Overview

- HW#4 due now & Take a HW#5 handout & old HWs
- MT2 will be on 10/31 covering materials: relation and function. Start to prepare for it.
- Last Lecture: completed materials on Relation
 - Equivalence Class Cond
 - Partition
 - Partial Ordering
 - Relations with multiple sets
 - (Relational Database) ← recommended reader. Not in MT2.
- This Lecture: Function
 - Function Definition
 - Function Properties: Injective, Surjective, Bijective
 - Function Operations: Composition, Inverse
 - Sequence
 - Summation

Chapter 4, Functions
Definition

Functions = special cases of binary relations from a set S to a set T.

• Given sets S and T, a function f from S to T, denoted $f: S \rightarrow T$, is a subset of $S \times T$ where each member of S appears exactly once as the first component of an ordered pair.

• For $A \subseteq S$, $f(A)$ denotes $\{f(a) | a \in A\}$.

Examples: Which of the following are functions from the domain and codomain indicated, or not? For those that are not, why not?

$f: S \rightarrow T$ where $S = T = \{1, 2, 3\}, f = \{(1, 1), (2, 3), (3, 1), (2, 1)\}$

Ans: Not a function; 2 \in S has two values associated with it

g: $\mathbb{Z} \rightarrow \mathbb{N}$ where g is defined by $g(x) = |x|$ (the absolute value of x)

Ans: Yes, it is a function
More examples:

\(f: S \rightarrow T \) where \(S \) is the set of all people in SF,
\(T \) is the set of all driver license numbers, and \(f \) associates
with each person with that person’s driver license number

Ans: Not a function in our definition; not every member
of \(S \) has a driver license number
(Partial Function vs. Total Function: \(y = 1/x \))

\(g: \mathbb{R} \rightarrow \mathbb{R} \) and \(g \) is defined by the graph as follows:

Ans: Yes

In summary, a complete definition of a function requires
giving:

- Its domain
- Its codomain
- The association
 - A collection of ordered pairs
 - An equation
 - Verbal description
 - A graph
Some function f can also be defined **recursively**.

Example:

Given $f: \mathbb{N} \rightarrow \mathbb{N}$ where $f(n) = 3^n$

Recursive definition for f is

- $f(0) = 1$
- $f(n) = 3f(n-1)$ for $n > 0$

$f(1) = 3f(0) = 3 \times 1 = 3^1$

$f(2) = 3f(1) = 3 \times 3 = 9 = 3^2$

$f(3) = 3f(2) = 3 \times 9 = 27 = 3^3$

....

$f(n) = 3^n$

(can be proved by mathematical induction!)

Definition: Two functions, $f, g: X \rightarrow Y$, are **equal** if and only if they contain the **same domain**, **same co-domain** and **same ordered pairs**

e.g. Let $S = \{1, 2, 3\}$ and $T = \{1, 4, 9\}$.

The function $f: S \rightarrow T$ is denoted by $f = \{(1, 1), (2, 4), (3, 9)\}$.

The function $g: S \rightarrow T$ is denoted by the equation

$$
\sum_{k=1}^{n} f(k) = \sum_{k=1}^{n} (4k - 2) \quad g(n) = \frac{\sum_{k=1}^{n} (4k - 2)}{2}
$$

It is true that $f = g$

Note: can be checked easily with all elements of S.

Also, \sum is a notation for **summation**, will define later.
Definition: Let $f: S \rightarrow T$ be an arbitrary function with domain S and codomain T. Part of the definition of a function is that every member of S has an image under f and that all the images are members of T; the set R of all such images is called the **range** of the function f.

Thus $R = \{ f(s) \mid s \in S \}$ or $R = f(S)$ and **clearly** $R \subseteq T$

Example: Let us take a look at the function $f: S \rightarrow T$ with

$S = \{\text{Linda}, \text{Max}, \text{Kathy}, \text{Peter}\}$

$T = \{\text{Boston, New York, Hong Kong, Moscow}\}$

Let us specify f as follows:

$f(\text{Linda}) = \text{Moscow}$ \quad \quad f(\text{Max}) = \text{Boston}$

$f(\text{Kathy}) = \text{Hong Kong}$ \quad \quad f(\text{Peter}) = \text{Boston}$

$R = \{\text{Moscow, Boston, Hong Kong}\} \subseteq T$

Properties of Functions

1. One-to-One (Injective)

Definition: A function $f: S \rightarrow T$ is **One-to-One**, or **injective**, if no member of T is the image of two or more distinct elements of S under f.

$$|S| = |R| \leq |T|$$

Note: To prove that function f is injective, show that, for all s_1 and s_2 in S, $f(s_1) = f(s_2) \rightarrow s_1 = s_2$.

Example: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=2x$

f is one-to-one. For any $a, b \in \mathbb{R}$, if $f(a) = f(b)$ means $2a = 2b$.

It follows that $a = b$.

Example: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=x^2$

f is not one-to-one. **Counterexample**: $f(-2) = f(2) = 4$
2. Onto (Surjective)

Definition: A function \(f: S \rightarrow T \) is an **onto**, or **surjective**, function if the range \(R = f(S) \) of \(f \) equals the codomain \(T \) of \(f \),

\[
|S| \geq |T| = |R| \quad \Rightarrow \quad R = T
\]

Note. To prove that a function is surjective, show that, for any \(b \) in \(T \), there exists an element \(a \) in \(S \) that satisfies \(f(a) = b \) (Every member of codomain \(T \) is an image/not missed).

- **Example:** Let \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \) where \(f(x) = x^2 \)
 \(\mathbb{R}^{+} \) means \(x \geq 0 \) and \(x \in \mathbb{R} \)
 \(f \) is onto. For any \(b \) in codomain \(\mathbb{R}^{+} \), we have \(b = f(a) = a^2 \).
 Solving this about “\(a \)” leads to \(a = \pm \sqrt{b} \). Since \(a \in \mathbb{R}^{+} \), it must be that \(a = \sqrt{b} \), which shows that for any \(b \in T = \mathbb{R}^{+} \) we have corresponding \(a \in S = \mathbb{R}^{+} \).

3. One-to-one correspondence (Bijective)

Definition: A function \(f: S \rightarrow T \) is **bijective** (or **one-to-one correspondence**) if it is both **one-to-one** and **onto**

Note : To prove that a function \(f \) is a bijection requires proving that \(f \) is both onto and one-to-one.

Example: Let \(f: \mathbb{R} \rightarrow \mathbb{R} \) where \(f(x) = x^3 \) is bijective

\[
\text{If } f(a) = f(b) \text{ then } a^3 = b^3 \text{ } \text{ } \text{ } \text{ } \Rightarrow \text{ } \text{ } \text{ } \text{ } a = b
\]

\[
\text{For any } b \in \mathbb{R} \text{ } \text{ } \text{ } \text{ } \Rightarrow b = a^3 \text{ } \text{ } \text{ } \text{ } \Rightarrow a = \sqrt[3]{b} \text{ } \text{ } \text{ } \text{ } \Rightarrow a \in \mathbb{R}
\]
Composition of functions:

Definition: Let \(f: S \rightarrow T \) and \(g: T \rightarrow U \). Then the composition function, \(g \circ f \), is a function from \(S \) to \(U \) defined by \((g \circ f)(s) = g(f(s))\).

Note 1: this is same as the composition of relations

Note 2: the function \(g \circ f \) is applied from right to left; function \(f \) is applied first and then function \(g \).

e.g. Let \(f: \mathbb{R} \rightarrow \mathbb{R} \) be defined by \(f(x) = x^2 \).

Let \(g: \mathbb{R} \rightarrow \mathbb{R} \) be defined by \(g(x) = \lfloor x \rfloor \).

Note: the floor function \(\lfloor x \rfloor \) associates with each real number \(x \) the greatest integer less than or equal to \(x \) (see previous examples).

What is the value of \((g \circ f)(2.5)\)?

\[(g \circ f)(2.5) = g(f(2.5)) = g((2.5)^2) = g(6.25) = \lfloor 6.25 \rfloor = 6\]

What is the value of \((f \circ g)(2.5)\)?

\[(f \circ g)(2.5) = f(g(2.5)) = f(\lfloor 2.5 \rfloor) = f(2) = 2^2 = 4\]
Theorem: Let $f: X \to Y$ and $g: Y \to Z$ be functions

- If f and g are both 1-1, then $g \circ f$ is 1-1
- If f and g are both onto, then $g \circ f$ is onto
- If f and g are both 1-1 correspondences, then $g \circ f$ is a 1-1 correspondence
- If $g \circ f$ is 1-1, then f is 1-1
- If $g \circ f$ is onto, then g is onto

Operations: Inverse of Functions & Identity Function

Definition: Let $f = \{(x,y) \in A \times B : f(x) = y\}$. The inverse of f, denoted by f^{-1},

$$f^{-1} = \{(y,x) \in B \times A : f(y) = x\}.$$

Theorem: Let $f: S \to T$. Then f is a bijection (1-1 correspondence) if and only if f^{-1} exists.

Definition: The function that maps each element of a set S to itself is called the identity function on S, i.e. $i(x) = x$.

Theorem: Composition of a bijective function and its inverse:

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$$

i.e. The composition of a function and its inverse is the identity function $i(x) = x$.
Operations: Sum & Product of Functions

Let \(f_1 \) and \(f_2 \) be functions from \(A \) to \(\mathbb{R} \). Then the **sum** and the **product** of \(f_1 \) and \(f_2 \) are also functions from \(A \) to \(\mathbb{R} \) defined by:

\[
(f_1 + f_2)(x) = f_1(x) + f_2(x)
\]

\[
(f_1 f_2)(x) = f_1(x) f_2(x)
\]

Example:

\(f_1(x) = 3x \), \(f_2(x) = x + 5 \)

\[
(f_1 + f_2)(x) = f_1(x) + f_2(x) = 3x + x + 5 = 4x + 5
\]

Let \(x = 10 \), \(f_1(10) + f_2(10) = 30 + 15 = 45 \)

\[
(f_1 + f_2)(10) = 40 + 5 = 45
\]

\[
(f_1 f_2)(x) = f_1(x) f_2(x) = 3x (x + 5) = 3x^2 + 15x
\]

Let \(x = 10 \), \(f_1(10) f_2(10) = 30 \times 15 = 450 \)

\[
(f_1 f_2)(10) = 300 + 150 = 450
\]