Formal Logic 4

• HW#3 due on Oct 1st Tuesday. Work on it!
• Schedule up to the first midterm
 • Last lecture
 – Deductive Proofs
 – Predicate Logic
 – Universal and Existential Quantifiers
 – Predicate to English Translation

 • This lecture
 – English to Predicate Translation
 – Equivalence Laws with Quantifiers
 – Inference Rules with Quantifiers
 – Deductive Proofs with Predicate

Syntax of
• A predicate is a function, in general, has the form

 \[P(x_1, x_2, ..., x_n) \]

 which maps from \(x_1, x_2, ..., x_n \) to the values true and false

 where \(P \) is the name of the predicate,
 \(x_i \) are variables or parameters
 \(n \) is the degree of the predicate.
• Proposition is simply a statement that is either true or false, has no variables involved.

\[P(x) : x < 777 \]

• But predicates can take variables, and once we replace the variable by a constant (instantiate), it becomes a proposition.

\[\text{Predicate Instantiation Proposition} \]

• Introduce two quantifiers:

 - Universal quantifier \(\forall \) (for all),
 - Existential quantifier \(\exists \) (exists)

A nonempty set \(U \) which is called universe or domain.

\[\forall x \ P(x) \]
- is true if \(P(x) \) is true for every \(x \) in \(U \)
- otherwise, false.

\[\exists x \ P(x) \]
- is true if \(P(x) \) is true for at least one \(x \) in \(U \)
- is false if \(P(x) \) is false for every \(x \) in \(U \)

• \(P(x) \) is a predicate.

• \(\forall x \ P(x) \), \(\exists x \ P(x) \) : either true or false, so they are proposition

\[\text{Predicates Quantified by Proposition} \]
Example:

\(\text{U = all birds} \)

\(\text{P(x): x is a peacock} \)

\(\text{T(x): x is proud of its tail} \)

\(\text{S(x): x can sing} \)

Some birds that are proud of their tails cannot sing.

\[\exists x \left[T(x) \land \neg S(x) \right] \]

Some peacocks cannot sing.

\[\exists x \left[P(x) \land \neg S(x) \right] \]

No birds are proud of their tails.

\[\neg \exists x \left[T(x) \right] \]

No birds, except peacocks, are proud of their tails.

\[\neg \exists x \left[\neg P(x) \land T(x) \right] \equiv \forall x \left[\neg P(x) \rightarrow \neg T(x) \right] \]

Example:

\(\text{U = the whole world} \)

\(\text{B(x): x is a bee} \)

\(\text{F(x): x is a flower} \)

\(\text{L(x, y): x loves y} \)

All bees love all flowers:

\[\forall x \forall y \left[B(x) \rightarrow F(y) \rightarrow L(x, y) \right] \]

\[\equiv \forall x \forall y \left[B(x) \rightarrow F(y) \right] \land \neg L(x, y) \rightarrow Q \rightarrow R \]

Every bee loves only flowers:

\[\forall x \left[\forall y \left[B(x) \rightarrow F(y) \land \neg L(x, y) \right] \right] \]

\[\equiv \forall x \left[B(x) \rightarrow F(x) \right] \land \neg L(x, y) \rightarrow Q \rightarrow R \]
Example: $Q(x)$: true if x is a rational number

\[\{ x \mid x = \frac{n}{m}, n \in \mathbb{Z}, m \in \mathbb{Z}, m \neq 0 \} \]

\[\forall x \forall y \left(Q(x) \land Q(y) \land (x < y) \right) \rightarrow \exists u \left(Q(u) \land (x < u) \land (u < y) \right) \]

“There is a rational number in between every pair of distinct rational numbers”

Note: May define a function for $(a < b)$

Inference rules for predicate logic

- All inference rules in propositional logic

- $\forall x \ P(x) \rightarrow P(c)$ (universal instantiation)

 For any c in U, c may be a variable

- $\exists x \ P(x) \rightarrow P(c)$ (existential instantiation)

 c is a member of U such that $P(c) = True$, c is a constant

 Note: when c is used in multiple proof steps, need to make sure it is valid (the same c cannot be reused).

- $P(c) \rightarrow \forall x \ P(x)$ (universal generalization)

 $P(c)$ is true for arbitrary member c in U

- $P(c) \rightarrow \exists x \ P(x)$ (existential generalization)

 c is a member of U such that $P(c) = True$

- There are more restrictions in these rules, see notes in http://www.cs.odu.edu/~toida/nerzic/content/logic/pred_logic/inference/infer_intro.html
Example: Every SFSU student is kind. George is a SFSU student. Therefore, George is kind. Is this valid?

\[\forall x \ (S(x) \rightarrow G(x)) \]

S(x): “x is a SFSU student.”
G(x): “x is kind.”

Want to show:

\[(\forall x \ (S(x) \rightarrow G(x))) \land S(\text{George}) \rightarrow G(\text{George}) \]

S1: \(\forall x \ (S(x) \rightarrow G(x)) \) Hypothesis
S2: \(S(\text{George}) \) Hypothesis
S3: \(S(\text{George}) \rightarrow G(\text{George}) \) 1, Univ. instantiation
S4: \(G(\text{George}) \) 2 & 3, Modus ponens

Example: Prove deductively

\[\forall x \ [P(x) \land Q(x)] \rightarrow \forall x \ P(x) \land \forall x \ Q(x) \]

S1. \(\forall x \ [P(x) \land Q(x)] \) Hypothesis
S2. \(P(x) \land Q(x) \) S1, Univ. Inst.
S3. \(P(x) \) S2, simplification
S4. \(Q(x) \) S2, simplification
S5. \(\forall x \ P(x) \) S3, Univ. Gen.
S6. \(\forall x \ Q(x) \) S4, Univ. Gen.
S7. \(\forall x \ P(x) \land \forall x \ Q(x) \) S5, S6, conjunction
Example:

$$(\exists x)P(x) \land (\exists x)Q(x) \rightarrow (\exists x)[P(x) \land Q(x)]$$

a. Find an interpretation to prove this wff is not valid.

Ans:

$P(x)$: x is even, $Q(x)$: x is odd

b. What's wrong in the following proof sequence?

S1. $(\exists x)P(x)$ Hypothesis
S2. $(\exists x)Q(x)$ Hypothesis
S3. $P(a)$ S1, Exist. Inst
S4. $Q(a)$ S2, Exist. Inst
S5. $P(a) \land Q(a)$ S3, S4 conjunction
S6. $(\exists x)[P(x) \land Q(x)]$ S5, Exist. Gen.