Overview

- **HW6 due on Thursday**
- **Last Lecture: Completed Algorithms**
 - Big-O notation of Growth of Complexity Function
 - Tractable vs Intractable Problems
 - Computability theory
 - Number theory: Division, Primes, GCD, LCM
- **This Lecture: Graphs**
 - Euclidean Algorithm for GCD & Its Correctness Proof
 - Modular Arithmetics: Properties of Congruence
 - Introduction of Graphs
 - Graph theory

Application: Program Correctness

Euclidean Algorithm

- By Greek Mathematician Euclid (2300 years ago), one of the oldest known algorithm. Finds the greatest common divisor of 2 nonnegative integers a and b

- Example, if we want to find gcd(287, 91), we divide 287 by 91, and get $287 = 91 \times 3 + 14$ \[\text{// i=j*q+r in program}\]

In the next step, if the remainder is not zero, we divide 91 (divisor) by 14 (remainder) and get $91 = 14 \times 6 + 7$

So again we divide 14 by 7 and get to remainder 0! Then we stop $14 = 7 \times 2 + 0$

Therefore, gcd(287, 91) = 7.
Euclidean Algorithm:

\text{GCD}(\text{nonnegative integer } a; \text{ nonnegative integer } b)

//input : \(a \geq b, \) not both \(a\) and \(b\) are zero

Local variables: integers \(i, j\)

\(i = a; \ j = b \quad \text{// initialize value of } i \text{ and } j\)

\text{while } j \neq 0 \text{ do}

\begin{align*}
&\text{compute } i = qj + r, \quad 0 \leq r < j \\
&\quad i = j \\
&\quad j = r
\end{align*}

\text{end while}

//\(i\) now has the value \(\text{gcd}(a,b)\)

return \(i\);

end function \text{GCD}

Property \(\ast\) : \((\forall \text{integers } a, b, q, r) [(a = bq + r) \rightarrow (\gcd(a, b) = \gcd(b, r))]\)

Proof by contradiction

Assume that \(a = bq + r\) and \(\gcd(a, b) \neq \gcd(b, r)\)

Let \(a = \gcd(a, b) \ast c_1\) and \(b = \gcd(a, b) \ast c_2\) for some integers \(c_1\) and \(c_2\)

\(r = a - qb = \gcd(a, b) \ast c_1 - q \ast \gcd(a, b) \ast c_2 = \gcd(a, b) \ast (c_1 - qc_2)\)

So \(\gcd(a, b)\) divides \(r\) \quad (also \ divides \ a \ and \ b, \ by \ definition \ of \ \gcd(a, b))

Similarly we can show that \(\gcd(b, r)\) divides \(a\) (also divide \(b\) and \(r\))

As \(\gcd(a, b) \neq \gcd(b, r)\)

Case 1: \(\gcd(a, b) > \gcd(b, r)\), then \(\gcd(b, r)\) cannot be the gcd of \(b\) and \(r\)

(since \(\gcd(a, b)\) is greater value and divides both \(b\) and \(r\))

Contradiction!

Case 2: \(\gcd(a, b) < \gcd(b, r)\) then \(\gcd(a, b)\) cannot be the gcd of \(a\) and \(b\)

(similar argument as case 1), Contradiction!
To prove the correctness of this function, we need to prove the following

Let \(i_n \) and \(j_n \): values of \(i \) and \(j \) after the \(n \)th loop in Euclidean Algorithm.

We need to prove \(Q(n): \gcd(i_n, j_n) = \gcd(a, b) \) is true for all \(n \geq 0 \)

Use Induction

- **IB:** \(n = 0 \), \(Q(0): \gcd(i_0, j_0) = \gcd(a, b) \) is true as \(i \) and \(j \) are initialized to be \(a \) and \(b \) before entering the loop.

- **IH:** Assume \(Q(k): \gcd(i_k, j_k) = \gcd(a, b) \)

- **IS:** Show \(Q(k+1): \gcd(i_{k+1}, j_{k+1}) = \gcd(a, b) \)

By the assignment statements within the loop body, we know it computes \(i_k = q_j j_k + r_k, i_{k+1} = j_k, \) and \(j_{k+1} = r_k \)

then \(\gcd(i_{k+1}, j_{k+1}) = \gcd(j_k, r_k) = \gcd(i_k, j_k) \) (by property *)

and \(\gcd(i_k, j_k) = \gcd(a, b) \) (by IH)

Therefore, function GCD is correct!

Modular Arithmetic

- Let \(a \) be an integer and \(m \) be a positive integer. We denote the remainder when \(a \) is divided by \(m \) by \(a \mod m \).

- Examples:
 - \(9 \mod 4 = 1 \), \(9 \mod 3 = 0 \), \(9 \mod 10 = 9 \), \(-13 \mod 4 = 3 \)
 - for \(x < 0 \), \(x \mod y = z + x \), where \(z \) is the smallest positive integer > \(|x| \) and is divisible by \(y \)

Congruences

- Let \(a \) and \(b \) be integers and \(m \) be a positive integer. We say that \(a \) is congruent to \(b \) modulo \(m \) if \(m \) \mid (a - b) \).

- We use the notation \(a \equiv b \pmod{m} \) to indicate that \(a \) is congruent to \(b \) modulo \(m \).

- We claim that \(a \equiv b \pmod{m} \) if and only if \(a \mod m = b \mod m \).
• Examples:
 Is it true that $46 \equiv 68 \pmod{11}$? Yes, because $11 \mid (46 - 68)$.
 Is it true that $46 \equiv 68 \pmod{22}$? Yes, because $22 \mid (46 - 68)$.
 For which integers z is it true that $z \equiv 12 \pmod{10}$?
 It is true for any $z \in \{\ldots, -28, -18, -8, 2, 12, 22, 32, \ldots\}$

• Theorem: Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that $a = b + km$.

• Theorem: Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

Proof:
We know that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ implies that there are integers s and t with $a = b + sm$ and $c = d + tm$.

Therefore, $(a + c) = (b + sm) + (d + tm) = (b + d) + (s + t)m$ and $ac = (b + sm)(d + tm) = bd + (bt + ds + stm)m$.

Hence, $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

Theorem: Let m be a positive integer. Then

$$a \equiv b \pmod{m} \iff a \mod m = b \mod m.$$

Proof:
Let $a = m*q_1 + r_1$ and $b = m*q_2 + r_2$ (A)

If part: show if $a \mod m = b \mod m$ then $a \equiv b \pmod{m}$

$a \mod m = b \mod m$ implies $r_1 = r_2$, therefore $a - b = m(q_1 - q_2)$, thus $a \equiv b \pmod{m}$ by congruence def.

Only if part: show if $a \equiv b \pmod{m}$ then $a \mod m = b \mod m$

$a \equiv b \pmod{m}$ implies $a - b = m*q$,

$m*q_1 + r_1 - (m*q_2 + r_2) = m*q$ by plugging (A) to the above this yields $r_1 - r_2 = m(q - q_1 + q_2)$.

Since $0 \leq r_1, r_2 < m$, it must be that $0 \leq |r_1 - r_2| < m$.

The only multiple of m in that range is 0, i.e. $r_1-r_2=0$

Therefore $r_1 = r_2$, thus $a \mod m = b \mod m$.

Chapter 6.1 Theory and Applications of Graphs

Introduction to Graphs

1. Definition: A simple graph $G = (V, E)$ consists of vertex set V, a nonempty set of vertices/nodes, and edge set E, a set of edges or unordered pairs of vertices. So each edge $e \in E$ is a set; $e = \{u, v\}$ where $u, v \in V$. An edge e is a self-loop if $e = \{u, u\}$ for some $u \in V$.

2. Definition: A undirected graph is a simple graph with no self loops and there is at most one edge between two vertices (multigraph may have self-loops and multi-edges in between two vertices).

3. Definition: A directed graph $G = (V, E)$ consists of a vertex set V and an edge set E. Edges are ordered pairs or arrows of elements in V. For each $e \in E$, $e = (u, v)$ where $u, v \in V$.

In this chapter, we assume “no multi-edges” unless we clearly specify “with multi-edges” graphs mean undirected graphs
Graph Models

• Example I: How can we represent a network of (bi-directional) railways connecting a set of cities?

• We should use a undirected graph with an edge \{a, b\} indicating a direct train connection between cities a and b.

\[G=(V,E) \]
\[V=\{B,T,N,W\} \]
\[E=\{\{T,N\}, \{B,N\}, \{N,W\}\} \]

• Example II: In a round-robin tournament, each team plays against each other team exactly once. How can we represent the results of the tournament (which team wins over which other team)?

• We should use a directed graph with an edge \((a, b)\) indicating that team \(a\) wins over team \(b\).

\[G=(V,E) \quad \text{Note: directions of edges} \]
\[V=\{A,B,C,D\} \]
\[E=\{(A,C),(B,C),(D,A), (D,B),(D,C)\} \]
Graph Terminology (undirected graphs)

• Definition: Two vertices u and v in an undirected graph G are called **adjacent** or **neighbors** in G if $\{u, v\}$ is an edge in G.

 If $e = \{u, v\}$, the edge e is called **incident with** the vertices u and v. The edge e is also said to **connect** u and v.

 The vertices u and v are called **endpoints** of the edge $\{u, v\}$.

• Definition: The **degree of a vertex** in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex.

 In other words, you can determine the degree of a vertex in a displayed graph by **counting the lines** that touch it.

• A vertex of degree 0 is called **isolated**, since it is not adjacent to any vertex.

 \[\text{The Handshaking Theorem:} \quad \text{Let } G = (V, E) \text{ be an undirected graph with } e = |E| \text{ edges. Then } 2e = \sum_{v \in V} \deg(v) \quad \text{// sum of degrees} \]

• Example: How many edges are there in a graph with 10 vertices, each of degree 6?

 Solution: The sum of the degrees of the vertices is $6 \cdot 10 = 60$.

 According to the Handshaking Theorem, it follows that $2e = 60$, so there are 30 edges.

• **Theorem**: An undirected graph has an even number of vertices of odd degree.

 Proof: Let V_1 and V_2 be the set of vertices of even and odd degrees, respectively. Then by Handshaking theorem

 \[2|E| = \sum_{v \in V} \deg(v) = \sum_{v \in V_1} \deg(v) + \sum_{v \in V_2} \deg(v) \]

 Since both $2|E|$ and $\sum_{v \in V_1} \deg(v)$ are even, $\sum_{v \in V_2} \deg(v)$ must be even $\Rightarrow |V_2|$ is even
And for directed graphs:

- Definition: When \((u, v)\) is an edge of the directed graph \(G\), \(u\) is said to be adjacent to \(v\), and \(v\) is said to be adjacent from \(u\).

- The vertex \(u\) is called the initial vertex of \((u, v)\), and \(v\) is called the terminal vertex of \((u, v)\). The initial vertex and terminal vertex of a loop are the same.

- Definition: In a directed graph, the in-degree of a vertex \(v\) is the number of edges with \(v\) as their terminal vertex. The out-degree of \(v\) is the number of edges with \(v\) as their initial vertex.

- Question: How does adding a loop to a vertex change the in-degree and out-degree of that vertex?
 Answer: It increases both the in-degree and the out-degree by one.

• Example: What are the in-degrees and out-degrees of the vertices \(a, b, c, d\) in this graph:

 \[
 \begin{align*}
 \deg^\text{in}(a) &= 1 \\
 \deg^\text{out}(a) &= 2 \\
 \deg^\text{in}(b) &= 4 \\
 \deg^\text{out}(b) &= 2 \\
 \deg^\text{in}(d) &= 2 \\
 \deg^\text{out}(d) &= 1 \\
 \deg^\text{in}(c) &= 0 \\
 \deg^\text{out}(c) &= 2
 \end{align*}
 \]

• Theorem: Let \(G = (V, E)\) be a directed graph. Then:
 \[
 \sum_{v \in V} \deg^\text{in}(v) = \sum_{v \in V} \deg^\text{out}(v) = |E|
 \]

 This is easy to see, because every new edge increases both the sum of in-degrees and the sum of out-degrees by one.
Special Graphs

- **Definition:** The complete graph on n vertices, denoted by K_n, is the simple graph that contains exactly one edge between every pair of distinct vertices.

- **Definition:** The n-cube, denoted by Q_n, is the graph that has vertices representing the 2^n bit strings of length n. Two vertices are adjacent if and only if the bit strings that they represent differ in exactly one bit position.

- **Definition:** A graph is called bipartite if its vertex set V can be partitioned into two disjoint nonempty sets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 with a vertex in V_2 (so that no edge in G connects either two vertices in V_1 or two vertices in V_2).
• For example, consider a graph that represents mating partners of penguin in a colony. (March of Penguins!)

• This graph is **bipartite**, because the vertex set can be partitioned into female set and male set then each edge connects a vertex between the two sets.

• **Example I:** Is graph G below bipartite?

 No, because there is no way to partition the vertices into two sets so that there are no edges with both endpoints in the same set.

• **Example II:** Is graph G below bipartite?

 Yes, because we can display G like this:

• **Definition:** The **complete bipartite graph** $K_{m,n}$ is the graph that has its vertex set partitioned into two subsets of m and n vertices, respectively. Two vertices are connected if and only if they are in different subsets.

Neural Network!
Operations on Graphs

• **Definition:** A subgraph of a graph $G = (V, E)$ is a graph $H = (W, F)$ where $W \subseteq V$ and $F \subseteq E$.

• **Note:** H must be a valid graph. i.e. For each $\{u,v\}$ in F, u and v are vertices in W.

• **Example:**

![Graphs](image)

- K_5
- Subgraph of K_5

• **Definition:** The union of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the simple graph with vertex set $V_1 \cup V_2$ and edge set $E_1 \cup E_2$: $(V_1, F_1) \cup (V_2, F_2)$

• The union of G_1 and G_2 is denoted by $G_1 \cup G_2$.

![Graphs](image)

- G_1
- G_2
- $G_1 \cup G_2 = K_5$
Representing Graphs

• **Definition:** Let $G = (V, E)$ be a graph with $|V| = n$. Suppose that the vertices of G are listed in arbitrary order as $v_1, v_2, ..., v_n$.

• The **adjacency matrix** A_G of G, with respect to this listing of the vertices, is the $n \times n$ zero-one-valued matrix with 1 as its (i, j)-th entry when v_i and v_j are adjacent, and 0 otherwise.

• In other words, for an adjacency matrix $A = [a_{ij}]$, $a_{ij} = 1$ if $\{v_i, v_j\}$ is an edge of G, $a_{ij} = 0$ otherwise.

• **Example:** What is the adjacency matrix A_G for the following graph G based on the order of vertices a, b, c, d?

\[
\begin{bmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{bmatrix}
\]

Solution:

\[
A_G = \begin{bmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{bmatrix}
\]

Definition: **Adjacency list** representation consists of a list of its vertices together with a separate list for each vertex that contains all the vertices adjacent to that vertex.

Example: let $1 = a$, $2 = b$, $3 = c$ and $4 = d$

<table>
<thead>
<tr>
<th>Vertex</th>
<th>List of adjacencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2, 3, 4</td>
</tr>
<tr>
<td>2</td>
<td>1, 4</td>
</tr>
<tr>
<td>3</td>
<td>1, 4</td>
</tr>
<tr>
<td>4</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>

Note: Adjacency Matrix and Adjacency Lists can be used to defined directed graphs also.