Overview

• HW8 due Thursday on 5/10

• Last Lecture
 – Sum Rule: A or B or C
 – Product Rule: A and B and C
 – Principle of Inclusion-Exclusion, Tree Diagram, Pigeon hole principle
 – Permutations
 – Combinations

• This Lecture
 – Combinations continued
 – Permutations and combinations with repeats
 – Pascal’s Identity
 – Binomial Coefficients
 – Pascal Triangle

Summary:

Use \(\binom{n}{r} = \# \text{ of combinations of selecting } r \) distinct objects from \(n \) distinct objects

\[
\binom{n}{r} = \frac{n!}{(n-r)!r!} = \frac{P(n,r)}{r!} = \binom{n}{r} \cdot \binom{n}{r} = \binom{n}{n-r}.
\]

Note:

\[
\binom{n}{0} = \frac{n!}{(n-0)!} = 1 \quad \binom{n}{1} = \frac{n!}{(n-1)!!} = n \quad \binom{n}{2} = \binom{n}{n-2} \quad \binom{n}{3} = \binom{n}{n-3} \\
\vdots \\
\binom{n}{n} = \frac{n!}{(n-n)!n!} = 1 \quad \binom{n}{r} = \binom{n}{n-r}.
\]
Example: Consider a 5-card hand from a 52-card deck:

How many hands are possible?
Ans: \(\binom{52}{5} = 2,598,960 \)

How many hands consist of all diamonds?
Ans: \(\binom{13}{5} = 1287 \)

How many hands consist of all the same suit (Flush)?
Ans: \(\binom{13}{5} + \binom{13}{5} + \binom{13}{5} + \binom{13}{5} = 4 \times \binom{13}{5} = 5148 \)

How many hands contain three of a kind?
→ exactly 3 of a kind + exactly 4 of a kind
Ans: \(13 \times \binom{4}{3} \times \binom{48}{2} + 13 \times \binom{4}{4} \times \binom{48}{1} = 58656 + 624 \)

How many hands contain a full house?
→ 3 of a kind with a pair
Ans: \(13 \times \binom{4}{3} \times 12 \times \binom{4}{2} = 3744 \)

- \(P(n, r) \) and \(\binom{n}{r} \) assume that each object will only be selected once without repetition. **Now, suppose \(n \) objects are available for reuse (or with repetition)**

- **Permutations of \(r \) objects out from \(n \) objects with repetition** is easy:

 \[
 \begin{align*}
 \text{1st object: } & n \text{ choices; } \quad \binom{n}{1} \quad \binom{w}{1} \\
 \text{2nd object: } & n \text{ choices... } \quad \binom{n}{1} \cdot \binom{n-1}{1} \quad \binom{w}{1} \\
 \text{rth object: } & n \text{ choices. } \quad \binom{n}{1} \cdot \binom{n-2}{1} \cdot \ldots \cdot \binom{n-r+1}{1} \quad \binom{w}{1} \\
 \text{Total: } & n^r \quad \frac{\binom{n}{1} \cdot \binom{n-1}{1} \cdot \ldots \cdot \binom{n-r+1}{1}}{n^r} \quad \frac{1}{n!}
 \end{align*}
 \]
Combinations of r objects out from n objects with repetition:

- e.g. a jeweler is designing a pin with 5 stones chosen from diamonds, rubies and emeralds. How many ways can the stones be selected? ($n = 3, r = 5$)
- i.e. 5-combinations with repetition allowed from three-element set.

Use 2 bars to separate 3 types of stones:

```
∗ | ∗∗∗ | ∗
```

1 diamond, 3 rubies, 1 emerald

```
∗∗∗∗∗ | |
```

5 diamonds

∴ this problem is same as choosing 2 positions for bars out from 7 possible positions (or choosing 5 positions for $*$ out from 7 positions). i.e. $C(7,5) = C(7,2)$

∴ in general: n objects need $(n-1)$ markers, so $C(r+n-1, r)$

Example: How many solutions does the equation $x_1 + x_2 + x_3 = 11$ have where $x_i \geq 0$ integers.

This is same as 11 positions with 2 bars to separate x_1, x_2 and x_3. Several examples:

```
1111 | 111111 | 11 = 4 + 5 + 2
11 | 1 | 11111111 = 2 + 1 + 8
11111111111 | | = 11 + 0 + 0
```

so, $r=11$ and $n = 3$

$C(r+n-1, r) = C(r+n-1, n-1) = C(13,11) = C(13,2) = 78$
Distinct Permutations from A Set with Repeats

- Example: How many distinct permutations can be made from the characters in word FLORIDA?
 ∴ all characters are distinct. Answer is \(P(7,7) = 7! = 5040 \)
 note: no selection here, use all 7 characters

- Example: How many distinct permutations can be made from the characters in word MISSISSIPPI?
 It’s not 11! ∴ MISSISSIPPI = M S I S S I P P I,
 ∴ need to eliminate duplicates
 (a) 4 S’s occupy 4 positions in the string, but the arrangement among these 4 S’s does not matter,
 ∴ how many permutations of 4 S’s? 4 * 3 * 2 * 1 = 4!
 (b) Similarly, 4 I’s has 4! undistinguished permutations,
 (c) 2 P’s has 2! undistinguished permutations
 Answer: \(\frac{11!}{4!4!2!} = 34650 \)

Another way to look at it:
There are 11 positions in a permutation
Choose 4 positions for S: \(C(11,4) \) // eleven positions available
Choose 4 positions for I: \(C(7,4) \) // only seven positions available
Choose 2 positions for P: \(C(3,2) \) // only three positions available
Choose 1 position for M: \(C(1,1) \)
Note: Can be chosen in any different order, e.g. M, P, I, S

Total ways (product rules): \(C(11,4) \times C(7,4) \times C(3,2) \times C(1,1) \)

\(\Rightarrow \frac{11!}{(7!4!)} \times \frac{7!}{(3!4!)} \times \frac{3!}{(1!2!)} \times \frac{1!}{(0!1!)} \)

\(\Rightarrow 11!/(4!*4!*2!*1!) \)
Binomial Coefficients

- An application of \(C(n, k) \)
- A binomial expression is an exponential of the sum of two terms, such as \((a + b)\)
 \[
 (a + b)^2 = aa + ab + ba + bb = 1a^2 + 2ab + 1b^2
 \]
 \[
 (a + b)^3 = (a+b)(a+b)(a+b) \quad // \quad 3 \text{ positions each with } a \text{ or } b
 = aaa + aab + aba + abb + baa + bab + bba + bbb
 = 1a^3 + 3a^2b + 3ab^2 + 1b^3
 \]

There is only one term \(a^3\).
 Choose \(a\) from all three factors: \(C(3, 3) = 1\).

There is three times the term \(a^2b\).
 Choose \(a\) from two out of the three factors: \(C(3, 2) = 3\).

Similarly, there is three times the term \(ab^2\)
 Choose \(a\) from one, \(C(3, 1) = 3\), or choose \(b\) from two, \(C(3, 2) = 3\)

This leads us to the following formula,

Binomial Theorem:

\[
(a + b)^n = \sum_{r=0}^{n} C_r^n a^{n-r} b^r
\]

Note: \(C(n, r)\) is the same as \(\binom{n}{r}\)

Example: find the 4th term in \((2x + 5y)^7\)

Let \(a=2x\) and \(b=5y\), we have \(((2x) + (5y))^7\)
the 4th term is

\[
C_4^7 (2x)^{7-(4-1)} (5y)^{4-1}
\]
\[
= C_3^7 (2x)^4 (5y)^3
\]
\[
= C_3^7 2^4 5^3 x^4 y^3
\]
\[
= 70000 (x^4 y^3)
\]
Pascal’s Identity: Let \(n \) and \(k \) be positive integers with \(n \geq k \). Then
\[
\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}.
\]

We can prove by expanding \(\binom{n+1}{k} \) and \(\binom{n}{k} \). Here is the meaning of \(\binom{n+1}{k} \)

Imagine a set \(S \) containing \(n \) elements and a set \(T \) containing \((n+1) \) elements, namely all elements in \(S \) plus a new element \(a \).

Calculating \(\binom{n+1}{k} \) is equivalent to answering the question: How many subsets of \(T \) containing \(k \) items are there?

Case I: The subset contains \((k-1)\) elements of \(S \) plus the element \(a \): \(\binom{n}{k-1} \) choices.

Case II: The subset contains \(k \) elements of \(S \) and \(\text{not included} \) does not contain \(a \): \(\binom{n}{k} \) choices.

By Sum Rule: \(\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k} \).
• **Pascal’s identity with Pascal’s triangle:**

 With the help of **Pascal’s identity**, Pascal triangle can considerably simplify the process of expanding powers of binomial expressions.

 For example, the fourth row of Pascal’s triangle (1 – 4 – 6 – 4 – 1) helps us to compute \((a + b)^4\):

 \[
 (a + b)^4 = 1a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + 1b^4
 \]

 i.e. the \(n\)th row of the triangle \((n \geq 0)\) consists of all of the values \(\forall 0 \leq r \leq n \ C(n,r)\)