Overview

• HW7 due on Tuesday May 4. Work on it!
• Last Lecture:
 – Shortest Path Problem
 – Traveling salesman problem
 – Trees, Spanning Trees
• This Lecture: Trees & Counting/Combinatorics
 – Rooted Trees, Binary Trees
 – Rooted Tree Apps & Tree Representations
 – Tree Traversal Algorithms

6.2 Introduction to Trees

© by Kazunori Okada, 2021
• Definition: A graph G is said to be a **tree** if it is connected and has no cycle (**acyclic**).

• G is said to be a **forest** if it consists of several trees.

![Diagram of a graph](image)

Definition: A spanning tree G' of an undirected graph G satisfies:

- G' is a subgraph of G
- G' consists of all vertices in G
- G' is a tree (forest then you have spanning forest)

Several Spanning trees G' of G

![Diagrams of spanning trees](image)

Several Spanning forests G' of G

![Diagrams of spanning forests](image)
Kruskal Algorithm (to find a spanning tree):

Input: a connected graph \(G = (V,E) \)

Output: a spanning tree \((V,T) \) of \(G \)

\[
T = \emptyset
data-reset

\text{for each } e \in E \{
\text{if } (V, \{e\} \cup T) \text{ is acyclic then } \newline
T = T \cup \{e\}
\}
\]

return \((V,T)\)

Note: above algorithm can be modified to obtain **minimum cost spanning tree**. How?

→ Sort \(E \) by weights in the increasing order

© by Kazunori Okada, 2021
Definition: A **rooted tree** T is a connected acyclic graph with one node designated as the **root** of the tree.

- The nodes $r_1, r_2, ..., r_t$ are **children** of r, and r is a **parent** of $r_1, r_2, ..., r_t$.
- A node with no children is called a **leaf**; all nonleaves are **internal nodes**.
- The **depth** of a node in a tree is the length of the path from the root to the node.
- The **height** of the tree is the maximum depth of any node in the tree.
- Branches: subtrees/subgraphs
- Convention of drawing

Binary Trees is a rooted tree where each node has at most 2 children.

- A **full binary tree** occurs when all internal nodes have 2 children and all leaves are the same depth.
- A **complete binary tree** is an almost-full binary tree except for the deepest depth.

Note that a complete tree is not a complete graph!
Application of Rooted Trees: Counting problem

- A child can choose one jellybean out of two jellybeans (red, black), and one gummy bear out of three gummy bears (yellow, green, white). How many different sets of candy can the child have?

\[\text{Y: R, Y} \]
\[\text{G: R, G} \]
\[\text{W: R, W} \]

\[\text{choose jellybean} \]
\[\text{choose gummy bear} \]

\[\text{B} \]
\[\text{Y: B, Y} \]
\[\text{G: B, G} \]
\[\text{W: B, W} \]

\[\therefore 6 \text{ outcomes} \]

Family tree - not only interesting but also useful for research in medical genetics.

- Files on your computer are organized in a hierarchical (treelike) structure (nested folders, file system).
- Algebraic expression involving binary operations can be represented by a labeled binary tree. (Compiler!)
Binary Tree Representation

Binary trees have special characteristics: the identity of the left and right child.

```
Binary tree
1
  2   3
  |   |
4   5   6
```

```
left child  right child
1  2   3
  4   5
  0   6
  0   0
  0   0
```

```
Pointer representation
1
  2   3
  |   |
2   5   6
```

Tree Traversal Algorithms

Traversal of Tree: visit every nodes of a tree in a systematic order

The 3 common tree traversal algorithms are: **preorder**, **inorder**, and **postorder** traversal.

These terms refer to the order in which the root of a tree is visited compared to the subtree nodes.

In these traversal methods, it is helpful to use the **recursive** view of a tree, where the root of a tree is a parent of the roots of subtrees.
ALGORITHM Preorder
PR(tree T)
// Writes the nodes of a tree
// with root r in preorder
write(r)
for i = 1 to t do
 PR(T_i)
end for
end

ALGORITHM Inorder
IN(tree T)
// Writes the nodes of a tree
// with root r in inorder
IN(T_1)
write(r)
for i = 2 to t do
 IN(T_i)
end for
end

ALGORITHM Postorder
PO(tree T)
// Writes the nodes of a tree
// with root r in Postorder
for i = 1 to t do
 PO(T_i)
end for
write(r)
end

root, left, right
left, root, right
left, right, root

e.g. Do a preorder, inorder, and postorder traversal of the tree.

Preorder: a, b, e, f, c, d, g, i, h
Inorder: e, b, f, a, c, i, g, d, h
Postorder: e, f, b, c, i, g, h, d, a
Algebraic expressions represented as binary trees

Inorder traversal: \((2 + x) \ast 4 \)

Preorder traversal: \(* + 2 \, x \, 4 \)

Postorder traversal: \(2 \, x \, + \, 4 \, * \)

- **infix notation**
 - operation symbol appears between the 2 operands.

- **prefix notation**
 - operation symbol precedes its operands. (Lisp)

- **postfix notation**
 - operation symbol follows its operands. (PS)

© by Kazunori Okada, 2021