Overview

• HW#1 Due Now & Pick up HW2 handout! Due in next week 9/18
• Last lecture: Sets Completed (keep coming back...)
 – Proof templates for sets: I and II
 – Set Operations: Union, Intersection, Difference, Sym Diff., Complement, Cartesian products
 – Set Identities, Proof by cases, Proof by using existing rules
 – Basic counting theorems
 – Principle of inclusion and exclusion
• Today’s lecture: General Proof Techniques
 – Proof by Exhaustion
 – Direct Proof
 – Proof by Counter Example
 – Proof by Contraposition
 – Proof by Contradiction
 – Proof Exercise by Various Methods
 – Mathematical Induction
 – Strong form of mathematical induction

Chapter 1.2 : Proof Techniques
Review some set proof templates

- \(x \in A \): show that \(x \) has all membership properties of \(A \)
- \(A \subseteq B \): show that every element of \(A \) is also in \(B \).
- \(A \subset B \): show \(A \subseteq B \) and also some element \(x \) of \(B \) is not in \(A \)
- \(A = B \): show that \(A \subseteq B \) and \(B \subseteq A \)
- \(A \neq B \): show that \(A \not\subseteq B \) or \(B \not\subseteq A \) by showing some element \(x \) of \(A \) or \(B \) is not in \(B \) or \(A \)
- \(A \rightarrow B \): suppose \(A \) is true then derive \(B \): “if \(A \), then \(B \)”
- \(A \leftrightarrow B \): show that \(A \rightarrow B \) and \(B \rightarrow A \)
- Proof by Cases: Make Membership Tables
- Proof by Using Existing Rules: Deductive Proof with Set Identities

Six general proof techniques

1) **Exhaustive Proof**: (to prove \(P \) is true),
 Show that all possible cases for \(P \) are true, (only for finite cases)
2) **Direct Proof**: to prove \(P \rightarrow Q \) is true (if \(P \) is true, then \(Q \) is true),
 Show that, suppose \(P \) is true, then **deduce** \(Q \). (deductive)
3) **Contraposition**: to prove \(P \rightarrow Q \) is true
 Show \(\neg Q \rightarrow \neg P \) (\(\neg Q \) implies \(\neg P \))
 (indirect proof)
4) **Contradiction**: to prove \(P \rightarrow Q \) is true,
 Show \(P \) and \(\neg Q \rightarrow \) (**contradiction**):
 Assume both the **hypothesis** (\(P \)) and the negation of the **conclusion** (\(\neg Q \)) are true, then try to deduce some contradiction from this assumption.
5) **Counterexample**: to disprove something

6) **Induction**: to prove that \(P(n) \) is true for all \(n \),
Use the principle of mathematical induction:

Base case: \(P(1) \) or \(P(0) \) is true
For all \(k \), \([P(k) \) true \(\rightarrow P(k+1) \) true \]
Conclusion: \(P(n) \) true, \(\forall n \)

Proof by Exhaustion: "**Proof by case**"

Example: Show that \(n! < 2^n \) for \(U = \{1, 2, 3\} \)
any positive integer \(n \leq 3 \) (U?)

Proof:

List all possible cases:

- \(n=1, \ 1! < 2^1 \rightarrow 1 < 2 \ \text{(true)} \)
- \(n=2, \ 2! < 2^2 \rightarrow 2 < 4 \ \text{(true)} \)
- \(n=3, \ 3! < 2^3 \rightarrow 6 < 8 \ \text{(true)} \)
Example: if an integer between 5 and 15 is divisible by 6, then it is also divisible by 3.

Proof:

List all possible cases:

- $n = 6$ is divisible by 6 and is divisible by 3.
- $n = 12$ is divisible by 6 and is divisible by 3.
- All other n values are not divisible by 6.

Note: If the above problem is for all integers, then we cannot use exhaustive proof.

Direct Proof: (deductive)

Example: For all x, if x is divisible by 6, then x is divisible by 3.

Proof:

if x is divisible by 6

$\rightarrow x = k \cdot 6$, for some integer k

$\rightarrow x = k \cdot 2 \cdot 3$

$\rightarrow x = (k \cdot 2) \cdot 3$

$\rightarrow x = k' \cdot 3$, where $k' = k \cdot 2$

since k' is integer, x is divisible by 3.
Example: Show that the product of two even integers is even.
Proof: Let \(x = 2m, y = 2n \) for some integer \(m, n \)
then \(xy = (2m)(2n) = 2(2mn) \), which is even
\[\therefore 2mn \text{ is integer.} \]
\[\because \text{be cause} \]

Example: Show that the sum of two odd integers is even
Proof: Let \(x = 2m+1, y = 2n+1 \) for some integer \(m,n \)
then \(x + y = 2m + 2n + 2 = 2(m+n+1) \),
where \(m+n+1 \) is an integer
\[\therefore x+y \text{ is even.} \]

Proof by Counterexample:
Proving \(P \) to be false (disproof) is much easier than proving \(P \) to be true (proof)!

PROOF: must show all cases are true

DISPROOF: showing only one case that is not true suffices!

\[
B \cap C = A \cup (B \cap C) \\
A \cup B = (A \cup B) \cap (A \cup C)
\]

<table>
<thead>
<tr>
<th>A B C</th>
<th>B \cap C</th>
<th>A \cup (B \cap C)</th>
<th>A \cup B</th>
<th>A \cup C</th>
<th>(A \cup B) \cap (A \cup C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 0 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0 1 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1 0 0</td>
<td>0</td>
<td>(\times)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1 0 1</td>
<td>0</td>
<td>(\times)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1 1 0</td>
<td>0</td>
<td>(\times)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1 1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

10
Proof by Counterexample:

Proving P to be false (disproof) is much easier than proving P to be true (proof)!

PROOF: must show all cases are true
DISPROOF: showing only one case that is not true suffices!

There are two (three) types of questions in proof
1) Prove/disprove a statement P.
2) Is a statement P true?
3) Prove/disprove a statement P by using X technique

The second question requires you to see if the statement P is true or not. So you must consider both cases of P is true and P is false.

Examples for Proof by Counterexample:

Example: Disprove that every integer less than 10 is bigger than 5.

To disprove (or prove the statement is not true), find a counterexample,

Let $n = 4 < 10$, but n is not > 5.

Example: Is the sum of any three consecutive integers even?

Proof or Disproof?

To disprove the statement, give a counterexample: $2+3+4=9$
Proof by Contraposition:

Example: Prove that: If the square of an integer is odd, then the integer must be odd.

note: \(P \rightarrow Q \iff Q' \rightarrow P' \)

Prove: If \(n^2 \) is odd, then \(n \) is odd (initial statement)

Prove: If \(n \) is not odd, then \(n^2 \) is not odd (contraposition)

i.e. Prove: \(n \) is even \(\rightarrow \) \(n^2 \) is even

Let \(n = 2m \) for some integer \(m \)

\[
\rightarrow n^2 = n \times n = 2m \times 2m = 2(2m^2)
\]

\[
\rightarrow \text{since } 2m^2 \text{ is integer, } n^2 \text{ is even.}
\]

Example: Show that \(xy \) is odd if and only if both \(x \) and \(y \) are odd.

Proof:

\(\iff \) if \(x \) and \(y \) are odd, then \(xy \) is odd.

By direct proof:

Let \(x = 2m+1, y=2n+1 \) for some \(m, n \in \text{integers} \)

\[
\rightarrow xy = (2m+1)(2n+1) = 4mn + 2m + 2n +1 = 2(2mn+m+n) +1
\]

\[
\rightarrow \text{since } 2mn + m + n \text{ is an integer, } xy \text{ is odd.}
\]
(⇒) if xy is odd then x and y are odd.

By contraposition: if x is not odd or y is not odd, then xy is not odd

i.e. if x even or y even, then xy even

case1 x even, y odd: Let x = 2m, y = 2n+1

xy = 2(2mn + m), which is even \(\therefore 2mn+m \in \mathbb{Z} \)

case2 x odd, y even: similar to case1.

case3 x even, y even: Let x = 2m, y = 2n

xy = 2(2mn), which is even \(\therefore 2mn \in \mathbb{Z} \)

Proof by Contradiction

- Prove/Show \(P \rightarrow Q \) by contradiction method
- Is equivalent to show that \((P \wedge Q') \) deduces to a contradiction (violation of assumption)
- Logical proof of contradiction:
 - Let \(x' = (P \rightarrow Q)' = P \wedge Q' \), we assume \(x' \) and derive a contradiction \(y' \), i.e. \(x' \rightarrow y' \)
 - Where \(y' \) is false, i.e. \(y \) is true (or axiom)
 - By modus tollens: \((x' \rightarrow y') \wedge y \rightarrow x \)
 - Therefore, conclude \(x = P \rightarrow Q \) is true
Proof by Contradiction:

Example: If a number added to itself gives itself, then the number is 0, i.e. if $x + x = x$, then $x = 0$.

Proof:
Assume $x + x = x$ and $x \neq 0$.

$\Rightarrow 2x = x$ and $x \neq 0$.

$\Rightarrow 2 = 1$, which is a contradiction.

\therefore the assumption must be wrong.

\therefore if $x + x = x$, then $x = 0$.

Example: Prove that if $x^2 + 2x - 3 = 0$, then $x \neq 2$.

1. by contradiction: $P \Rightarrow \neg Q$.

Suppose $x^2 + 2x - 3 = 0$ and $x = 2$,

$\Rightarrow 4 + 4 - 3 = 0$ or $5 = 0$, which is a contradiction.

2. by direct proof:

if $x^2 + 2x - 3 = 0 \Rightarrow (x + 3)(x - 1) = 0$

$\Rightarrow x = -3$ or $x = 1 \Rightarrow x \neq 2$.

3. by contraposition: $\neg Q \Rightarrow \neg P$.

show that if $x = 2$, then $x^2 + 2x - 3 \neq 0$.

$\Rightarrow x^2 + 2x - 3 = 5 \neq 0$.
In class exercises

Show that if $3n+2$ is odd, then n is odd.

a) Proof by contradiction

b) Proof by contraposition

c) Direct proof

In class exercises

Show that if $3n+2$ is odd, then n is odd.

\overline{P} \hspace{1cm} \overline{Q}

a) Proof by contradiction $P \land \lnot Q \Rightarrow \rightarrow \rightarrow \rightarrow \text{(contradiction)}$

b) Proof by contraposition $\lnot Q \rightarrow \rightarrow \rightarrow P'$

c) Direct proof $P \rightarrow \rightarrow \rightarrow Q$
In class exercises

Show that if $3n+2$ is odd, then n is odd.

a) Proof by contradiction

- $3n+2$ is odd and n is even
- $3n$ is even (product of odd and even is even)
- n is even (product of even and odd is even)

$b)$ Proof by contraposition

If n is even
- $n = 2m$ for some $m \in \mathbb{Z}$
- $3n+2 = 6m + 2 = 2(3m+1)$
- Even

$c)$ Direct proof

- $3n+2$ is odd
- $3n$ is odd (product of two odd numbers is odd)
- n is odd (since $3n$ is even)

Mathematical Induction:

Proof by induction: to prove that the property $p(n)$ is true for all possible value of n

Idea: like playing the domino game.

Suppose dominos are placed correctly, then hitting the 1^{st} domino, when it falls, we know the rest of them will also fall.

(∵ In general, when the k^{th} one falls, it implies the $(k+1)^{th}$ falls. Since k is any arbitrary number, ∴ actually every domino falls.)
Mathematical Induction (template):

Step 1: (inductive base) or IB is to show that \(p(n_0) \) is true. Choose an \(n_0 \in \mathbb{N} \) appropriate to the problem.

Note: \(n_0 \) is usually a small number 0 or 1 unless a range is specified.

Step 2: (inductive hypothesis) or IH:

Assume \(p(k) \) is true for any \(k \geq n_0 \).

Step 3: (inductive step) or IS:

Show that \(p(k) \rightarrow p(k + 1) \), for all natural numbers \(k \) such that \(k \geq n_0 \).

(If \(p(k) \) is true then \(p(k+1) \) is also true; if a domino falls, the next domino also falls)

Example 1: show \(1 + 3 + 5 + \ldots (2n-1) = n^2 \), for all \(n \geq 1 \)

IB: when \(n_0 = 1 \), \(\text{LHS} = 1 = 1^2 = \text{RHS} \)

IH: Assume \(1 + 3 + 5 + \ldots (2k-1) = k^2 \) for \(n = k \geq n_0 \)

IS: Show \(1 + 3 + 5 + \ldots (2k-1) + [2(k+1)-1] = (k+1)^2 \)

\[
\begin{align*}
\text{LHS}' &= 1 + 3 + 5 + \ldots (2k-1) + (2k + 1) \\
&= k^2 + 2k + 1 \quad \text{(by IH)} \\
&= (k + 1)^2 \\
&= \text{RHS}'
\end{align*}
\]

\(\therefore \) \(\text{LHS} = \text{RHS} \)
Example 2: Show \(1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}\), for all \(n \geq 1\)

IB: when \(n_o = 1\), LHS = \(1 = \frac{1(1+1)}{2} = \text{RHS}\)

IH: Assume \(1 + 2 + 3 + \ldots + k = \frac{k(k+1)}{2}\) for \(n = n_o = 1\)

IS: Show \(1 + 2 + 3 + \ldots + k + (k+1) = \frac{(k+1)(k+2)}{2}\)

\[
\text{LHS}' = 1 + 2 + 3 + \ldots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)
\]

(by IH)

\[
= \frac{k(k+1) + 2(k+1)}{2} = \text{RHS}'
\]

by direct proof: Let \(x = 1 + 2 + 3 + \ldots + k\)

\[
+ \) \(x = k + k-1 + k-2 + \ldots + 1
\]

\[
2x = (k+1) + (k+1) + \ldots + (k+1) = kx(k+1)
\]

\[
\text{k of them}
\]

\[
\therefore x = \frac{k(k+1)}{2}
\]
Example 3: Show \(\sum_{i=1}^{n} 2^i - 1 = 2^{n+1} - 1 \), for all \(n \geq 1 \)

IB: when \(n_0 = 1 \), LHS = 1 + 2 = 3 = 2^2 - 1 = RHS

IH: Assume \(1 + 2 + 2^2 + \ldots + 2^k = 2^{k+1} - 1 \) for \(n = k \geq n_0 \)

IS: Show \(1 + 2 + 2^2 + \ldots + 2^k + 2^{k+1} = 2^{k+2} - 1 \) (\(n = k+1 \))

\[
\therefore \text{LHS}' = 1 + 2 + 2^2 + \ldots + 2^k + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1} \quad \text{(by IH)}
\]
\[
= 2 \cdot 2^{k+1} - 1
\]
\[
= 2^{k+2} - 1
\]
\[
= \text{RHS}'
\]

Example 4: Show \(2^{2n} - 1 \) is divisible by 3, for all \(n \geq 1 \)

IB: when \(n_0 = 1 \), \(2^2 - 1 = 3 \) \(\therefore \) divisible by 3

IH: Assume \(2^{2k} - 1 \) is divisible by 3

i.e. \(2^{2k} - 1 = 3m \) for some integer \(m \) for \(n = k \geq n_0 \)

IS: show \(2^{2(k+1)} - 1 \) is divisible by 3.

\[
2^{2(k+1)} - 1 = 2^{2k+2} - 1 = 2^2 \cdot 2^{2k} - 1
\]
\[
= 2^2(3m+1) - 1 \quad (\because 2^{2k} - 1 = 3m)
\]
\[
= 2^2(3m + 1, \text{by IH})
\]
\[
= 12m + 3
\]
\[
= 3(4m + 1) \quad \text{where} \ 4m + 1 \ \text{is an integer}
\]

\(\therefore \) is divisible by 3
Example 5 (Fibonacci number property) Show that:

\[F_1 + F_3 + \ldots + F_{2n-1} = F_{2n} - 1, \text{ for all } n \geq 1. \]

Note: \(F_0 = F_1 = 1 \) and \(F_k = F_{k-1} + F_{k-2} \) for all \(k > 2 \)

IB: when \(n_0 = 1 \), LHS = \(F_1 = 1 \), RHS = \(F_2 - 1 = 1 \)

IH: Assume \(F_1 + F_3 + \ldots + F_{2k-1} = F_{2k} - 1 \), for \(n = k \geq n_0 \)

IS: show \(F_1 + F_3 + \ldots + F_{2(k+1)-1} = F_{2(k+1)} - 1 \)

LHS’ = \(F_1 + F_3 + \ldots + F_{2k-1} + F_{2k+1} = F_{2k} - 1 + F_{2k+1} \)

(by Fibonacci number formula)

= \(F_{2k+2} - 1 \) (by IH)

= \(F_{2(k+1)} - 1 \)

= RHS’

Example 6 (Cardinality of a power set) : For any set \(X \) with \(|X| = n \), \(|P(X)| = 2^n \), for all \(n \geq 0 \).

IB: when \(n = 0 \), LHS = \(|P(\emptyset)| = 1 \), RHS = \(2^0 = 1 \)

IH: Assume \(|X| = k \), \(|P(X)| = 2^k \) for \(n = k \geq 0 \)

IS: show \(|X| = k+1 \), \(|P(X)| = 2^{k+1} \)

Lemma: Let \(A \) be any set and let \(b \notin A \). If \(|P(A)| = m \), then \(|P(A \cup \{b\})| = 2m \).

Pick any element \(b \) from \(X \) in IS, \(|X\{b\}| = k \)

\(\rightarrow \) \(|P(X - \{b\})| = 2^k \) (by IH)

\(\rightarrow \) \(|P(X)| = 2 \times 2^k \) (by Lemma) = \(2^{k+1} \)
In class exercise

Use induction to prove that:

\[2^n < n!, \text{ for all } n \geq 4 \]
Strong Form of Mathematical Induction (template):

Step1: \textit{(inductive base) or IB} is to show that \(p(n_o) \) is true. Choose an \(n_o \in \mathbb{N} \) appropriate to the problem.

Step2: \textit{(inductive hypothesis) or IH}:

Assume \(p(m) \) is true for all \(m: k \geq m \geq n_o \)

Step3: \textit{(inductive step) or IS} is to show that \(p(k) \rightarrow p(k + 1) \), for all \(k \) such that \(k \geq n_o \)

Example: Given \(a_0 = 0, a_1 = 2 \) and \(a_n = 4(a_{n-1} - a_{n-2}) \) for all \(n \geq 2 \). Show that: \(a_n = n \times 2^n \) for all \(n \)

IB: when \(n = 0 \), LHS = \(a_0 = 0 \), RHS = \(0 \times 2^0 = 0 \)

\(n = 1 \), LHS = \(a_1 = 2 \), RHS = \(1 \times 2^1 = 2 \)

\(n = 2 \), LHS = \(a_2 = 8 \), RHS = \(2 \times 2^2 = 8 \)

IH: Assume \(a_k = k \times 2^k \) for all indices below \(k \)

IS: show \(a_{k+1} = (k+1) \times 2^{k+1} \)

LHS = \(4(a_k - a_{k-1}) = 4(k \times 2^k - (k-1) \times 2^{k-1}) \) (by IH)

= \(4(2k \times 2^{k-1} - k \times 2^{k-1} + 2^{k-1}) = 4(k+1)(2^{k-1}) \)

= \((k+1) \times 2^{k+1} = \text{RHS} \)
Overview

• HW#1 Due Now & Pick up HW2 handout! Due in next week 9/18
• Last lecture: Sets Completed (keep coming back...)
 – Proof templates for sets: I and II
 – Set Operations: Union, Intersection, Difference, Sym Diff., Complement, Cartesian products
 – Set Identities, Proof by cases, Proof by using existing rules
 – Basic counting theorems
 – Principle of inclusion and exclusion
• Today’s lecture: General Proof Techniques
 – Proof by Exhaustion
 – Direct Proof
 – Proof by Counter Example
 – Proof by Contraposition
 – Proof by Contradiction
 – Proof Exercise by Various Methods
 – Mathematical Induction
 – Strong form of mathematical induction

Chapter 1.2 : Proof Techniques
Review some set proof templates

- \(x \in A \): show that \(x \) has all membership properties of \(A \)
- \(A \subseteq B \): show that every element of \(A \) is also in \(B \).
- \(A \subset B \): show \(A \subseteq B \) and also some element \(x \) of \(B \) is not in \(A \)
- \(A = B \): show that \(A \subseteq B \) and \(B \subseteq A \)
- \(A \neq B \): show that \(A \not\subseteq B \) or \(B \not\subseteq A \) by showing some element \(x \) of \(A \) or \(B \) is not in \(B \) or \(A \)
- \(A \rightarrow B \): suppose \(A \) is true then derive \(B \): “if \(A \), then \(B \)”
- \(A \leftrightarrow B \): show that \(A \rightarrow B \) and \(B \rightarrow A \)

- Proof by Cases: Make Membership Tables
- Proof by Using Existing Rules: Deductive Proof with Set Identities

Six general proof techniques

1) **Exhaustive Proof**: (to prove \(P \) is true),
Show that all possible cases for \(P \) are true, (only for finite cases)

2) **Direct Proof**: to prove \(P \rightarrow Q \) is true (if \(P \) is true, then \(Q \) is true),
Show that, suppose \(P \) is true, then **deduce** \(Q \).
(deductive)

3) **Contraposition**: to prove \(P \rightarrow Q \) is true
Show not-\(Q \rightarrow \) not-\(P \) (not-\(Q \) implies not-\(P \))
(indirect proof)

4) **Contradiction**: to prove \(P \rightarrow Q \) is true,
Show \(P \) and not-\(Q \rightarrow \) (contradiction):
Assume both the **hypothesis** \((P) \) and the negation of the **conclusion** (not-\(Q \)) are true, then try to deduce some contradiction from this assumption.
5) **Counterexample**: to disprove something

6) **Induction**: to prove that $P(n)$ is true for all n,
Use the principle of mathematical induction:

Base case: $P(1)$ or $P(0)$ is true
For all k, $[P(k) \text{ true} \implies P(k+1) \text{ true}]$
Conclusion: $P(n) \text{ true, } \forall n$

Proof by Exhaustion: "Proof by case"

Example: Show that $n! < 2^n$ for $U = \{1, 2, 3\}$ any positive integer $n \leq 3$ (U?)

Proof:

List all possible cases:

- $n=1, \ 1! < 2^1 \implies 1 < 2 \ (\text{true})$
- $n=2, \ 2! < 2^2 \implies 2 < 4 \ (\text{true})$
- $n=3, \ 3! < 2^3 \implies 6 < 8 \ (\text{true})$

$\Box \ Q.E.D.$
Example: if an integer between 5 and 15 is divisible by 6, then it is also divisible by 3.
Proof:

List all possible cases:
- n = 6 is divisible by 6 and is divisible by 3
- n = 12 is divisible by 6 and is divisible by 3
- All other n values are not divisible by 6

Note: If the above problem is for all integers, then we cannot use exhaustive proof.

Direct Proof: (deductive)

Example: For all x, if x is divisible by 6, then x is divisible by 3.

Proof:
- if x is divisible by 6
 → x = k * 6, for some integer k
 → x = k * 2 * 3
 → x = (k * 2) * 3
 → x = k’ * 3, where k’ = k * 2
- since k’ is integer, x is divisible by 3
Example: Show that the product of two even integers is even.
Proof: Let \(x = 2m, y = 2n \) for some integer \(m, n \)
then \(xy = (2m)(2n) = 2(2mn) \), which is even
\(\therefore \) 2mn is integer.

Example: Show that the sum of two odd integers is even.
Proof: Let \(x = 2m+1, y = 2n+1 \) for some integer \(m,n \)
then \(x + y = 2m + 2n+ 2 = 2(m+n+1) \),
where \(m+n+1 \) is an integer
\(\therefore \) \(x+y \) is even.

Proof by Counterexample:
Proving \(P \) to be false (disproof) is much easier than proving \(P \) to be true (proof)!

PROOF: must show all cases are true
DISPROOF: showing only one case that is not true suffices!

\[
\begin{array}{c|c|c|c|c|c|c}
A & B & C & B \cap C & A \cup (B \cap C) & A \cup B & A \cup C & (A \cup B) \cap (A \cup C) \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\end{array}
\]
Proof by Counterexample:

Proving P to be false (disproof) is much easier than proving P to be true (proof)!

- **PROOF:** must show all cases are true
- **DISPROOF:** showing only one case that is not true suffices!

There are two (three) types of questions in proof:

1) Prove/disprove a statement P.
2) Is a statement P true?
3) Prove/disprove a statement P by using X technique

The second question requires you to see if the statement P is true or not. So you must consider both cases of P is true and P is false.

Examples for Proof by Counterexample:

Example: Disprove that every integer less than 10 is bigger than 5.

To disprove (or prove the statement is not true), find a counterexample,

Let $n = 4 < 10$, but n is not > 5.

Example: Is the sum of any three consecutive integers even?

Proof or Disproof?

To disprove the statement, give a counterexample: $2+3+4 = 9$
Proof by Contraposition:

Example: Prove that: If the square of an integer is odd, then the integer must be odd.

\[P \implies Q \iff Q' \implies P' \]

Prove: if \(n^2 \) is odd, then \(n \) is odd (initial statement)

Prove: if \(n \) is not odd, then \(n^2 \) is not odd (contraposition)

i.e. Prove: \(n \) is even \(\implies \) \(n^2 \) is even

Let \(n = 2m \) for some integer \(m \)

\[\rightarrow n^2 = n \times n = 2m \times 2m = 2(2m^2) \]

\[\rightarrow \text{since } 2m^2 \text{ is integer, } n^2 \text{ is even.} \]

Example: Show that \(xy \) is odd if and only if both \(x \) and \(y \) are odd.

\(\iff \) if \(x \) and \(y \) are odd, then \(xy \) is odd.

By direct proof:

Let \(x = 2m + 1, y = 2n + 1 \) for some \(m, n \in \text{integers} \)

\[\rightarrow xy = (2m+1)(2n+1) = 4mn + 2m + 2n + 1 = 2(2mn+m+n) + 1 \]

\[\rightarrow \text{since } 2mn + m + n \text{ is an integer, } xy \text{ is odd.} \]
(⇒) if \(xy \) is odd then \(x \) and \(y \) are odd.

By contraposition: if \(x \) is not odd or \(y \) is not odd, then \(xy \) is not odd

i.e. if \(x \) even or \(y \) even, then \(xy \) even

case1 \(x \) even, \(y \) odd: Let \(x = 2m, y = 2n+1 \)

\[xy = 2(2mn + m), \text{ which is even } \therefore 2mn+m \in \mathbb{Z} \]

case2 \(x \) odd, \(y \) even: similar to case1.

case3 \(x \) even, \(y \) even: Let \(x = 2m, y = 2n \)

\[xy = 2(2mn), \text{ which is even } \therefore 2mn \in \mathbb{Z} \]

Proof by Contradiction

- **Prove/Show** \(P \rightarrow Q \) **by contradiction method**
- **Is equivalent to show that** \((P \land Q') \) **deduces to a contradiction** (violation of assumption)
- **Logical proof of contradiction:**
 - Let \(x' = (P \rightarrow Q)' = P \land Q' \), we assume \(x' \) and derive a contradiction \(y' \), i.e. \(x' \rightarrow y' \)
 - Where \(y' \) is false, i.e. \(y \) is true (or axiom)
 - By **modus tollens**: \(((x' \rightarrow y') \land y) \rightarrow x \)
 - Therefore, conclude \(x = P \rightarrow Q \) is true
Proof by Contradiction:

Example: If a number added to itself gives itself, then the number is 0, i.e. if \(x + x = x \), then \(x = 0 \).

Proof:

Assume \(x + x = x \) and \(x \neq 0 \)

\[\Rightarrow 2x = x \text{ and } x \neq 0 \]

\[\Rightarrow 2 = 1, \text{ which is a contradiction} \]

\[\therefore \text{ the assumption must be wrong} \]

\[\therefore \text{ if } x + x = x, \text{ then } x = 0 \]

Example: Prove that if \(x^2 + 2x - 3 = 0 \), then \(x \neq 2 \).

1. by contradiction: \(P \land Q' \rightarrow \) Contradiction

 Suppose \(x^2 + 2x - 3 = 0 \) and \(x = 2 \),

 \[\rightarrow 4 + 4 - 3 = 0 \text{ or } 5 = 0, \text{ which is a contradiction.} \]

2. by direct proof:

 if \(x^2 + 2x - 3 = 0 \rightarrow (x + 3)(x - 1) = 0 \)

 \[\rightarrow x = -3 \text{ or } x = 1 \rightarrow x \neq 2 \]

3. by contraposition: \(Q' \rightarrow P' \)

 show that if \(x = 2 \), then \(x^2 + 2x - 3 \neq 0 \)

 \[\rightarrow x^2 + 2x - 3 = 5 \neq 0 \]
In class exercises

Show that if $3n+2$ is odd, then n is odd.

a) Proof by contradiction

b) Proof by contraposition

c) Direct proof
In class exercises

Show that if $3n+2$ is odd, then n is odd.

a) Proof by contradiction
 \[(P \land \overline{Q}) \rightarrow \text{contradiction} \]

 \[3n+2 \text{ is odd and } n \text{ is even} \]

 \[3n+2 \text{ is even (since even + 3 is odd, let } n \text{ be even}) \]

 \[3n+2 \text{ is even (sum of two even numbers is even, prove a proof!)} \]

 \[\text{contradiction} \]

b) Proof by contraposition
 \[\overline{Q} \rightarrow \overline{P} \]

 \[n \text{ is even} \]

 \[n \text{ is even} \]

 \[3n+2 = 6m+2 = 2(3m+1) \]

 \[3n+2 \text{ is even (sum of two odd numbers is even)} \]

 \[3n+2 \text{ is odd (contradiction)} \]

\[\therefore \text{actually } x \text{ is odd.} \]

Mathematical Induction:

Proof by induction: to prove that the property $p(n)$ is true for all possible value of n

Idea: like playing the domino game.

Suppose dominos are placed correctly, then hitting the 1st domino, when it falls, we know the rest of them will also fall.

(∴ In general, when the kth one falls, it implies the $(k+1)$th falls. Since k is any arbitrary number, ∴ actually every domino falls.)
Mathematical Induction (template):

Step 1: (inductive base) or IB is to show that \(p(n_0) \) is true. Choose an \(n_0 \in \mathbb{N} \) appropriate to the problem.

Note: \(n_0 \) is usually a small number 0 or 1 unless a range is specified.

Step 2: (inductive hypothesis) or IH:

Assume \(p(k) \) is true for any \(k \geq n_0 \).

Step 3: (inductive step) or IS:

Show that \(p(k) \rightarrow p(k + 1) \), for all natural numbers \(k \) such that \(k \geq n_0 \) (If \(p(k) \) is true then \(p(k+1) \) is also true; if a domino falls, the next domino also falls)

Example 1: show \(1 + 3 + 5 + \ldots (2n-1) = n^2 \), for all \(n \geq 1 \)

IB: when \(n_0 = 1 \), \(\text{LHS} = 1 = 1^2 = \text{RHS} \)

IH: Assume \(1 + 3 + 5 + \ldots (2k-1) = k^2 \) for \(n = k \geq n_0 \)

IS: Show \(1 + 3 + 5 + \ldots (2k-1) + [2(k+1)-1] = (k+1)^2 \)

\[
\begin{align*}
\text{LHS} & = (k+1)^2 \\
& = \text{RHS} \\
\end{align*}
\]

\(: \text{LHS}' = 1 + 3 + 5 + \ldots (2k - 1) + (2k + 1) \quad = k^2 + 2k + 1 \quad \text{(by IH)}

\[
\begin{align*}
\text{LHS}' & = \text{RHS}' \\
\end{align*}
\]

\[
\begin{align*}
\text{Q.E.D.} & \quad \text{LHS} = \text{LHS}' = \text{RHS} = \text{RHS}'
\end{align*}
\]
Example 2: Show $1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$, for all $n \geq 1$

IB: when $n_o = 1$, LHS = $1 = \frac{1(1+1)}{2} = \text{RHS}$

IH: Assume $1 + 2 + 3 + \ldots + k = \frac{k(k+1)}{2}$ for $n = k \geq n_o = 1$

IS: Show $1 + 2 + 3 + \ldots + k + (k+1) = \frac{(k+1)(k+2)}{2}$

\[\begin{align*}
\text{LHS'} &= \frac{k(k+1)}{2} + (k+1) \\
&= \frac{k(k+1) + 2(k+1)}{2} \\
&= \frac{(k+1)(k+2)}{2} = \text{RHS'}
\end{align*} \]

by direct proof:

Let \(x = 1 + 2 + 3 + \ldots + k \)
\[+ \quad x = \quad \frac{k(k+1)}{2} + k - 1 + k - 2 + \ldots + 1 \]
\[2x = \frac{(k+1)(k+2) + \ldots + (k+1)}{k} = kx(k+1) \]
\[\therefore \ x = \frac{k(k+1)}{2} \]
Example 3: Show \[1 + 2 + 2^2 + ... + 2^n = 2^{n+1} - 1, \] for all \(n \geq 1 \)

- **IB**: when \(n_0 = 1 \), LHS = 1 + 2 = 3 = 2^2 - 1 = RHS

- **IH**: Assume \(1 + 2 + 2^2 + ... + 2^k = 2^{k+1} - 1 \) for \(n=k \geq n_0 \)

- **IS**: Show \(1 + 2 + 2^2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1 \) (\(n=k+1 \))

\[\therefore \text{LHS}' = 1 + 2 + 2^2 + ... + 2^k + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1} \] (by IH)
\[= 2 \times 2^{k+1} - 1 \]
\[= 2^{k+2} - 1 \]
\[= \text{RHS}' \]

Example 4: Show \(2^{2n} - 1 \) is divisible by 3, for all \(n \geq 1 \)

- **IB**: when \(n_0 = 1 \), \(2^2 - 1 = 3 \) \therefore divisible by 3

- **IH**: Assume \(2^{2k} - 1 \) is divisible by 3

\[\text{i.e. } 2^{2k} - 1 = 3m \text{ for some integer } m \text{ for } n=k \geq n_0 \]

- **IS**: show \(2^{2(k+1)} - 1 \) is divisible by 3.

\[2^{2(k+1)} - 1 = 2^{2k+2} - 1 = 2^2 \times 2^{2k} - 1 \]
\[= 2^2(3m+1) - 1 \] (\(\therefore 2^{2k} - 1 = 3m \)
\[2^{2k} = 3m + 1, \text{ by IH} \)
\[= 12m + 3 \]
\[= 3(4m + 1) \text{ where } 4m + 1 \text{ is an integer} \]

\[\therefore \text{is divisible by 3} \]
Example 5 (Fibonacci number property) Show that:

\[F_1 + F_3 + \ldots + F_{2n-1} = F_{2n} - 1, \text{ for all } n \geq 1. \]

Note: \(F_0 = F_1 = 1 \) and \(F_k = F_{k-1} + F_{k-2} \) for all \(k > 2 \)

IB: when \(n = 1 \), LHS = \(F_1 = 1 \), RHS = \(F_2 - 1 = 1 \)

IH: Assume \(F_1 + F_3 + \ldots + F_{2k-1} = F_{2k} - 1 \), for \(n = k \geq n_0 \)

IS: show \(F_1 + F_3 + \ldots + F_{2(k+1)-1} = F_{2(k+1)} - 1 \)

\[
\text{LHS'} = F_1 + F_3 + \ldots + F_{2k+1} = F_{2k} - 1 + F_{2k+1}
\]

(by Fibonacci number formula)

\[
= F_{2(k+1)} - 1
\]

(by IH)

\[
= \text{RHS'}
\]

Example 6 (Cardinality of a power set) : For any set \(X \) with \(|X| = n \), \(|P(X)| = 2^n \), for all \(n \geq 0 \).

IB: when \(n = 0 \), LHS = \(|P(\emptyset)| = 1 \), RHS = \(2^0 = 1 \)

IH: Assume \(|X| = k \), \(|P(X)| = 2^k \) for \(n = k \geq 0 \)

IS: show \(|X| = k+1 \), \(|P(X)| = 2^{k+1} \)

Lemma: Let A be any set and let \(b \notin A \). If \(|P(A)| = m \), then \(|P(A \cup \{b\})| = 2m \).

Pick any element \(b \) from \(X \) in IS, \(|X - \{b\}| = k \)

\(\rightarrow |P(X - \{b\})| = 2^k \) (by IH)

\(\rightarrow |P(X)| = 2 \times 2^k \) (by Lemma) = \(2^{k+1} \)
In class exercise

Use induction to prove that:
\[2^n < n! , \text{ for all } n \geq 4 \]
Strong Form of Mathematical Induction (template):

Step 1: *(inductive base) or IB* is to show that \(p(n_0) \) is true. Choose an \(n_0 \in \mathbb{N} \) appropriate to the problem.

Step 2: *(inductive hypothesis) or IH*:

Assume \(p(m) \) is true for all \(m : k \geq m \geq n_0 \)

Step 3: *(inductive step) or IS* is to show that \(p(k) \rightarrow p(k + 1) \), for all \(k \) such that \(k \geq n_0 \)

Example: Given \(a_0 = 0 \), \(a_1 = 2 \) and \(a_n = 4(a_{n-1} - a_{n-2}) \) for all \(n \geq 2 \). Show that: \(a_n = n \times 2^n \) for all \(n \)

IB: when \(n = 0 \), LHS = \(a_0 = 0 \), RHS = \(0 \times 2^0 = 0 \)

\(n = 1 \), LHS = \(a_1 = 2 \), RHS = \(1 \times 2^1 = 2 \)

\(n = 2 \), LHS = \(a_2 = 8 \), RHS = \(2 \times 2^2 = 8 \)

IH: Assume \(a_k = k \times 2^k \) for all indices below \(k \)

IS: show \(a_{k+1} = (k+1) \times 2^{k+1} \)

LHS = \(4(a_k - a_{k-1}) = 4(k \times 2^k - (k-1) \times 2^{k-1}) \) (by IH)

\[= 4(2k \times 2^{k-1} - k \times 2^{k-1} + 2^{k-1}) = 4(k+1)(2^{k-1}) \]

\[= (k+1) \times 2^{k+1} = \text{RHS} \]