Overview

• HW8 due next Tuesday. Work on it!

• Last Lecture
 – Sum Rule: \(A \text{ or } B \text{ or } C \)
 – Product Rule: \(A \text{ and } B \text{ and } C \)
 – Principle of Inclusion-Exclusion, Tree Diagram, Pigeonhole principle
 – Permutations

• This Lecture: Counting!
 – Combination
 – Permutations and combinations with repeats
 – Pascal’s Identity
 – Binomial Coefficients
 – Pascal Triangle

Combinations

• Example: How many ways are there to pick a set of 3 people from a group of 6?

There are 6 choices for the first person, 5 for the second one, and 4 for the third one, so there are \(6 \cdot 5 \cdot 4 = 120 \) ways to do this.

\[
P(6, 3) = \frac{6!}{(6-3)!} = \frac{6!}{3!} = 6 \cdot 5 \cdot 4
\]

This is not the correct result! \(\binom{6}{3, 3} \neq \binom{6}{3, 3} \)

For example, picking person \(C \), then person \(A \), and then person \(E \) leads to the same group as first picking \(E \), then \(C \), and then \(A \).

However, these cases are counted separately in the above formulation.

\[
\{C, A, E\} = \{E, C, A\}
\]

So how can we compute how many different subsets of people can be picked (i.e., we want to disregard the order of picking)?
• An \(r \)-combination of elements of a set is an unordered selection of \(r \) elements from the set. Thus, an \(r \)-combination is simply a subset of the set with \(r \) elements.

• Example: Let \(S = \{1, 2, 3, 4\} \).
Then \(\{1, 3, 4\} = \{3, 1, 4\} \) is an example member of 3-combination.

• The number of all possible \(r \)-combinations from a set with \(n \) distinct elements is denoted by \(\binom{n}{r} \) (“\(n \) choose \(r \)”).

• Example: \(\binom{4}{2} = 6 \), i.e. the 2-combinations of a set \(\{1, 2, 3, 4\} \) are \(\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\} \).

• How can we derive \(\binom{n}{r} \)? Formula?
Consider that we can obtain \(\binom{P(n, r)}{r} \) of a set in the following way:
First, find all \(r \)-combinations of the set, i.e. \(\binom{C(n)}{r} \)
Then, for each \(r \)-combination, generate all possible orderings, i.e. \(\binom{P(r, r)}{r} = r! \). Therefore, we have: \(\binom{P(n, r)}{r} = \binom{C(n)}{r} \binom{P(r, r)}{r} \)

\[
\binom{C(n, r)}{r} = \frac{P(n, r)}{P(r, r)} = \frac{n!}{(n-r)!} \div \frac{r!}{(r-r)!} = \frac{n!}{r!(n-r)!} \div \frac{r!}{r!(r-r)!} = \binom{n}{r} \binom{P(r)}{r}.
\]

• Now we can answer our question: How many ways are there to pick a set of 3 people from a group of 6 (disregarding the order of picking)?
\(\binom{P(6, 3)}{3} = 6!/3! \cdot 3! = 720/(6 \cdot 3) = 720/18 = 20 \)

• Corollary: Let \(n \) and \(r \) be nonnegative integers with \(r \leq n \).
Then \(\binom{C(n, r)}{r} = \binom{C(n, n-r)}{r} \).

\[
\binom{C(4, 3)}{3} = \binom{C(4, 1)}{3} = \binom{C(4, 7)}{3}.
\]

Note: each choice \(r \)-elements determine a unique choice of \((n-r)\)-elements.
Summary:

\[C(n, r) = \binom{n}{r} = \frac{n!}{(n-r)!r!} = \frac{P(n, r)}{r!} = \binom{n}{r} \]

Use \(C(n, r) \) = # of combinations of selecting \(r \) distinct objects from \(n \) distinct objects

\[\frac{n!}{(n-r)!r!} = \frac{P(n, r)}{r!} = \binom{n}{r} \]

Note: \(C(n, 0) = \binom{n}{0} = 1 \) for \(n \geq 4 \)

\(C(n, 1) = \binom{n}{1} = n \)

\(C(n, n) = \binom{n}{n} = 1 \)

\[C(n, r) = C(n, n-r). \]

• Example: A soccer club has 8 female and 7 male members. For today's match, the coach wants to have 6 female and 5 male players on the grass. How many possible configurations are there?

Ans: \(C(8, 6) \times C(7, 5) = \frac{8!}{(6! \cdot 2!)} \times \frac{7!}{(5! \cdot 2!)} = 28 \times 21 = 588 \)

• Example: A committee of 8 students is to be selected from a class consisting of 19 freshmen and 34 sophomores.

In how many ways can 3 freshmen and 5 sophomores be selected? Ans: \(C(19, 3) \times C(34, 5) \)

In how many ways can a committee with exactly 1 freshman be selected? Ans: \(C(19, 1) \times C(34, 7) \)

In how many ways can a committee with at most 1 freshman be selected? 0 freshman + 1 freshman = \(C(34, 8) + C(19, 1) \times C(34, 7) \)

In how many ways can a committee with at least 1 freshman be selected? All 8-combination – no freshman = \(C(53, 8) - C(34, 8) \)
Recall from previous examples:
How many bit strings of length 8 with exactly one 1?
This problem is same as:
how many 1-combination from set \{1,2,3,4,5,6,7,8\} where each element is a position in bit strings?
Answer: $\binom{8}{1} = 8$

How many bit strings of length 8 with exactly two 1s?
Answer: $\binom{8}{2}$

How many bit strings of length 8 with exactly r 1s?
Answer: $\binom{8}{r}$

How many bit strings of length 8 with at most two 1s?
Answer: $\binom{8}{0} + \binom{8}{1} + \binom{8}{2}$

Example: Consider a 5-card hand from a 52-card deck:
How many hands are possible?
Ans: $\binom{52}{5} = 2,598,960$

How many hands consist of all diamonds?
Ans: $\binom{13}{5} = 1,287$

How many hands consist of all the same suit (Flush)?
Ans: $\binom{13}{5} + \binom{13}{5} + \binom{13}{5} + \binom{13}{5} = 5,148$

How many hands contain three of a kind?
\[\rightarrow \] exactly 3 of a kind + exactly 4 of a kind
Ans: $13 \times \binom{4}{3} \times \binom{48}{2} + 13 \times \binom{4}{4} \times \binom{48}{1} = 58,656 + 624$

How many hands contain a full house?
\[\rightarrow \] 3 of a kind with a pair
Ans: $13 \times \binom{4}{3} \times 12 \times \binom{4}{2} = 3,744$
• \(P(n, r) \) and \(C(n, r) \) assume that each object will only be selected once without repetition. **Now, suppose \(n \) objects are available for reuse (or with repetition)**

\[
P(n, r) = \frac{n!}{(n-r)!} \quad \text{and} \quad C(n, r) = \frac{n!}{r!(n-r)!}
\]

• **Permutations of \(r \) objects out from \(n \) objects with repetition** is easy:

1st object: \(n \) choices; \(\bigg\rceil \bigg) \)
2nd object: \(n \) choices...
\(r \)th object: \(n \) choices.

Total: \(n^r \)

\[
\begin{align*}
\text{1st} & \quad \text{2nd} & \quad \text{3rd} \\
\bigg\rceil \bigg) & \quad \bigg\rceil \bigg) & \quad \bigg\rceil \bigg)
\end{align*}
\]

Combinations of \(r \) objects out from \(n \) objects with repetition:

- Example: A jeweler is designing a pin with 5 stones chosen from diamonds, rubies, and emeralds. How many ways can the stones be selected? \((n = 3, r = 5) \)

- I.e. 5-combinations with repetition allowed from three-element set.

\[
\begin{align*}
\bigg\rceil \bigg) & \quad \bigg\rceil \bigg) & \quad \bigg\rceil \bigg) \\
\text{D} & \quad \text{R} & \quad \text{E}
\end{align*}
\]

- Use 2 bars to separate 3 types of stones:
 *|***|* 1 diamond, 3 rubies, 1 emerald
 *****| | 5 diamonds

\[\therefore \text{this problem is same as choosing 2 positions for bars out from 7 possible positions (or choosing 5 positions for * out from 7 positions). i.e.} \quad C(7,5) = C(7,2) \quad C(\text{3*5-1, 5})\]

\[\therefore \text{in general:} \quad n \text{ objects need (}n-1\text{) markers, so} \quad C(r+n-1,r)\]
Example: How many solutions does the equation \(x_1 + x_2 + x_3 = 11 \) have where \(x_i \geq 0 \) integers.

This is same as 11 positions with 2 bars to separate \(x_1, x_2 \) and \(x_3 \). Several examples:

\[
\begin{align*}
1111 & | 1111111 & 11 &= 4 + 5 + 2 \\
11 & | 1 & 11111111 & &= 2 + 1 + 8 \\
11111111111 & | & &= 11 + 0 + 0
\end{align*}
\]

so, \(r = 11 \) and \(n = 3 \)

\[
C(r+n-1, r) = C(r+n-1, n-1) = C(13, 11) = C(13, 2) = 78
\]

Distinct Permutations from A Set with Repeats

- Example : How many distinct permutations can be made from the characters in word FLORIDA?
 - all characters are distinct. Answer is \(P(7, 7) = 7! = 5040 \)
 - note: no selection here, use all 7 characters

- Example : How many distinct permutations can be made from the characters in word MISSISSIPPI?
 - It’s not \(11! \) : \(MIS_1S_2ISSIPPI = MIS_2S_1ISSIPPI, \)
 - need to eliminate duplicates
 - (a) 4 S’s occupy 4 positions in the string, but the arrangement among these 4 S’s does not matter,
 - how many permutations of 4 S’s? \(4 \times 3 \times 2 \times 1 = 4! \)
 - (b) Similarly, 4 I’s has 4! undistinguished permutations,
 - (c) 2 P’s has 2! undistinguished permutations

Answer: \(11!/(4! \times 4! \times 2!) = 34650 \)
• Another way to look at it:

There are 11 positions in a permutation

Choose 4 positions for S: $C(11,4)$ // eleven positions available

Choose 4 positions for I: $C(7,4)$ // only seven positions available

Choose 2 positions for P: $C(3,2)$ // only three positions available

Choose 1 position for M: $C(1,1)$

Note: Can be chosen in any different order, e.g. M, P, I, S

Total ways (product rules): $C(11,4) \times C(7,4) \times C(3,2) \times C(1,1)$

$\Rightarrow \frac{11!}{7! \times 4!} \times \frac{7!}{3! \times 4!} \times \frac{3!}{1! \times 2!} \times \frac{1!}{0! \times 1!}$

$\Rightarrow 11!/(4! \times 4! \times 2! \times 1!)

Binomial Coefficients

• An application of $C(n, k)$

• A binomial expression is an exponential of the sum of two terms, such as $(a + b)$

$$(a + b)^2 = aa + ab + ba + bb = a^2 + 2ab + b^2$$

$$(a + b)^3 = (a + b)(a + b)(a + b) // 3 positions each with a or b$$

$$(a + b)^3 = aaa + aab + aba + abb + baa + bab + bba + bbb$$

$$(a + b)^3 = 1a^3 + 3a^2b + 3ab^2 + 1b^3$$

There is only one term a^3.

Choose a from all three factors: $C(3, 3) = 1$.

There are three times of the term a^2b.

Choose a from two out of the three factors: $C(3, 2) = 3$.

Similarly, there are three times of the term ab^2.

Choose a from one, $C(3, 1) = 3$, or choose b from two, $C(3, 2) = 3$
This leads us to the following formula,

Binomial Theorem:

\[
(a + b)^n = C_0^n a^n b^0 + C_1^n a^{n-1}b^1 + \ldots + C_{r-1}^n a^{n-(r-1)}b^{r-1} + C_r^n a^{n-r}b^r + \ldots + C_n^n a^0 b^n
\]

Note: \(C(n,r) \) is the same as \(\binom{n}{r} \).

Example: find the 4th term in \((2x + 5y)^7\).

Let \(a=2x \) and \(b=5y \), we have \(((2x) + (5y))^7\). The 4th term is

\[
\binom{7}{4-1} (2x)^{7-(4-1)} (5y)^{(4-1)}
\]

\[
= \binom{7}{3} (2x)^4 (5y)^3
\]

\[
= \binom{7}{3} 2^4 5^3 x^4 y^3
\]

\[
= 70000 x^4 y^3
\]

Pascal’s Identity: Let \(n \) and \(k \) be positive integers with \(n \geq k \). Then \(C(n+1,k) = C(n,k-1) + C(n,k) \).

We can prove by expanding \(C(n,k-1) \) and \(C(n,k) \). Here is the meaning of \(C(n+1,k) \)

\[T = S \cup \{a\} \]

Imagining a set \(S \) containing \(n \) elements and a set \(T \) containing \((n + 1) \) elements, namely all elements in \(S \) plus a new element \(a \).

Calculating \(C(n+1,k) \) is equivalent to answering the question: How many subsets of \(T \) containing \(k \) items are there?

Case I: The subset contains \((k - 1)\) elements of \(S \) plus the element \(a \): \(C(n, k-1) \) choices.

Case II: The subset contains \(k \) elements of \(S \) and does not contain \(a \): \(C(n, k) \) choices.

By Sum Rule: \(C(n + 1, k) = C(n, k-1) + C(n, k) \).
Row(n)
0 \(C_0^n \)
1 \(C_0^1 \quad C_1^1 \)
2 \(C_0^2 \quad C_1^2 \quad C_2^2 \)
3 \(C_0^3 \quad C_1^3 \quad C_2^3 \quad C_3^3 \)
4 \(C_0^4 \quad C_1^4 \quad C_2^4 \quad C_3^4 \quad C_4^4 \)

\(\vdots \)

\(n \quad C_0^n \quad C_1^n \quad \ldots \quad C_{n-1}^n \quad C_n^n \)

Row 0:
1 1

Row 1:
1 1 2

Row 2:
1 2 1 4

Row 3:
1 3 3 1

Row 4:
1 4 6 4 1 16

\(C(n+1, k) = C(n, k-1) + C(n, k) \).

Recall Pascal’s Identity:
\(C(3, 0) = C(2, 0) + C(2, 1) \)
\(C(4, 1) = C(3, 0) + C(3, 1) \)

Sum of each row is:
\(C(n, n) = C(n, 0) \)

\(C(n, 0) + C(n, 1) + \ldots + C(n, n) = 2^n \)

Pascal’s identity with Pascal’s triangle:

With the help of Pascal’s identity, Pascal triangle can considerably simplify the process of expanding powers of binomial expressions.

For example, the fourth row of Pascal’s triangle \((1 – 4 – 6 – 4 – 1)\) helps us to compute \((a + b)^4\):

\((a + b)^4 = 1a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + 1b^4 \)

i.e. the \(n\)th row of the triangle \((n \geq 0)\) consists of all of the values \(\forall 0 \leq r \leq n \quad C(n, r) \)