparent loss of depth information!
 - Because of this it is hard to view.

Continuous Function as Image

- Another formulation
- Let a 2D continuous function model a 2D image
 \[f(x) : \mathbb{R}^2 \rightarrow \mathbb{R} \]
 \[x \in \mathbb{R}^2: \text{spatial coordinate vector } (x, y) \]
 \[f \in \mathbb{R}: \text{function response} \]
N-Dimensional Vector Space

<table>
<thead>
<tr>
<th>2D</th>
<th>3D</th>
<th>ND</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[f(x) : \mathbb{R}^2 \rightarrow \mathbb{R} \quad f(x) : \mathbb{R}^3 \rightarrow \mathbb{R} \quad f(x) : \mathbb{R}^N \rightarrow \mathbb{R} \]

Number of Axis = Spatial Dimensionality of Image

Digital Image from Analog Model

Analog Image [Analog Image](image4)

Digital Image [Digital Image](image5)

\(\chi \in \mathbb{R}^N \)

Continuous space

Discretization

Discrete space

Continuous response

Quantization

Discrete response
Discretization of Image

Approximating the continuous function input by a discrete and finite set of numbers (regular sampling)

\[(0,0) \quad a \quad x \quad b \quad (x_0, y_0) \quad x_i \quad (x_7, y_6) \quad y_j \quad y_6 \]

of possible locations: \(\infty \)

of possible locations: \(N_x \times N_y \)

\[i = 0, \ldots, N_x - 1\]

\[j = 0, \ldots, N_y - 1\]

Spatial Resolution

- Smallest discernible detail in an image
 - DPI: dots per inch: how many dots/pixels within an unit area?

\[
\begin{align*}
1024 \times 1024 & \quad 512 \times 512 & \quad 256 \times 256 \\
64 \times 64 & \quad 32 \times 32
\end{align*}
\]
Spatial Resolution

- \(N_x \times N_y\): Width by Height: The number of pixels
- \(N\) megapixels: \(N = N_x \times N_y / \text{(one million)}\)

Quantization of Image

Approximating the continuous function output by a discrete and finite set of numbers

Example: rounding a real number in the interval [0, 100] into an integer 0,1,2,...,100
Intensity Resolution

- The number of intensity levels used to represent an image
 - The more intensity levels used, the finer the level of detail discernable in an image
 - Intensity level resolution is usually given in terms of the number of bits used to store each intensity level

<table>
<thead>
<tr>
<th>Number of Bits</th>
<th>Number of Intensity Levels</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0, 1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>00, 01, 10, 11</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>0000, 0101, 1111</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>00110011, 01010101</td>
</tr>
<tr>
<td>16</td>
<td>65,536</td>
<td>1010101010101010</td>
</tr>
</tbody>
</table>

Intensity Resolution Example

- 256 grey levels (8 bits per pixel)
- 128 grey levels (7 bpp)
- 64 grey levels (6 bpp)
- 32 grey levels (5 bpp)
- 16 grey levels (4 bpp)
- 8 grey levels (3 bpp)
- 4 grey levels (2 bpp)
- 2 grey levels (1 bpp)
Grayscale

- Successive tone levels from black to white
- Black = 0
- White = Max#
- 8-bit grayscale
 - 256 levels [0, 255]
 - computer display
- 12-bit grayscale
 - 4096 levels [0, 4095]
 - CT scans
- 16-bit grayscale
 - 65,536 levels [0, 65,535]
 - PET scans

Medical Image Features (BREAK)

- CT numbers
 - Intensity value for CT scan with Hounsfield Unit normalized with the attenuation coefficient of water
 - Quantized (Translated and Scaled) to [0, 4095] range

<table>
<thead>
<tr>
<th>Substance</th>
<th>Air</th>
<th>Fat</th>
<th>Water</th>
<th>Muscle</th>
<th>Contrast</th>
<th>Bone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hounsfield Unit</td>
<td>-1000</td>
<td>-120</td>
<td>0</td>
<td>+40</td>
<td>+130</td>
<td>+400<</td>
</tr>
</tbody>
</table>

\[\frac{\mu - \mu_{\text{water}}}{\mu_{\text{water}}} \times 1000 \]

- SUV: standard uptake value
 - Semi-standardized tissue activity measure for PET normalized over injected dose and body weight

\[SUV = \frac{c_{\text{PET}}(t)}{ID/BW} \]

\(ID:\) injected dose
\(BW:\) body weight
\(c_{\text{PET}}(t):\) measured radioactive concentration at time \(t\)
Color

• Truecolor (RGB color)
 - Direct Color, typically 3D feature
 - 24 bit = 8-bit Red + 8-bit Green + 8-bit Blue
 - Total of 16.7 million different colors
 - Old systems: 8-bit direct, 12-bit direct, HighColor

• Indexed Color (Pointer!)
 - Fixed-size color palette ~ 16 bit
 - Each image pixel contains an index to the palette
 - Adjustable Palette (Pseudo Color/Color Quantization)

Color Spaces: RGB / CMYK

<table>
<thead>
<tr>
<th>RGB Space</th>
<th>CMYK Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red/Green/Blue</td>
<td>Cyan/Magenta/Yellow/Black</td>
</tr>
<tr>
<td>Additive</td>
<td>Subtractive</td>
</tr>
<tr>
<td>TV Monitor</td>
<td>Printing</td>
</tr>
</tbody>
</table>

RGB Space Diagram

CMYK Space Diagram
Color Spaces: HSV / YUV

HSV Space
- Hue/Saturation/Value
- Cylindrical Graphics

YUV Space
- Luma(Y)/Chrominance(UV)
- NTSC/Composite Color

Color Space: Human Vision

CIE 1931 XYZ Space
- Mathematically derived from human experiments
- Chromaticity-Brightness

CIE L*a*b* Space
- Non-linearly compressed CIE XYZ space to achieve better Perceptual uniformity
Color Quantization

• Reduce the total number of colors by using a set of smaller representative colors with minimum impact on appearance
 – Compression for reducing file size
 – Intensity Quantization + Indexed Color (Palette)
 – Clustering of Color Space

Color Quantization Example

28 bit

![Color Quantization Example](Image from Wikipedia)
RGB Color to Grayscale

- 24-Bit RGB color (R,G,B)
- 8-Bit Grayscale (I)
- Grayscale is along the diagonal line (R=G=B) of the RGB color space
- RGB color can be transformed to Grayscale value by

\[I = \text{round} \left(\frac{R+G+B}{3} \right) \]

Data File Formats: Overview

- Many existing image file formats to handle all these variations in image types
 - Brief overview of 2D Image File Formats
 - Brief overview of Video File Formats
 - 3D image file formats
 - DICOM
 - Analyze
2D Image File Formats

- **JPEG** (Joint Photographic Experts Group)
 - Most common on WWW
- **BMP**
 - Bitmap (storing pixel features in the raster order in binary format)
 - Used mainly by Microsoft
- **GIF** (Graphics Interchange Format)
 - Limited 8-bit color, GIF animation
- **PNG** (Portable Network Graphics)
 - Replacing GIF due to Unisys patent claim
- **TIFF** (Tagged Image File Format)
 - Suitable for high-quality color image
 - Flexible

Compressions

Reducing the size of image files

- **Lossy Compression**
 - Loses some picture details by compression
 - But achieve highest rate of compression
 - JPEG

- **Lossless Compression**
 - Does not lose any picture information
 - DEFLATE Algorithm: PNG
 - LZW Algorithm: GIF, TIFF

- **Uncompressed** (Better for Image Processing!)
 - No compression is performed
 - BMP
 - TIFF
Tags

- Store non-image information such as
 - Size
 - Definition
 - Image-data arrangement
 - Compression types
 - Any other geometric information

- Makes TIFF format very flexible

3D Image File Formats

- 2D Video (2D Image + 1D time)
 - mpeg (moving picture experts group), lossy compression
 - wmv (windows media video), lossy compression, Microsoft
 - avi (audio video interleave), container format by Microsoft
 - mov (quick-time) container format by Apple
 - mp4, 3gp, divx, rm, etc

- Row 3D volume data by a 2D stack
- File Format Standards specific to Medical Images
Volumetric Image as 2D Stack

Row 3D volume data can be stored in
- Binary bitmap (with a small header information)
 - Matlab
 - You can do this from your code

- 2D Image Stack
 - A set of 2D images in a 2D image file format with a header or
 file list specifying z-coordinates
 - Z-coord in filename
 - Z-coord in a list file of filenames (Header file)

Medical Image File Format Standards

- Medical Imaging Standards include Specific
 File Formats
 - DICOM
 - Analyze
 - More…

- Tags (introduced in TIFF) is used heavily for
 storing various information about clinical
 patients, hospitals, imaging protocols and
 parameters
DICOM Overview

- Digital Imaging and Communications in Medicine
 - Standard for handling, storing, printing and transmitting medical imaging information, including...
 - File format definition
 - Communication Protocol (TCP/IP)
 - Copy-righted by NEMA (National Electrical Manufacturers Association)
 - http://medical.nema.org/

DICOM file

- DICOM data consists of a set of DICOM files
- (.dcm) DICOM file extension
- DICOM file contains all data as tags
 - Image Data in binary form
 - Tags for IDs
 - Tags for patient information
 - Tags for image geometry etc
- Data is organized by “Study”
- “Series”: different type scans in a study
- Patient ID is not unique but Study ID is
DICOM Tags

- Study/Series IDs
- Transfer Syntax UID
- Modality: CT/MR/PT/US
- Slice Thickness: in mm
- Pixel Spacing: pixel size in mm
- Image Location: 3D coordinates
- Image Orientation
- Rows: Ny
- Columns: Nx
- Bits Stored: 12 – 16 bit
- Rescale Intercept
- Rescale Slope
- Window Center
- Window Width

CT# to intensity windowing

DICOM Header

- A header file associated with a set of DICOM files for a study
- Includes basic information of the study
 - Study ID
 - Key attributes
 - Information of DICOM software
- Some DICOM file viewing software may require this file. Some not (e.g., ImageJ)
Analyze

- Developed at Mayo Clinic (leading medical research)
- Used heavily in functional MRI neuroimaging
 - SPM, FreeSurfer etc
- Two files for one volume
 - `.img`: volumetric image data in a binary format
 - `.hdr`: other image-related information such as voxel size and the number of voxels and slices etc
- Viewing Analyze format image
 - MRIcro (freeware)
- Converting DICOM to Analyze Format
 - MRIConvert
 - http://lcni.uoregon.edu/~jolinda/MRIConvert/

Data Variations: CT/MRI/PET

- **CT**
 - Slice dimensions: 512 x 512
 - Slice thickness: >0.5mm
 - Intensity: 12 bit
- **MRI**
 - Slice dimensions: 512 x 512
 - Slice thickness: 2mm for 1.5T, 1mm for 3T
 - Intensity: 16 bit
- **PET**
 - Slice dimensions: 256 x 256
 - Slice thickness: 1 ~ 5 mm
 - Intensity: 16 bit
 - FWHM Resolution: 4 ~ 8 mm
- **Whole-Body Scan** has larger slice thickness
PACS Systems (Break)

- Picture Archiving and Communication System
 - Software system designed to manage medical images using DICOM standard
 - Paperless, Remote access, Electronic image integration, Radiology workflow management

- EHR (Electronic Health Records)
 - Currently developed in various hospitals
 - Local system without standards
 - OpenMRS
 - PACS can be integrated into EHR?
 - VistA: Veterans Health Information Systems and Technology Architecture (at the VA hospitals)

Image Visualization: Overview

- How to display these biomedical images on your computer screen?
 - 2D Images: Simple (2D image on 2D display)
 - 3D Images: Difficult (3D image on 2D display!)

- Particularly for biomedical imaging application, visualization is critical!
 - Measurement accuracy is demanded
 - Radiologists use human-eye observation and reasoning as their main diagnostic tool and they are considered to be the best “system” around
2D Viewers

- Various image viewing software available for generic image formats
- Many are freeware
 - ImageMagick
 - IrfanView
 - Gimp
- But cannot be used to view medical images…

ImageMagick

- Read, Convert, Compose images
IrfanView

- IrfanView: Simple/Screen capture function
- http://www.irfanview.com/

Gimp

- GNU Image Manipulation Program: Photoshop like
- http://www.gimp.org/
3D Visualization: Overview

- Viewers must be compatible for biomedical image format standards
- Special data processing is required to display 3D images on 2D monitor screen
 - Intensity Windowing
 - Axial View
 - Cine
 - MPR: Multi-Planar Reconstruction
 - MIP: Maximum Intensity Projection
 - Volume Rendering

DICOM Viewers

- Image Viewers compatible to DICOM format images and volumes
- Open-Source Viewers
 - MIPAV: http://mipav.cit.nih.gov/
 - FusionViewer (PET/CT display):
 http://fusionviewer.sourceforge.net/index.html
 - OSIRIX (Mac OS X): http://www.osirix-viewer.com/
 - Clear Canvas: http://www.clearcanvas.ca/dnn/
 - 3D Slicer: http://www.slicer.org
- Matlab
ImageJ

- Public domain, Java-based biomedical image processing
- Developed at National Institute of Health
- Extendable via Java plugins

Intensity Windowing

- Contrast enhancement for specific organs of interests
- Computer displays only 8bit gray levels but our data is **12-16 bit**

Slice Plane Convention

Axial View

- Traditionally radiologists are trained to study this view
- Computer screen or on a film

Axial View
Cine Display & Imaging

- Successive slices can be displayed as a movie in order to process a large number of slices
- Cine Imaging
 - Cardiac MRI with ECG gating
 - Wall motion and blood flow analysis

MPR: Multi-planar Reconstruction

- Three orthogonal views (sagittal, coronal, axial)
Plane Re-Sampling

- Slice thickness re-sampling (re-slicing)
 - A voxel area corresponds to a non-square region of patient
 - Rearrange the data into a regular lattice with isotropic voxels by interpolation

- Non-orthogonal & Curved plane MPR
 - Oblique slice plane
 - Curved slice plane along for vessels to straighten it out

Plane Re-Sampling via Interpolation

2D Example
- Introduce a new arbitrary lattice onto the current image
- Compute intensity at each lattice node by interpolating neighboring pixel values

Bilinear interpolation
Compute \(I(Q) \) given all point locations and \(I(P_{11}), I(P_{12}), I(P_{21}), I(P_{22}) \)
Bilinear Interpolation

- Linear Interpolation
 \[I(Q) = \frac{x_2-x}{x_2-x_1} I(P_{12}) + \frac{x-x_1}{x_2-x_1} I(P_{22}) \]
 \[I(R_1) = \frac{y_2-y}{y_2-y_1} I(R_1) + \frac{y-y_1}{y_2-y_1} I(R_2) \]
 \[I(R_2) = \frac{x_2-x}{x_2-x_1} I(P_{11}) + \frac{x-x_1}{x_2-x_1} I(P_{21}) \]

- Another linear interpolation along y-axis
 \[I(Q) = \frac{y_2-y}{y_2-y_1} I(R_1) + \frac{y-y_1}{y_2-y_1} I(R_2) \]
 \[= \frac{(x_2-x)(y-y_1)}{(x_2-x_1)(y_2-y_1)} I(P_{11}) \]
 \[+ \frac{(x-x_1)(y-y_1)}{(x_2-x_1)(y_2-y_1)} I(P_{21}) \]
 \[+ \frac{(x_2-x)(y_2-y)}{(x_2-x_1)(y_2-y_1)} I(P_{12}) \]
 \[+ \frac{(x-x_1)(y_2-y)}{(x_2-x_1)(y_2-y_1)} I(P_{22}) \]

Coeff is the ratio of the area!

Bilinear Interpolation Cond.

- Interpolation function \(I(Q) = I(x,y) \) is a quadratic function (non-linear)
 \[I(x,y) = (a_1 x + a_2)(a_3 y + a_4) \]
 \[I(x,y) = b_1 + b_2 x + b_3 y + b_4 xy \]

- For 3D, you can extend this to “trilinear interpolation” Derive this as a home exercise!

- For smoother interpolation, there are other functions
 - Polynomial
 - Cubic Spline
 - Radial Basis Function
 - B-Spline
 - Thin Plate Spline
Surface Rendering

1. Do 3D target segmentation
2. Render the 3D geometric surface by any CG tool

MIP: Maximum Intensity Projection

- Project the intensity value maximum along the projection direction
- By rotating the projection plane around the target object, one can observe 3D depth
- No segmentation required
- Does not work for very dense targets
- Used in MRA and PET studies
Volume Rendering

- Generalized MIP by assigning each voxel “opacity” (the visibility weight) and/or color
- Assign high opacity only for voxels on target areas
- RGBA: (red, green, blue, alpha)
 - Alpha channel used for opacity
 - 0% transparent
 - 100% opaque
- Volume Ray Casting
 - Projects 3D volumes in RGBA to 2D RGB image

Volume Rendering Examples
Summary

- **Image Data Structure**
- **Image Visualization**
- **Next Week:**
 - Practical Foundation of Digital Image Processing I
- **Homework Exercise/Project**
 - Try trilinear interpolation at home.
 - Project Design Due in one week by Tuesday Feb 20.
 - Please submit each team’s plan using iLearn.

- **Midterm #1 in two weeks. Covers materials from the second to the next lecture. (start to review now)**