• Stay well! Spr break (3/24,26) + Cesar Chavez Day (3/31)
• Next Lec on 4/2: An essay homework over the break
• MT2 in 3 weeks on 4/9: Zoom, Things upto Functions, 2 page cheat sheets, PDF upload, Start to study for it!
• HW#5 due on 4/7. Questions on iLearn now. Work on it!
• Last Lecture
 – Function: Definition: A special type of binary relation!!
 – Function Properties: 1-1, Onto, 1-1 Correspondences
 – Function Operations: Inverse, Composition.
• This Lecture: Completes Functions
 – Function Operations: Sum, Product
 – Sequence, Subsequence, Summation
 – Theory of Counting
 – Pigeonhole Principle after the break
 – Generalized Pigeonhole Principle

Chapter 4. Functions
Cond.
Operations: Sum & Product of Functions

Let \(f_1 \) and \(f_2 \) be functions from \(A \) to \(\mathbb{R} \). Then the sum and the product of \(f_1 \) and \(f_2 \) are also functions from \(A \) to \(\mathbb{R} \) defined by:

\[
(f_1 + f_2)(x) = f_1(x) + f_2(x)
\]

\[
(f_1 f_2)(x) = f_1(x) f_2(x)
\]

Example:

\[f_1(x) = 3x, \quad f_2(x) = x + 5 \]

\((f_1 + f_2)(x) = f_1(x) + f_2(x) = 3x + x + 5 = 4x + 5\)

Let \(x = 10 \), \(f_1(10) + f_2(10)=30+15=45 \) \((f_1 + f_2)(10) =40+5=45 \)

\((f_1 f_2)(x) = f_1(x) f_2(x) = 3x (x + 5) = 3x^2 + 15x\)

Let \(x = 10 \), \(f_1(10) * f_2(10)=30*15=450 \)

\((f_1 f_2)(10) =300+150=450\)

Sequence: list of objects

- Definition: A sequence is a function from a subset of integers (usually \(\{0,1,2,\ldots\} \) or \(\{1,2,3,\ldots\} \)) to a set \(S \). A sequence lists up/order things in the set \(S \). A set does not regard an order of elements by definition! But sequence does.

\[
\text{sequence} = \{(1, \text{cat}), (2, \text{dog}), (3, \text{pig})\}
\]

Making a sequence:

1. Is to pick elements in \(S \) in an order placing them from left to right!
2. Interpreted it as a function
3. \(\text{location index!} \)
4. \(\text{order doesn't matter!} \)

\[
\text{sequence} = \{ \text{cat, dog, pig} \}
\]
Sequence: list of objects

• Definition: A sequence is a function from a subset of integers (usually \{0,1,2\ldots\} or \{1,2,3,\ldots\}) to a set \(S\). A sequence lists up/order things in the set \(S\). A set does not regard an order of elements by definition! But sequence does.

• Example 1: a simple sequence “\(a,b,c\)” is a sequence with 3 terms (finite sequence) “\(a,c,b\)”?
\[
\{(1,a),(2,b),(3,c)\} \rightarrow f: \mathbb{N} \rightarrow S
\]

• Example 2: a geometric progression is a sequence:
\(a, ar, ar^2, ar^3, \ldots\) where \(a\) and \(r\) are real numbers
i.e. \(f(n)=ar^n\), for \(n \in \mathbb{N}\) (infinite sequence)

• Definition: A subsequence is a shorter or the same length sequence with the same order as they do in the original sequence

• Example 3: Use sequence \(X = 1,2,3,5,8,13,21\)

\[
X \equiv 1,3,13,21
\]

\[
\{1,8\}
\]

\[
X = 1,2,3,5,8,13,21
\] is a subsequence of \(X\)

\[
1,8,5
\] is not a subsequence of \(X\)

\[
X \equiv 1,2,3,5,8,13,21\] is a subsequence of \(X\)
• Definition: Given a sequence $a_m, a_{m+1}, ..., a_n$. We use the notation $\sum_{j=m}^{n} a_j$ to represent summation $a_m + a_{m+1} + ... + a_n$.

• Example: $\sum_{j=1}^{n} j = 1+2+3+...+n = n(n+1)/2$

 Let $x = 1+2+3+...+n$
 $\therefore x = n(n-1)+...+1$
 $2x = n(n+1)$
 $x = n(n+1)/2$

• Example: $\sum_{k=0}^{n} ar^k, \forall r \neq 0 = \frac{ar^{n+1} - a}{r-1}, r \neq 1$

• Let $x = a + ar + ar^2 + ... + ar^n$
 $\therefore x(r-1) = (ar^{n+1} - a)$
 $x(r-1) = (ar^{n+1} - a)$

Double Summations

Corresponding to a double loops in C or Java, there is also triple and quadruple summation corresponding to nested loops:

Example:
\[
\sum_{i=1}^{5} \left(\sum_{j=1}^{2} ij \right) = \sum_{i=1}^{5} (i + 2i) = \sum_{i=1}^{5} 3i
\]

Triple Summation:
\[
\sum_{x=1}^{5} \sum_{y=1}^{2} f(x, y, z) = f(1, 1, 1) + f(1, 1, 2) + f(1, 2, 1) + f(1, 2, 2) + f(2, 1, 1) + f(2, 1, 2) + f(2, 2, 1) + f(2, 2, 2) + f(3, 1, 1) + f(3, 1, 2) + f(3, 2, 1) + f(3, 2, 2) + f(4, 1, 1) + f(4, 1, 2) + f(4, 2, 1) + f(4, 2, 2) + f(5, 1, 1) + f(5, 1, 2) + f(5, 2, 1) + f(5, 2, 2) + f(5, 3, 1) + f(5, 3, 2) + f(5, 3, 3)
\]
Let's think about the size of sets.
When you have an infinite set A
$|A| = \infty$!

Theory of Counting

A $\rightarrow |A| = \infty$
B: add 1 new element to A
C: add 100 new elements to A

Which one is longer?

$|A| < |B| < |C|$?

No

$|A| = |B| = |C| = \infty \ldots$

• Review: Given a function $f: S \rightarrow T$
The range $R = f(S) = \{ f(s) \mid s \in S \} \subseteq T$.
Then $|R| \leq |T|$ note: $|X|$ is cardinality of X

If f is injection, 1-1, then $|S| = |R| \leq |T|$

For all a, b in S, if $f(a) = f(b)$, then $a = b$

If f is surjection, onto, then $|S| \geq |R| = |T|$

For all b in T, we have $a = f^{-1}(b)$ in S

If f is bijection, 1-1 correspondence, then $|S| = |R| = |T|$

$|S| = |R| \leq |T|$ and $|S| \geq |R| = |T|$ at the same time.
• Review: Let X be a set and \(n \in \mathbb{N} \). If \(|X| = |\{0,1,2,\ldots,n-1\}| \), then the **cardinality** of X is \(n \) and X is **finite**. We say X is **infinite** if X is not finite.

• Definition: Let X be a set. X is **countably infinite** if \(|X| = |\mathbb{N}| = \infty \).

• X is **countable** if it is either finite or countably infinite. If a set is not countable, then it is **uncountable**.

• **Theorem:** If we can define a bijective function \(f : \mathbb{N} \to X \), then \(|\mathbb{N}| = |X| \) thus a set X is countably infinite.

To show X is countable:
1. Find a function \(f : \mathbb{N} \to X \), then prove that it is bijective,
2. List the elements of X in some order.

• Example: \(X = \{ n \in \mathbb{N} \) and n is even\} is countably infinite.

\[f : \mathbb{N} \to X \text{ where } f(n) = 2n \]

f is 1-1 correspondence (prove it!)

• Example: Integer set \(\mathbb{Z} = \{ \ldots,-2,-1,0,1,2,\ldots \} \) is countably infinite.

Let us list \(\mathbb{Z} \) as \(0, -1, 1, -2, 2, -3, 3, \ldots \)

then define \(f : \mathbb{N} \to \mathbb{Z} \) where

\[f(0)=0, f(2n)=n, f(2n-1)=-n \text{ for } n>0 \]

f is 1-1 correspondence (prove it!)

• Example: \(\mathbb{Q}^+ = \text{set of all positive rational numbers} \), \(\{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{Z}, n > 0 \} \), is countably infinite.
• Find a way to list all members of \(\mathbb{Q}^+ \) as an infinite sequence and each real number is only listed once. Therefore, \(\mathbb{N} \to \mathbb{Q}^+ \) is 1-1 correspondence (bijection).

• Use following argument, list the positive rational numbers \(p/q \) with \(p+q=2 \), followed by those with \(p+q=3 \), then \(p+q=4 \), etc. If a number already listed, do not list them again.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>1/3</td>
<td>1/4</td>
<td>1/5</td>
<td>1/6</td>
<td>1/7</td>
<td>1/8</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>2/3</td>
<td>2/4</td>
<td>2/5</td>
<td>2/6</td>
<td>2/7</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/2</td>
<td>3/4</td>
<td>3/5</td>
<td>3/6</td>
<td>3/7</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/3</td>
<td>4/5</td>
<td>4/6</td>
<td>4/7</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/2</td>
<td>5/3</td>
<td>5/4</td>
<td>5/5</td>
<td>5/6</td>
<td>5/7</td>
<td>5/8</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

The first few terms are 1, 1/2, 2, 3, 1/3, 1/4, 2/3, 3/2, 4, 5...

• Example: \(\mathbb{Q} \) = set of all rational numbers is countably infinite.

List all positive and negative rational numbers using previous examples for \(\mathbb{Z} \) and \(\mathbb{Q}^+ \).

• Example: Real numbers set \(\mathbb{R} \) is uncountable. We only need to show that the subset \(X \) of all real numbers \(\mathbb{R} \) between 0 and 1 is uncountable. (If a subset of \(\mathbb{R} \) is uncountable, then \(\mathbb{R} \) must be uncountable!!!) \(\leftarrow \) Cantor diagonalization \(X \subset \mathbb{R} \Rightarrow |X| \leq |\mathbb{R}| \)

Suppose that \(X \) is countable and then arrive a contradiction.

Suppose \(X = \{x | x \in \mathbb{R} \text{ and } 0 < x < 1 \} \) is countable, then we can list all real numbers between 0<x<1. Let \(r_i \in X \) for all \(i = 1, 2, 3, ... \)

\[
\begin{align*}
 r_1 &= 0. d_{11} d_{12} d_{13} \ldots \\
 r_2 &= 0. d_{21} d_{22} d_{23} \ldots \\
 r_3 &= 0. d_{31} d_{32} d_{33} \ldots \\
 \vdots \\
 r_i &= 0. d_{i1} d_{i2} d_{i3} \ldots \quad \text{(digits whose digit index \& number index one the same in this list.)}
\end{align*}
\]

\[
\begin{align*}
 d_{xy} \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
\end{align*}
\]
Now, let’s construct a new real number r^* s.t. $0 < r^* < 1$ as follows:

$$r^* = 0. \, d_1 \, d_2 \, d_3 \ldots d_i \ldots$$

for all $i=1,2,3,\ldots$ such that if $d_{ii} \neq 4$, then $d_i=4$; otherwise $d_i=5$

Clearly, $r^* \notin X$ since for each $r_i \in X$, $d_i \neq d_{ii}$, however we supposed $0 < r^* < 1$. So this is a contradiction.

Therefore, all the real numbers between 0 and 1 cannot be listed thus uncountable. Then R is uncountable because R contains more elements than X.

Example:

- $r_1 = 0.237941\ldots$
- $r_2 = 0.45903\ldots$
- $r_3 = 0.09187\ldots$
- $r_4 = 0.95679\ldots$
- $r_5 = 0.24561\ldots$
- \ldots
- $r^* = 0.45454\ldots$

Pigeonhole Principle: If x items are placed into y bins where $x > y$, then there is one bin which contains at least two items.

Note: textbook specified this property by using function notation

Proof by contradiction: Suppose $x > y$ items are placed into y bins and suppose no bin with two or more items. Each bin has 0 or 1 item. The maximum total number of items in y bins is then y, but $y < x$. This contradiction proves the result

Example: How many people must be in a room to guarantee that two people have last names that begin with the same letter?

There are 26 letters(or bins). If there are 27 people, then at least 2 people will have last names beginning with the same letter.
Example: The population of city x is about 40,000. If each resident has three initials, is it true that there must be at least 2 individuals with the same initials?

How many possible combination of 3 letters?
$26 \times 26 \times 26 = 17,576 < 40,000$

By Pigeonhole principle, there must be at least 2 individual with the same initials

Generalized Pigeonhole Principle: If x items are placed into y bins where x > y, then there is one bin which contains at least $\lceil x/y \rceil$ (note: ceiling) items.

Example: For above example, it is true that there must be at least 3 individual with the same initials, i.e $\lceil 40000/17576 \rceil = 3$.

Example: What is the minimum number of people in a group there must be so that there are at least 3 who were born in the same month?

There are 12 months (bins). With > 12 people, at least 2 people who were born in the same month. With > 24 people, at least 3 people who were born in the same month. So, minimum number is 25 people.

Example: Assume you have a drawer containing a random distribution of a dozen brown socks and a dozen black socks. It is dark, so how many socks do you have to pick to be sure that among them there is a matching pair?

Ans: ??
Application - Problem with divisors:
Let $m \in \mathbb{N}$. Given m integers a_1, a_2, \ldots, a_m, there exist i and j with $0 < i < j \leq m$ such that $a_{i+1} + a_{i+2} + \ldots + a_j$ is divisible by m.

Proof (in two cases):
• Consider m sums:
 $a_1, a_1 + a_2, a_1 + a_2 + a_3, \ldots, a_1 + a_2 + \ldots + a_m$
• 1) If any of these sums is divisible by m, then we are done!
• 2) Suppose not, each sum has a nonzero remainder when divided by m.
• The possible remainders are $1, 2, 3, \ldots, m-1$.
• By Pigeonhole principle, there are at least 2 sums with same remainder (r). We have:
 $a_1 + a_2 + \ldots + a_i = cm + r$ \hspace{1cm} (i)
 $a_1 + a_2 + \ldots + a_j = dm + r$ \hspace{1cm} (ii)
 where c, d and r are integers and assume $i < j$
• $a_{i+1} + a_{i+1} + \ldots + a_j = (d-c) m$ \hspace{1cm} (ii) – (i)
It is divisible by m.