Overview

- HW5 Due & HW6 assignment will be online soon!
- HW6 is due in 1.5 weeks on 11/3 Tuesday

- Last Lecture (Lec15 on 10/15 and 20)
 - Sequence, Subsequence, Summation
 - Theory of Counting
 - Theory of Counting: real number is not countable
 - Pigeonhole Principle
 - Generalized Pigeonhole Principle

- This Lecture: Algorithm Analysis
 - Definition of algorithms
 - Complexity function
 - Algorithm complexity
 - Big-O notation

Chapter 5. Introduction to Analysis of Algorithms
What is Algorithm?

An algorithm is a finite set of precise instructions for performing a computation or for solving a problem.

We will use a pseudocode to specify algorithms.

Example 1: an algorithm that finds the maximum element in a finite sequence

Function max (List[1], List[2],…, List[i],…, List[n]) // a list of n integers

max = List[1]
for i = 2 to n
if, max < List[i], then, max = List[i]

// max is the largest element in List[1…n]

Example 2: a linear search algorithm, that is, an algorithm that linearly solves a problem of searching a sequence for a particular element.

Function linear_search (List[1], List[2],…, List[n], x)

i = 1 // May assume all numbers in List are distinct
while (i ≤ n and x ≠ List[i])
 i = i + 1
if i ≤ n then location = i
else location = -1
// if location = -1, x is not found; otherwise List[location] = x

If the numbers in List are ordered (or sorted), a binary search algorithm is more efficient than linear search.
Function binary_search(List[1], List[2], ..., List[n], x)

// numbers in List are sorted in increasing order

\(i = 1 \) // 1st index in List

\(j = n \) // last index in List

while (\(i < j \))

\(m = \lfloor (i + j)/2 \rfloor \)

if \(x > \text{List}[m] \) then \(i = m+1 \) // upper half

else if \(x < \text{List}[m] \) then \(j = m-1 \) // lower half

else \(i = j = m \) // found \(x \)

if \(x = \text{List}[i] \) then \(\text{location} = i \)

else \(\text{location} = -1 \)

1. Write Pseudocode
2. Complexity function

- Given an algorithm with an input sequence with \(n \) elements,

- A complexity function specifies **the number of basic operations** (e.g., if-condition comparison) to be executed in order to complete the computation with the \(n \) elements.

- Described as a function of \(n \), unique to a given algorithm

- **Can be directly derived from a pseudocode!**
Complexity Function Examples

Maximum difference between any two numbers in input sequence

Function \texttt{max_diff(List[1], List[2], ..., List[n])}

\[m = 0 \]

\[\text{for } i = 1 \text{ to } n-1 \]

\[\text{for } j = i + 1 \text{ to } n \]

\[\text{if } | \text{List}[i] - \text{List}[j] |= m \text{ then} \]

\[m = | \text{List}[i] - \text{List}[j] | \]

Comparisons: \(n-1 + n-2 + n-3 + \ldots + 1 = \frac{(n-1)n}{2} = 0.5n^2 - 0.5n \)

Another algorithm solving the same problem:

Function \texttt{max_diff(List[1], List[2], ..., List[n])}

\[\text{min} = \text{List}[1] \]

\[\text{max} = \text{List}[1] \]

\[\text{for } i = 2 \text{ to } n \]

\[\text{if } \text{List}[i] < \text{min} \text{ then } \text{min} = \text{List}[i] \]

\[\text{else if } \text{List}[i] > \text{max} \text{ then } \text{max} = \text{List}[i] \]

\[m = | \text{max} - \text{min} | \]

Comparisons: \(2(n-1) = 2n - 2 \)

Why not counting \texttt{min=List[1]} as a one step?

Well, there are three extra steps so really \(2(n-1) + 3 = 2n + 1 \)!

But this does not matter (you see it later)
Algorithm Complexity by complexity function

- **Time complexity**: a measure of the time required (or total steps) to solve a problem of a particular size.

- **Space complexity**: a measure of the space required (or total memory) to solve a problem of a particular size. (will not discuss this….)

- In general, we are not so much interested in the time and space complexity for small inputs.

- For example, while the difference in time complexity between linear and binary search is meaningless for a sequence with \(n = 10 \); but it is gigantic for \(n = 2^{30} \).

- For example, let us assume two algorithms \(A \) and \(B \) that solve the same class of problems.

 - The complexity function of \(A \) is \(5,000n \), the one for \(B \) is \(\lceil 1.1^n \rceil \) for an input with \(n \) elements.

 - For \(n = 10 \), \(A \) requires 50,000 steps, but \(B \) only 3, so \(B \) seems to be superior to \(A \).

 - For \(n = 1000 \), however, \(A \) requires 5,000,000 steps, while \(B \) requires \(2.5 \cdot 10^{47} \) steps.

 - This means that algorithm \(B \) cannot be used for large inputs, while algorithm \(A \) is still feasible.

 - So what is important is the **growth** of the complexity functions.

 - The growth of time and space complexity with increasing input size \(n \) is a suitable measure for the comparison of algorithms.
Comparison: time complexity of algorithms A and B

<table>
<thead>
<tr>
<th>Input Size</th>
<th>Algorithm A</th>
<th>Algorithm B</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>5,000n</td>
<td>\sqrt{1.1^n}</td>
</tr>
<tr>
<td>10</td>
<td>50,000</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>500,000</td>
<td>13,781</td>
</tr>
<tr>
<td>1,000</td>
<td>5,000,000</td>
<td>2.5 \times 10^4</td>
</tr>
</tbody>
</table>
How to derive big-O notation of a complexity function?

> choose \(g(n) \) out of the list then find \(C \) and \(k \! \)

- Example: Show that \(f(x) = x^2 + 2x + 1 \) is \(O(x^2) \).

 For \(x > 1 \) we have:
 \[
 x^2 + 2x + 1 \leq x^2 + 2x^2 + x^2 \quad \Rightarrow \quad x^2 + 2x + 1 \leq 4x^2
 \]
 Therefore, for \(C = 4 \) and \(k = 1 \), \(f(x) \leq Cx^2 \) whenever \(x > k \).

- Example: Show that \(f(n) = 6*2^n + n^2 \) is \(O(2^n) \).

 We have:
 \[
 6*2^n + n^2 \leq 6*2^n + 2^n \quad \text{for all } n \geq 4
 \]
 \[
 6*2^n + n^2 \leq 7*2^n
 \]
 Therefore, for \(C = 7 \) and \(k = 4 \), \(f(n) \leq C2^n \) whenever \(x > k \).

- Question: If \(f(x) \) is \(O(x^2) \), is it also \(O(x^3) \)?

 Yes. \(x^2 \) grows faster than \(x^3 \), so \(x^3 \) grows also faster than \(f(x) \).

Therefore, we always have to find the smallest simple function \(g(x) \) for which \(f(x) \) is \(O(g(x)) \).
2-Step Complexity Analysis: Choose \(g(n) \) and Prove \(O(g) \)!

“Popular” reference functions \(g(n) \) are:

\[1 < \log n < n - \log n < n^2 < n^3 < n^n < 2^n < 10^n < n! \]

(above are listed from slowest to fastest growth)

A problem that can be solved with polynomial worst-case complexity is called **tractable**.

Problems of higher complexity are called **intractable**.

Problems that no algorithm can solve are called **unsolvable**. (more on this later...)

You will find out more about this in future courses.

\[f(n) \leq Cg(n) \text{ for } n \geq k \]

Useful Rules for Big-O

- For any polynomial \(f(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_0 \), where \(a_n, a_{n-1}, ..., a_0 \) are real numbers, \(f(x) \) is \(O(x^n) \).

- If \(f_1(x) \) is \(O(g_1(x)) \) and \(f_2(x) \) is \(O(g_2(x)) \), then \((f_1 + f_2)(x) \) is \(O(\max(g_1(x), g_2(x))) \).

- If \(f_1(x) \) is \(O(g(x)) \) and \(f_2(x) \) is \(O(g(x)) \), then \((f_1 + f_2)(x) \) is \(O(g(x)) \).

- If \(f_1(x) \) is \(O(g_1(x)) \) and \(f_2(x) \) is \(O(g_2(x)) \), then \((f_1f_2)(x) \) is \(O(g_1(x)g_2(x)) \).
Complexity Function Examples

Function `max_diff(List[1], List[2], ..., List[n])`

\[
\begin{align*}
m &= 0 \\
\text{for } i &= 1 \text{ to } n-1 \\
\quad &\text{for } j = i + 1 \text{ to } n \\
\quad &\quad \text{if } |List[i] - List[j]| > m \text{ then} \\
\quad &\quad \quad m = |List[i] - List[j]| \\
\end{align*}
\]

// m is the maximum difference between any
// two numbers in the input sequence

Comp. Func.: \(n-1 + n-2 + n-3 + ... + 1 = (n - 1)n/2 = 0.5n^2 - 0.5n \)

Time complexity is \(O(n^2) \).

Another algorithm solving the same problem:

Function `max_diff(List[1], List[2], ..., List[n])`

\[
\begin{align*}
\text{min} &= \text{List[1]} \\
\text{max} &= \text{List[1]} \\
\text{for } i &= 2 \text{ to } n \\
\quad &\quad \text{if } \text{List}[i] < \text{min} \text{ then } \text{min} = \text{List}[i] \\
\quad &\quad \text{else if } \text{List}[i] > \text{max} \text{ then } \text{max} = \text{List}[i] \\
\quad \quad m &= |\text{max} - \text{min}| \\
\end{align*}
\]

Comp. Func.: \(2(n-1) = 2n - 2 \)

Time complexity is \(O(n) \).