Overview

• Have a nice break!!!
• MT2 will be on Apr 20, on relations, functions and algorithms; Start to study for it! Make hand-written notes while at it.
• HW#5 due after the break on Apr 1. Work on it!
• Last Lecture
 – Function: Definition: A special type of binary relation!!!
 – Function Properties: 1-1, Onto, 1-1 Correspondences
 – Function Operations: Composition.
• This Lecture: Complete Functions by the next two lectures.
 – Function Operations: Inverse, Sum, Product
 – Sequence, Subsequence, Summation
 – Theory of Counting
 – Pigeonhole Principle
 – Generalized Pigeonhole Principle

Chapter 4. Functions
Cond.
Operations: Inverse of Functions & Identity Function

Definition: Let \(f = \{(x,y) \in A \times B : f(x) = y\} \). The **inverse** of \(f \), denoted by \(f^{-1} \),

\[
 f^{-1} = \{(y,x) \in B \times A : f(y) = x\}.
\]

Theorem: Let \(f: S \to T \). Then \(f \) is a bijection (1-1 correspondence) if and only if \(f^{-1} \) exists.

Definition: The function that maps each element of a set \(S \) to itself is called the **identity function on \(S \)**, i.e. \(i(x) = x \)

Theorem: Composition of a bijective function and its inverse:

\[
 (f^{-1} \circ f)(x) = f^{-1}(f(x)) = x
\]

i.e. The composition of a function and its inverse is the identity function \(i(x) = x \).

Operations: Sum & Product of Functions

Let \(f_1 \) and \(f_2 \) be functions from \(A \) to \(\mathbb{R} \). Then the **sum** and the **product** of \(f_1 \) and \(f_2 \) are also functions from \(A \) to \(\mathbb{R} \) defined by:

\[
 f_1 + f_2 (x) = f_1(x) + f_2(x) \\
 f_1 \cdot f_2 (x) = f_1(x) \cdot f_2(x)
\]

Example:

\[
 f_1(x) = 3x, \quad f_2(x) = x + 5 \\
 (f_1 + f_2)(x) = f_1(x) + f_2(x) = 3x + x + 5 = 4x + 5 \\
 (f_1 \cdot f_2)(x) = f_1(x) \cdot f_2(x) = 3x(x + 5) = 3x^2 + 15x \\
 \text{Let } x = 10, \quad f_1(10) + f_2(10) = 30 + 15 = 45 \quad (f_1 + f_2)(10) = 40 + 5 = 45 \\
 (f_1 \cdot f_2)(10) = 30 \cdot 15 = 450 \\
 \text{Let } x = 10, \quad f_1(10) \cdot f_2(10) = 30 \cdot 15 = 450 \quad (f_1 \cdot f_2)(10) = 300 + 150 = 450
\]
Sequence: list of objects

- Definition: A sequence lists up/order things in the set S.

 A sequence lists up/order things in the set S. A set does not regard an order of elements by definition! But sequence does.

- Example 1: a simple sequence “a, b, c” is a sequence with 3 terms (finite sequence) “a, c, b”?

 $$f=\{(1, a), (2, b), (3, c)\} \rightarrow f: \mathbb{N} \rightarrow S \quad \mathbb{N} = \{1, 2, 3\}$$

- Example 2: a geometric progression is a sequence: $a, ar, ar^2, ar^3, \ldots$ where a and r are real numbers i.e. $f(n)=ar^n$, for $n \in \mathbb{N}$ (infinite sequence) $f: \mathbb{N} \rightarrow S$.

© by Kazunori Okada, 2021
• Definition: A **subsequence** is a shorter or the same length sequence with the same order as they do in the original sequence.

• Example 3: Use sequence \(X = 1,2,3,5,8,13,21 \) \(\{1, 2, 3, 3, 6, 8, 13, 21\} \)

1,3,13,21 is a subsequence of \(X \)
1,8,5 is not a subsequence of \(X \)
1,2,3,5,8,13,21 is a subsequence of \(X \)

• Definition: Given a sequence \(a_m, a_{m+1}, \ldots, a_n \). We use the notation \(\sum_{j=m}^{n} a_j \) to represent **sum** \(a_m + a_{m+1} + \ldots + a_n \).

• Example: \(\sum_{j=1}^{n} j = 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2} \)

Let \(x = 1 + 2 + 3 + \cdots + n \)

\(+ x = n + (n-1) + \cdots + 1 \)

\(2x = n(n+1) \)

\(x = \frac{n(n+1)}{2} \)

• Example: \(\sum_{k=0}^{n} a^k, (r \neq 0) = \frac{a^{n+1} - a}{r - 1}, r \neq 1 \)

• Let \(x = a + ar + ar^2 + \cdots + ar^n \)

\(\rightarrow \) \(xr = ar + ar^2 + \cdots + ar^{n+1} \)

\(x(r-1) = (ar^{n+1} - a) \)
Double Summations

Corresponding to a double loops in C or Java, there is also triple and quadruple summation corresponding to nested loops:

\[\sum_{i=1}^{b} f(i) = f(1) + f(2) + \cdots + f(b) \]

Example:

\[\sum_{i=1}^{5} i = \sum_{i=1}^{5} (i + 2i) = \sum_{i=1}^{5} 3i = 3 + 6 + 9 + 12 + 15 = 45 \]

Triple?

\[\sum_{i=1}^{5} \sum_{j=1}^{2} ij = \sum_{i=1}^{5} (i + 2i) = \sum_{i=1}^{5} 3i = 3 + 6 + 9 + 12 + 15 = 45 \]

Theory of Counting

Let's think about the size of sets when you have an infinite set \(A \)

\[|A| = \infty \]

Cardinality

Theory of Counting

A \(\rightarrow |A| = \infty \)

B = add 1 new elements to A

C = add 1000 new elements to A

Which one is longer?

\[|A| < |B| < |C| ? \]

No

\[|A| = |B| = |C| = \infty \]

© by Kazunori Okada, 2021
Review: Given a function \(f: S \rightarrow T \)

The range \(R = f(S) = \{ f(s) \mid s \in S \} \subseteq T \).

Then \(|R| \leq |T|\) note: \(|X|\) is cardinality of \(X\)

If \(f\) is injection, 1-1, then \(|S| = |R| \leq |T|\)

For all \(a, b \in S\), if \(f(a) = f(b)\), then \(a = b\)

If \(f\) is surjection, onto, then \(|S| \geq |R| = |T|\)

For all \(b \in T\), we have \(a = f^{-1}(b) \in S\)

If \(f\) is bijection, 1-1 correspondence, then \(|S| = |R| = |T|\)

\(\Leftrightarrow\) both injection \& surjection

\(|S| \geq |R| \leq |T|\) at the same time

Overview

- **MT2 in 3 weeks on Apr 20, on relations, functions and algorithms;** Make a well-organized hand-written notes.
- **HW#5 due in two days on Apr 1. Work on it!**
- **Last Lecture**
 - Function: Definition: A special type of binary relation!!!
 - Function Properties: 1-1, Onto, 1-1 Correspondences
 - Function Operations: Composition.
 - Function Operations: Inverse, Sum, Product
 - Sequence, Subsequence, Summation
 - Theory of Counting
- **This Lecture: Complete Functions**
 - Theory of Counting cond
 - Pigeonhole Principle
 - Generalized Pigeonhole Principle

© by Kazunori Okada, 2021
• Review: Let X be a set and $n \in \mathbb{N}$. If $|X| = |\{0,1,2,\ldots,n-1\}|$, then the cardinality of X is n and X is finite. We say X is infinite if X is not finite.

• Definition: Let X be a set. X is countably infinite if $|X| = |\mathbb{N}| = \infty$.

• X is countable if it is either finite or countably infinite. If a set is not countable, then it is uncountable.

• **Theorem:** If we can define a bijective function $f : \mathbb{N} \to X$, then $|\mathbb{N}| = |X|$ thus a set X is countably infinite.

To show X is countable...
1. Find a function that associates all elements in X with \mathbb{N}. Then prove it is bijective.
2. Show that there is a way to list all elements in X without repeats and missing any.

Why?

• Example: $X = \{n \in \mathbb{N} \text{ and } n \text{ is even}\}$ is countably infinite. $f : \mathbb{N} \to X$ where $f(n) = 2n$.

f is 1-1 correspondence (prove it!)

• Example: Integer set $\mathbb{Z} = \{\ldots,-2,-1,0,1,2,\ldots\}$ is countably infinite.

Let us list \mathbb{Z} as 0, -1, 1, -2, 2, -3, 3, \ldots

then define $f : \mathbb{N} \to \mathbb{Z}$ where
$f(0) = 0$, $f(2n) = n$, $f(2n-1) = -n$ for $n > 0$

f is 1-1 correspondence (prove it!)

• Example: $\mathbb{Q}^+ = \text{set of all positive rational numbers}$, $\{m/n : m \in \mathbb{Z}, n \in \mathbb{Z}, n > 0\}$, is countably infinite.
• Find a way to list all members of \mathbb{Q}^+ as an infinite sequence and each real number is only listed once. Therefore, $\mathbb{N} \rightarrow \mathbb{Q}^+$ is 1-1 correspondence (bijection).

• Use following argument, list the positive rational numbers p/q with $p+q=2$, followed by those with $p+q=3$, then $p+q=4$, etc. If a number already listed, do not list them again.

1	1/1	1/2	1/3	1/4	1/5	1/6	1/7	1/8	...
2	2/1	2/3	2/5	2/7	2/9	2/11	2/13	2/15	...
3	3/1	3/2	3/4	3/5	3/7	3/8	3/10	3/12	...
4	4/1	4/3	4/5	4/7	4/9	4/11	4/13	4/15	...
5	5/1	5/2	5/3	5/4	5/6	5/7	5/8	5/9	...

The first few terms are $1, 1/2, 2, 3, 1/3, 2/3, 3/2, 4, 5, ...$

Example: $\mathbb{Q} = \text{set of all rational numbers}$ is countably infinite.

List all positive and negative rational numbers using previous examples for \mathbb{Z} and \mathbb{Q}^+.

Example: Real numbers set \mathbb{R} is uncountable. We only need to show that the subset X of all real numbers \mathbb{R} between 0 and 1 is uncountable. (If a subset of \mathbb{R} is uncountable, then \mathbb{R} must be uncountable!!) \(\Leftarrow \) Cantor diagonalization $X \subseteq \mathbb{R}$ so $|X| \leq |\mathbb{R}|$!

Suppose that X is countable and then arrive a contradiction.

Suppose $X = \{x | x \in \mathbb{R} \text{ and } 0 < x < 1\}$ is countable, then we can list all real numbers between $0 < x < 1$. Let $r_i \in X$ for all $i = 1, 2, 3, ...$

Let $r_i = 0, d_{i1} d_{i2} d_{i3} ...$

Note: $d_{xy} \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
Now, let’s construct a new real number r^* s.t. $0 < r^* < 1$ as follows:

$$r^* = 0. \overline{d_1 d_2 d_3 \ldots d_i \ldots}$$

for all $i = 1, 2, 3, \ldots$ such that if $d_{ii} \neq 4$, then $d_i = 4$; otherwise $d_i = 5$.

Clearly, $r^* \notin X$ since for each $r_i \in X$, $d_i \neq d_{ii}$, however we supposed $0 < r^* < 1$. So this is a contradiction.

Therefore, all the real numbers between 0 and 1 cannot be listed thus uncountable. Then \mathbb{R} is uncountable because \mathbb{R} contains more elements than X.

Example:

$$r_1 = 0.37941\ldots$$
$$r_2 = 0.45039\ldots$$
$$r_3 = 0.6187\ldots$$
$$r_4 = 0.579\ldots$$
$$r_5 = 0.2456\ldots$$
$$\ldots$$

$$r^* = 0.45454\ldots$$

Pigeonhole Principle: If x items are placed into y bins where $x > y$, then there is one bin which contains at least two items.

Proof by contradiction: Suppose $x (> y)$ items are placed into y bins and suppose no bin with two or more items. Each bin has 0 or 1 item. The maximum total number of items in y bins is then y, but $y < x$.

This contradiction proves the result

Example: How many people must be in a room to guarantee that two people have last names that begin with the same letter?

There are 26 letters(or bins). If there are 27 people, then at least 2 people will have last names beginning with the same letter.

© by Kazunori Okada, 2021
Example: The population of city x is about 40,000. If each resident has three initials, is it true that there must be at least 2 individuals with the same initials?

How many possible combination of 3 letters?
\[26 \times 26 \times 26 = 17,576 < 40,000\]

By Pigeonhole principle, there must be at least 2 individual with the same initials.

Generalized Pigeonhole Principle: If \(x\) items are placed into \(y\) bins where \(x > y\), then there is one bin which contains at least \(\lceil x/y \rceil\) (note: ceiling) items.

Example: For above example, it is true that there must be at least 3 individual with the same initials, i.e \(\lceil 40000/17576 \rceil = 3\).

Example: What is the minimum number of people in a group there must be so that there are at least 3 who were born in the same month?

There are 12 months (bins). With > 12 people, at least 2 people who were born in the same month.

With > 24 people, at least 3 people who were born in the same month.

So, minimum number is 25 people.

Example: Assume you have a drawer containing a random distribution of a dozen brown socks and a dozen black socks. It is dark, so how many socks do you have to pick to be sure that among them there is a matching pair?

Ans: ??
Application - Problem with divisors:

Let \(m \in \mathbb{N} \). Given \(m \) integers \(a_1, a_2, ..., a_m \), there exist \(i \) and \(j \) with \(0 < i < j \leq m \) such that \(a_{i+1} + a_{i+2} + \ldots + a_j \) is divisible by \(m \).

Proof (in two cases):

- Consider \(m \) sums:
 \[a_1, \ a_1 + a_2, \ a_1 + a_2 + a_3, \ \ldots, \ a_1 + a_2 + \ldots + a_m \]
- 1) If any of these sums is divisible by \(m \), then we are done!
- 2) Suppose not, each sum has a nonzero remainder when divided by \(m \).
- The possible remainders are \(1, 2, 3, \ldots, m-1 \).
- By Pigeonhole principle, there are at least \(2 \) sums with same remainder \((r) \). We have:
 \[a_1 + a_2 + \ldots + a_i = cm + r \] \(\text{(i)} \)
 \[a_1 + a_2 + \ldots + a_j = dm + r \] \(\text{(ii)} \)
 where \(c, d \) and \(r \) are integers and assume \(i < j \)
- \(a_{i+1} + a_{i+2} + \ldots + a_j = (d-c) m \) \(\text{(ii)} - (i) \)
 It is divisible by \(m \).