Midterm #2

- HW6: Due on 11/7 after MT2.
- Midterm #2 in Five Days
 (Relation/Function/CountingTheory)
 - 5 questions on Relations and Functions
 - 3 Relations/Functions, 2 Counting
 - Bring: 1-page handwritten cheat-sheet, calculator, scratch papers
 - No reentry after leaving
 - Study with example problems BOTH in Lec Notes and HWs. For more look into the TextBook
 - MORE DIFFICULT THAN MT1!!!
- This Lecture
 - Review for Midterm #2: Hw 4 & 5

Homework 4
(Total 25 pts)

CSC230 Discrete Math
Kazunori Okada
HW#4 Q1 (4pt)

Determine whether the binary relation R on the set of all people is reflexive, symmetric, antisymmetric, transitive where $(a, b) \in R$ if and only if: (i) a is taller than b

- **ANS**

 $\forall a \in S, (a,a) \in R$? $(a,a) \in R$

 not reflexive
 not symmetric
 antisymmetric
 transitive

 $(a,b) \in R$

 not taller than my self
 if a is taller than b the b is not taller than a
 YES
 YES
 YES
 YES

 if $(a,b) \in R$ then $(b,a) \not\in R$

HW#4 Q1 (4pt)

Determine whether the relation R on the set of all people is reflexive, symmetric, antisymmetric, transitive where $(a,b) \in R$ if and only if: (ii) a has the same last name as b

- **ANS**

 reflexive : YES

 symmetric : YES

 antisymmetric : NO

 transitive : YES

Equivalence Relation
Let R be the relation on the set \{0,1,2,3\} with ordered pairs (0,1),(1,1),(1,2),(2,0),(2,2) and (3,0). Find the (i) reflexive closure of R

\[\text{Reflexive Closure} \rightarrow R \cup \text{Id} = \{(0,0), (1,1), (2,2), (3,3)\}\]

\[R^+ = R \cup R^2 \cup R^3 \cup \cdots \cup R^\infty\]

\[\text{Let } R^+ \text{ be reflexive and transitive} \rightarrow R^+ = \text{Id} \cup R^+

Let R be the relation on the set \{0,1,2,3\} with ordered pairs (0,1),(1,1),(1,2),(2,0),(2,2) and (3,0). Find the (ii) symmetric closure of R

\[\text{Symmetric Closure} \rightarrow R \cup R^{-1} = \{(0,1), (1,1), (1,2), (2,0), (2,2), (3,3)\}\]
Let R be the relation on the set of ordered pairs of positive integers such that $((a,b),(c,d)) \in R$ if and only if $ad=bc$. (i) Show that R is an equivalence relation.

- **ANS**

 Reflexive: $(a,b),(a,b) \in R \iff a \cdot b = b \cdot a$.

 Symmetric: if $(a,b),(c,d) \in R$ then $ad=bc \iff cb=da$.

 Transitive: $(a,b),(c,d) \in R$ and $(c,d),(e,f) \in R$ \iff $(a,b),(e,f) \in R$.

\begin{align*}
&\iff \quad a \cdot d = b \cdot c = a \cdot f = d \cdot e \\
&\iff \quad acdf = bcde \quad \text{since } c>0, d>0 \\
&\iff \quad (a,b),(e,f) \in R.
\end{align*}

Let R be the relation on the set of ordered pairs of positive integers such that $((a,b),(c,d)) \in R$ if and only if $ad=bc$. (ii) What is $[(1,2)]$, equivalence class of $(1,2)$?

- **ANS**

 $(1,2),(c,d) \in R \iff d = 2c$, $c>0$.

 $[(1,2)] = \{ \text{any pair } (c,d) \text{ with } \frac{d}{c} = 2 \}$

 or any pair $(c,2c)$ \quad $c \in \mathbb{N}^+$

 or $\{ (1,2),(2,4),(3,6),(4,8),(5,10),\ldots \}$

 $\{ (c,d) \mid d=2c, \ c \in \mathbb{N}^+ \}$
Homework 5
(Total 25 pts)

CSC230 Discrete Math
Kazunori Okada

HW#5 Q1 (2pt)

Determine whether each of these functions is bijection from \mathbb{R} to \mathbb{R} (explain your solutions) (a) $f(x) = -3x + 4$

- ANS

 To show $f(x)$ is bijection, we have to show that f is both 1-1 and Onto.

 (1-1) For all $a, b \in \mathbb{R}$, if $f(a) = f(b)$ then $a = b$.

 \[f(a) = f(b) \quad \Rightarrow \quad -3a + 4 = -3b + 4 \quad \Rightarrow \quad a = b \]

 (Onto) For all $b \in \mathbb{R}$ (codomain), there exists $a \in \mathbb{R}$ such that $f(a) = b$.

 \[b = f(a) = -3a + 4 \quad \Rightarrow \quad a = \frac{4 - b}{3} \quad \text{(domain)} \]

 Since $b \in \mathbb{R}$, $a \in \mathbb{R}$ (domain). Thus $f(x)$ is onto.
HW#5 Q1 (2pt)

Determine whether each of these functions is bijection from \(\mathbb{R} \) to \(\mathbb{R} \) (explain your solutions) (b) \(f(x) = \frac{x+1}{x+2} \)

- ANS

\[f(-2) \text{ is undefined} \]

\[x = -2 \implies \frac{-2+1}{-2+2} = \frac{1}{0} \text{ is undefined} \]

\[x = -2 \notin \mathbb{R} \]

\[\therefore \text{Not bijection, not a function} \]

\[\therefore \quad x + 2 = x + 1 \]

HW#5 Q2 (1.5pt)

Let \(f(x) = x^2 + 1, \ g(x) = x + 2 \) are functions from \(\mathbb{R} \) to \(\mathbb{R} \). Find (i) \(f \circ g \)

- ANS

\[(a,b) \quad (b,c) \]

\[(a,c) \]

\[f \circ g = f(g(x)) = (x+2)^2 + 1 \]

\[= x^2 + 4x + 5 \]

\[f(1) = \{ (0,1), (2,1), (3,1) \} \]

\[S(f) = \{ \} \quad \text{and} \quad \{3\} \]
HW#5 Q2 (1.5pt)

Let $f(x) = x^2 + 1$, $g(x) = x + 2$ are functions from $\mathbb{R}^\times \mathbb{R}$.

Find (ii) $g \circ f$

- ANS

 $g \circ f = g(f(x)) = (x^2+1)+2$

 $= x^2+3$

HW#5 Q2 (1.5pt)

Let $f(x) = x^2 + 1$, $g(x) = x + 2$ are functions from $\mathbb{R}^\times \mathbb{R}$.

Find (iii) $f + g$

- ANS

 $f + g = f(x) + g(x)$

 $= x^2 + 1 + x + 2$

 $= x^2 + x + 3$

 $f = \{ (a, b) \mid a, b \in \mathbb{R} \}$
 $g = \{ (c, d) \mid c, d \in \mathbb{R} \}$

 $f + g = \{ (a, b) + (c, d) \mid a, b, c, d \in \mathbb{R} \}$
HW#5 Q2 (1.5pt)

Let \(f(x) = x^2 + 1 \), \(g(x) = x + 2 \) are functions from \(\mathbb{R} \times \mathbb{R} \).

Find (iv) \(fg \)

\[
fg = f(g(x)) = (x^2 + 1)(x + 2) = x^3 + x + 2x^2 + 2 = \frac{3}{2}x^2 + x + 2
\]

HW#5 Q4 (2pt)

Find values of these summations: (i) \(\sum_{i=1}^{3} \sum_{j=1}^{2} (i-j) \)

\[
= \sum_{i=1}^{3} \left[\sum_{j=1}^{2} (i-j) \right]
= \sum_{i=1}^{3} \left[(i-1) + (i-2) \right]
= 2 + 1 + 3 + 1 + 0 + 0 = 6
\]

\[
\sum_{i=1}^{3} (2i-1) = 3 \cdot \frac{3}{2} \cdot 3 = \frac{27}{2}
\]

\[
\sum_{i=1}^{3} 3i = 9 + 6 + 3 = 18
\]

\[
\sum_{i=1}^{3} \frac{1 + 3}{2} = \frac{4}{2} + \frac{4}{2} + \frac{4}{2} = 3
\]

\[
\sum_{i=1}^{3} i^2 = \frac{3(3+1)(2*3+1)}{6} = 14
\]

\[
\sum_{i=1}^{3} \frac{1 + 3}{2} = \frac{4}{2} + \frac{4}{2} + \frac{4}{2} = 3
\]

\[
\sum_{i=1}^{3} i^3 = \left(\frac{3(3+1)(2*3+1)}{6} \right)^2 = 36
\]

\[
\sum_{i=1}^{3} \frac{1 + 3}{2} = \frac{4}{2} + \frac{4}{2} + \frac{4}{2} = 3
\]

\[
\sum_{i=1}^{3} i^3 = \left(\frac{3(3+1)(2*3+1)}{6} \right)^2 = 36
\]
HW#5 Q4 (2pt)

Find values of these summations: (ii) \(\sum_{i=0}^{2} \sum_{j=0}^{3} i^2 j^3\)

- ANS
 \[
 \sum_{i=0}^{2} \sum_{j=0}^{3} i^2 j^3 = \sum_{i=0}^{2} \left(i^2 \sum_{j=0}^{3} j^3 \right) = \sum_{i=0}^{2} (i^2 \cdot 2) = 2(0^2 + 1^2 + 2^2 + 3^2) = 2(0 + 1 + 4 + 9) = 2 \cdot 14 = 28.
 \]

HW#5 Q5 (3pt)

Determine whether each of these sets is countable or uncountable. Explain your solutions. (i) the odd negative integers

- ANS

Let \(X = \{ x | x \in \mathbb{Z}^-, x = 2n+1 \text{ for some } n \in \mathbb{Z} \}\).

Let \(f : \mathbb{N} \rightarrow X\) be defined as \(f(a) = \frac{2a-1}{2}\) for \(a \in \mathbb{N}\).

Then \(f(a)\) can be defined as \(2n+1\) for \(n \geq 0\).

Thus \(f(a)\) is a one-to-one correspondence and \(f\) is a bijection.

\(f(0) = 1, f(1) = 3, f(2) = 5, \ldots\)
HW#5 Q5 (3pt)

Determine whether each of these sets is countable or uncountable. Explain your solutions. (ii) the real number between 1 and 2

• ANS

Use the exactly same argument for the example in the last two slides of the function lecture except that using "1,...," instead of "0,...", \(x \in \{x|0<x<1\} \).

1) Suppose \(Y \) is countable...
 \[Y = \{x|0<x<1\} \]

2) Then you can list all elements in \(Y \) in an order...

3) Thus define \(r^* \) that is different from \(\forall c \in Y \) at all.

4) \(r^* \) & \(Y \) but \(r^* \notin \) \(Y \) because \(1 < r^* < 2 \) contradicts.

HW#5 Q8 (2.5pt)

Suppose that there are nine students in a class. (a) Show that the class must have at least five male students or at least five female students

• ANS

by generalized pigeonhole principle, \(\left\lceil \frac{9}{2} \right\rceil = \left\lceil 4.5 \right\rceil = 5 \)

at least 5 (i.e. \(\left\lceil 9/2 \right\rceil \) where 2 comes from the choice of gender) must be either male or female.
Suppose that there are nine students in a class. (b) Show that the class must have at least three male students or at least seven female students.

• ANS

Proof by contradiction.

\(\neg(P \lor Q) \)

\(\Rightarrow \) Class does not have at least 3 male students and at least 7 female students.

\(\Rightarrow \) Class has at most 2 male and Class has at most 6 female.

\(\Rightarrow \) Class has at most 8 students.

\(\Rightarrow \) Contradiction.

\(\square \)