Overview

- HW5 Due & HW6 assignment will be online soon!
- HW6 is due in 1.5 weeks on Nov 2 Tuesday

- Last Lecture (Lec15 on 10/14 and 19)
 - Sequence, Subsequence, Summation
 - Theory of Counting
 - Theory of Counting: real number is not countable
 - Pigeonhole Principle
 - Generalized Pigeonhole Principle
 - Definition of algorithms!

- This Lecture: Algorithm Analysis (cond)
 - Complexity function
 - Algorithm complexity
 - Big-O notation

Chapter 5. Introduction to Analysis of Algorithms
What is Algorithm?

An **algorithm** is a finite set of precise instructions for performing a computation or for solving a problem.

We will use a **pseudocode** to specify algorithms.

Example 1: an algorithm that finds the maximum element in a finite sequence

Function `max(List[1], List[2], ..., List[i], ..., List[n])` // a list of \(n\) integers

- \(max = List[1]\)
- for \(i = 2\) to \(n\)
 - if, \(max < List[i]\), then, \(max = List[i]\)

// \(max\) is the largest element in \(List[1...n]\)

Example 2: a linear search algorithm, that is, an algorithm that linearly solves a problem of searching a sequence for a particular element.

Function `linear_search(List[1], List[2], ..., List[n], x)`

- \(i = 1\) // May assume all numbers in List are distinct
- while \((i \leq n\) and \(x \neq List[i]\))
 - \(i = i + 1\)
- if \(i \leq n\) then \(location = i\)
- else \(location = -1\)

// if \(location = -1\), \(x\) is not found; otherwise \(List[location] = x\)

If the numbers in List are ordered (or sorted), a binary search algorithm is more **efficient** than linear search.
Function binary_search(List[1], List[2], ..., List[n], x)

// numbers in List are sorted in increasing order

i = 1 // 1st index in List

j = n // last index in List

while (i < j)

m = \lfloor (i + j) / 2 \rfloor

if x > List[m] then i = m+1 // upper half
else if x < List[m] then j = m-1 // lower half
else i = j = m // found x

if x = List[i] then location = i
else location = -1

© by Kazumori Okada, 2021

Write Pseudocode

Complexity function

- Given an algorithm with an input sequence with \(n \) elements,
- A complexity function specifies the number of basic operations (e.g., if-condition comparison) to be executed in order to complete the computation with the \(n \) elements.
- Described as a function of \(n \), unique to a given algorithm
- Can be directly derived from a pseudocode!
Complexity Function Examples

Maximum difference between any two numbers in input sequence

Function `max_diff(List[1], List[2], ..., List[n])`

```
m = 0
for i = 1 to n-1
    for j = i + 1 to n
        if |List[i] – List[j]| > m then
            m = |List[i] – List[j]|
```

Comparisons: \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \)

\[= 0.5n^2 - 0.5n \]

Another algorithm solving the same problem:

Function `max_diff(List[1], List[2], ..., List[n])`

```
min = List[1]
max = List[1]
for i = 2 to n
    if List[i] < min then min = List[i]
    else if List[i] > max then max = List[i]

m = |max – min|
```

Comparisons: \(2(n-1) = 2n - 2 \)

Why not counting `min=List[1]` as a one step?

Well, there are three extra steps so really \(2(n-1)+3 = 2n+1 \)!

But this does not matter (you see it later)
Algorithm Complexity by complexity function

- **Time complexity**: a measure of the time required (or total steps) to solve a problem of a particular size.

- **Space complexity**: a measure of the space required (or total memory) to solve a problem of a particular size. (will not discuss this…)

- In general, we are not so much interested in the time and space complexity for small inputs.

- For example, while the difference in time complexity between linear and binary search is meaningless for a sequence with \(n = 10 \); but it is gigantic for \(n = 2^{30} \).

- For example, let us assume two algorithms \(A \) and \(B \) that solve the same class of problems.

- The complexity function of \(A \) is \(5,000n \), the one for \(B \) is \(\lceil 1.1^n \rceil \) for an input with \(n \) elements.

- For \(n = 10 \), \(A \) requires 50,000 steps, but \(B \) only 3, so \(B \) seems to be superior to \(A \).

- For \(n = 1000 \), however, \(A \) requires 5,000,000 steps, while \(B \) requires \(2.5 \cdot 10^{10} \) steps.

- This means that algorithm \(B \) cannot be used for large inputs, while algorithm \(A \) is still feasible.

- So what is important is the **growth** of the complexity functions.

- The growth of time and space complexity with increasing input size \(n \) is a suitable measure for the comparison of algorithms.
Comparison: time complexity of algorithms A and B

<table>
<thead>
<tr>
<th>Input Size</th>
<th>Algorithm A</th>
<th>Algorithm B</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>$5,000n$</td>
<td>$\sqrt{1.1^n}$</td>
</tr>
<tr>
<td>10</td>
<td>50,000</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>500,000</td>
<td>13,781</td>
</tr>
<tr>
<td>1,000</td>
<td>5,000,000</td>
<td>2.5×10^{11}</td>
</tr>
<tr>
<td>1,000,000</td>
<td>5×10^9</td>
<td>4.8×10^{11}</td>
</tr>
</tbody>
</table>

The Growth of Functions

- The growth of functions is usually described using the big-O notation.

- **Definition of big-O:** Let f and g be functions from the integers to the real numbers. We say that $f(x)$ is $O(g(x))$ if there are constants C and k such that $|f(x)| \leq C|g(x)|$ whenever $x > k$. (upper-bound)

- To analyze the growth of complexity functions $f(n)$ we determine its big-O with reference function $g(n)$ ($1 < \log n < n < n \log n < n^2 < n^3 < 2^n < n!$). Both $f(n)$ and $g(n)$ are always positive. Therefore, we can simplify the big-O requirement to:

 $$f(n) \leq C \cdot g(n)$$
 whenever $n > k$. (upper-bound)

Note: If we want to show that $f(n)$ is $O(g(n))$, we only need to find one pair (C, k) (which is never unique).
How to derive big-O notation of a complexity function?

- choose \(g(n) \) out of the list then find \(C \) and \(k \).

Example: Show that \(f(x) = x^2 + 2x + 1 \) is \(O(x^2) \).

For \(x > 1 \) we have:

\[
x^2 + 2x + 1 \leq x^2 + 2x^2 + x^2
\]

\[
x^2 + 2x + 1 \leq 4x^2 \quad \text{for} \quad x > k
\]

Therefore, for \(C = 4 \) and \(k = 1 \), \(f(x) \leq Cx^2 \) whenever \(x > k \).

Example: Show that \(f(n) = 6 \times (2^n) + n^2 \) is \(O(2^n) \).

We have:

\[
6 \times (2^n) + n^2 \leq 6 \times (2^n) + 2^n \quad \text{for all} \quad n \geq 4
\]

\[
6 \times (2^n) + n^2 \leq 7 \times (2^n)
\]

Therefore, for \(C = 7 \) and \(k = 4 \), \(f(n) \leq C2^n \) whenever \(n > k \).

Question: If \(f(x) \) is \(O(x^2) \), is it also \(O(x^3) \)?

Yes. \(x^3 \) grows faster than \(x^2 \), so \(x^3 \) grows also faster than \(f(x) \).

Therefore, we always have to find the **smallest** simple function \(g(x) \) for which \(f(x) \) is \(O(g(x)) \).
• **2-Step Complexity Analysis**: Choose $g(n)$ and Prove $O(g(n))$!
• “Popular” reference functions $g(n)$ are:
 - $1 \leq \log n \leq n - \log n \leq n^2 \leq n^m \leq 2^n \leq 10^n \leq n!$
 (above are listed from slowest to fastest growth)

A problem that can be solved with polynomial worst-case complexity is called **tractable**.

Problems of higher complexity are called **intractable**.

Problems that no algorithm can solve are called **unsolvable**. (more on this later...)

You will find out more about this in future lectures.

Useful Rules for Big-O

• For any **polynomial** $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$, where $a_n, a_{n-1}, \ldots, a_0$ are real numbers, $f(x)$ is $O(x^n)$.

• If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$, then $(f_1 + f_2)(x)$ is $O(max(g_1(x), g_2(x)))$

• If $f_1(x)$ is $O(g(x))$ and $f_2(x)$ is $O(g(x))$, then $(f_1 + f_2)(x)$ is $O(g(x))$.

• If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$, then $(f_1 f_2)(x)$ is $O(g_1(x) g_2(x))$.

© by Kazunori Okada, 2021
Complexity Function Examples

Function max_diff(List[1], List[2], ..., List[n])

\[
\begin{align*}
m & = 0 \\
& \text{for } i = 1 \text{ to } n - 1 \\
& \quad \text{for } j = i + 1 \text{ to } n \\
& \quad \quad \text{if } |\text{List}[i] - \text{List}[j]| > m \text{ then} \\
& \quad \quad \quad m = |\text{List}[i] - \text{List}[j]| \\
\end{align*}
\]

// m is the maximum difference between any // two numbers in the input sequence

Comp. Func.: \(n - 1 + n - 2 + n - 3 + \ldots + 1 = (n - 1)n/2 = 0.5n^2 - 0.5n\)

Time complexity is \(O(n^2)\).

Another algorithm solving the same problem:

Function max_diff(List[1], List[2], ..., List[n])

\[
\begin{align*}
min & = \text{List}[1] \\
max & = \text{List}[1] \\
& \text{for } i = 2 \text{ to } n \\
& \quad \text{if } \text{List}[i] < min \text{ then } min = \text{List}[i] \\
& \quad \text{else if } \text{List}[i] > max \text{ then } max = \text{List}[i] \\
m & = |max - min| \\
\end{align*}
\]

Comp. Func.: \(2(n-1) = 2n - 2\)

Time complexity is \(O(n)\). \(\text{\(n < n^2\) so this is } \text{more efficient!}\)
Summary: Analysis of Algorithm

- Algorithm = a finite sequence of precise instructions

- **Step 1: Pseudo Code** is used to represent an algorithm

- **Step 2:** Derive **Complexity Function** $f(n)$ as the number of basic operations executed within loops when given n inputs.

- **Step 3:** Time Complexity of algorithm \leftarrow **Big-O of its complexity function**!

 - Idea: Describe the growth of # of steps as you increase # of inputs

 - A) Choose a **Reference Function** $g(n)$ from the list

 $1 < \log n < n < n \log n < n^2 < n^3 < n^m < 2^n < 10^n < n!$

 - B) **Show that** $f(n)$ **is** $O(g(n))$ **by finding a pair of** C **and** k **such that**

 $f(n) \leq C \cdot g(n)$ \text{ whenever } n > k$

 - C) Choose the left most function from the list that you can show your $f(n)$ is $O(g(n))$

 - D) Compare algorithms by $g(n)$ of their respective big-O.