Overview

• **HW7 due in one week**

• **Q&A on graphs/trees on Thursday!**

• Last lecture: Graph Theory
 – Adjacency Matrix, Adjacency Lists
 – Isomorphism
 – Path, Circuit, Cycle: Hamiltonian Cycle, Eulerian Circuit
 – Connectivity, Connected Components, Planar Graphs

• Today’s lecture: Completing Graphs & Trees
 – Shortest path problem: Dijkstra algorithm
 – Traveling salesman problem
 – Trees: Definitions & Spanning trees

Application: Shortest Path Problems

• We can assign **weights** to the edges of graphs, for example, to represent the distance between cities in a railway network:

![Graph diagram]

• One of the most interesting questions that we can investigate with such graphs is:

> What is the **shortest path** between two vertices in the graph, that is, the path with the **minimal sum of weights** along the way?

> This corresponds to the shortest train connection or the fastest connection in a computer network (edge weight = response time).
Dijkstra’s Algorithm

- Dijkstra’s algorithm is an iterative procedure that finds the shortest path between two vertices (e.g., \(a \) to \(z \)) in a weighted graph.
- It proceeds by finding the length of the shortest path from \(a \) to successive vertices. \(a \rightarrow z \)
- The algorithm terminates once it reaches the destination vertex \(z \). The final shortest path is then back-tracked from \(z \).

Example:

Answer: \(a, c, b, d, e, z \) keep min cost value on each vertex

```
function Dijkstra(Graph, source(a), target(z)):
    for each vertex \( v \) in Graph: // Initializations
        \( \text{dist}[v] := \infty \) // Unknown distance function from source to \( v \)
        \( \text{prev}[v] := \text{undefined} \) // Previous node in optimal path from source
        \( \text{dist}[source] := 0 \) // Distance from source to source
    \( Q := \) the set of all nodes in Graph
    while \( Q \) is not empty: // The main loop
        \( u := \) node in \( Q \) with smallest \( \text{dist}[u] \)
        remove \( u \) from \( Q \)
        if \( u = \text{target} \), exit, done!
        for each neighbor \( v \) of \( u \) and \( v \) still in \( Q \).
            \( \text{alt} := \text{dist}[u] + \text{dist}_\text{between}(u, v) \)
            if \( \text{alt} < \text{dist}[v] \) // Relax \((u,v)\)
                \( \text{dist}[v] := \text{alt} \) // update \( v \)'s data
                \( \text{prev}[v] := u \) // update \( v \)'s previous node to \( u \)
```

© by Kazunori Okada, 2021
\[\text{dist}[V = a, \ldots z] = \infty \]
\[\text{prev}[V = 0, \ldots z] = \text{undefined} \]

1. \[\text{dist}[a] = 0 \quad \text{Source} \]
2. Pop node w/smallest \(d(c) \) from \(Q \)
3. Look at all neighbors of \(a \rightarrow b, c \)
 - (b) \(alt = d(a) + 4 + 4 \)
 \[d(c) = 4, p(c) = a \]
 - (c) \(alt = d(a) + 2 + 2 \)
 \[d(c) = 4, p(c) = a \]
 Remove \(a \) from \(Q \)

4. Pop \(Q \rightarrow c \)
5. Remove \(c \) from \(Q \)
6. Look at neighbors of \(c \) and \(b, d, e \)
 - (b) \(alt = d(c) + 3 < d(b) = 4 \)
 \[d(b) = 3, p(b) = c \]

\[Q = \{ a, b, c, d, e, z \} \]

1. \(alt = d(c) + 10 < d(e) = 10 \)
 \[d(c) = 10, p(c) = z \]
2. \(alt = d(c) + 2 < d(e) = 10 \)
 \[d(c) = 10, p(c) = z \]
3. \(alt = d(c) + 14 < d(e) = 10 \)
 \[d(c) = 10, p(c) = z \]
4. Pop \(Q \rightarrow e \)
5. Remove \(e \)
6. Pop \(Q \rightarrow z \)
7. Pop \(Q \rightarrow z \)
8. Now back track from \(z \) to \(b, a \)
Application: The Traveling Salesman Problem

• The **traveling salesman problem** is one of the classical problems in computer science.

A traveling salesman wants to visit all major cities and then return to his starting point. Of course he wants to save time and energy, so he wants to determine the **shortest path** for his trip.

We can represent the cities and the distances between them by a **weighted, complete, undirected graph**.

The problem then is to find a **Hamiltonian cycle of minimum total weight that visits each vertex exactly one**.

Example: What path would the traveling salesman take to visit the following cities?

Solution: The shortest path is Boston, New York, Chicago, Toronto, Boston (2,000 miles).

Question: Given n vertices, how many different cycles (with all n vertices) can we form by connecting these vertices with edges?
Solution: We first choose a starting point. Then we have \((n - 1)\) choices for the second vertex in the cycle, \((n - 2)\) for the third one, and so on, so there are \((n - 1)!\) choices for the whole cycle. However, this number includes identical cycles that were constructed in opposite directions. Therefore, the actual number of different cycles is \((n - 1)!/2\).

• Unfortunately, no algorithm solving the traveling salesman problem with polynomial worst-case time complexity has been devised yet.

• This means that for large numbers of vertices, solving the traveling salesman problem is not tractable (impractical).

• In these cases, we can use efficient approximation algorithms that determine a path whose length may be slightly larger than the traveling salesman’s path.
• Definition: A graph G is said to be a **tree** if it is **connected** and has no cycle (**acyclic**).

• G is said to be a **forest** if it consists of several trees.

Definition: a **spanning tree** G' of an undirected graph G satisfies:

- G' is a subgraph of G
- G' consists of all vertices in G
- G' is a tree (forest then you have spanning forest)

G

Several Spanning trees G' of G

$\begin{array}{c}
\text{Several Spanning forests } G' \text{ of } G \\
\end{array}$
Kruskal Algorithm (to find a spanning tree):

Input: a connected graph \(G = (V, E) \)

Output: a spanning tree \((V, T)\) of \(G \)

\[
T = \emptyset \quad \text{— initial set of edges}
\]

for each \(e \in E \) {
 if \((V, \{e\} \cup T)\) is acyclic then
 \(T = T \cup \{e\} \)
}

return \((V, T)\)

Note: above algorithm can be modified to obtain **minimum cost spanning tree**. How?

\(\rightarrow \) Sort \(E \) by weights in the increasing order

© by Kazunori Okada, 2021

Minimum Cost Spanning Tree