Overview

- HW#1 Due Now & Pick up HW2 handout!
- Last lecture: Sets Completed (keep coming back...)
 - Proof by cases, Proof by using existing rules
 - Basic counting theorems
 - Principle of inclusion and exclusion
- Today's lecture: General Proof Techniques
 - Proof Techniques
 - Proof by Exhaustion
 - Proof by Counter Example
 - Proof by Contraposition
 - Proof by Contradiction

Chapter 1.2 : Proof Techniques
Review some set proof templates

- \(x \in A \): show that \(x \) has all membership properties of \(A \)
- \(A \subseteq B \): show that every element of \(A \) is also in \(B \).
- \(A \subset B \): show \(A \subseteq B \) and also some element \(x \) of \(B \) is not in \(A \)
- \(A = B \): show that \(A \subseteq B \) and \(B \subseteq A \)
- \(A \not= B \): show that \(A \not\subseteq B \) or \(B \not\subseteq A \) by showing some element \(x \) of \(A \) or \(B \) is not in \(B \) or \(A \)
- \(A \rightarrow B \): suppose \(A \) is true then derive \(B \): “if \(A \), then \(B \)”
- \(A \leftrightarrow B \): show that \(A \rightarrow B \) and \(B \rightarrow A \)
- **Proof by Cases: Make Membership Tables**
- **Proof by Using Existing Rules: Deductive Proof with Set Identities**

Six general proof techniques

1) **Exhaustive Proof**: (to prove \(P \) is true),
 - Show that all possible cases for \(P \) are true, (only for finite cases)
2) **Direct Proof**: to prove \(P \rightarrow Q \) is true (if \(P \) is true, then \(Q \) is true),
 - Show that, suppose \(P \) is true, then **deduce** \(Q \). (deductive)
3) **Contraposition**: to prove \(P \rightarrow Q \) is true
 - Show \(Q' \rightarrow P' \) (not \(Q \) implies not \(P \)) (indirect proof)
4) **Contradiction**: to prove \(P \rightarrow Q \) is true,
 - Show \(P \) and \(Q' \rightarrow \) (contradiction):
 - Assume both the hypothesis (\(P \)) and the negation of the conclusion (not \(Q \)) are true, then try to deduce some contradiction from this assumption.
5) **Counterexample**: to disprove something

6) **Induction**: to prove that $P(n)$ is true for all n,

Use the principle of mathematical induction:

- **Base case**: $P(1)$ or $P(0)$ is true
- **For all k**, $[P(k) \text{ true } \rightarrow P(k+1) \text{ true}]$
- **Conclusion**: $P(n)$ true, $\forall n$

Proof by Exhaustion: "Proof by case"

Example: Show that $n! < 2^n$ for $n \in \{1, 2, 3\}$ any positive integer $n \leq 3$ (U?)

Proof:

List all possible cases:

- $n=1$, $1! < 2^1 \rightarrow 1 < 2$ (true)
- $n=2$, $2! < 2^2 \rightarrow 2 < 4$ (true)
- $n=3$, $3! < 2^3 \rightarrow 6 < 8$ (true) \blacksquare Q.E.D.
Example: if an integer between 5 and 15 is divisible by 6, then it is also divisible by 3.

Proof:

List all possible cases:
- \(n = 6 \) is divisible by 6 and is divisible by 3.
- \(n = 12 \) is divisible by 6 and is divisible by 3.
- All other \(n \) values are not divisible by 6.

Note: If the above problem is for all integers, then we cannot use exhaustive proof.

Direct Proof: (deductive)

Example: For all \(x \), if \(x \) is divisible by 6 then \(x \) is divisible by 3.

Proof:

if \(x \) is divisible by 6
\[\rightarrow x = k \times 6, \text{ for some integer } k \]
\[\rightarrow x = k \times 2 \times 3 \]
\[\rightarrow x = (k \times 2) \times 3 \]
\[\rightarrow x = k' \times 3, \text{ where } k' = k \times 2 \]
since \(k' \) is integer, \(x \) is divisible by 3.
Example: Show that the product of two even integers is even.

Proof: Let \(x = 2m \), \(y = 2n \) for some integer \(m \), \(n \) then \(xy = (2m)(2n) = 2(2mn) \), which is even.

\[\therefore 2mn \text{ is integer.} \]

Example: Show that the sum of two odd integers is even

Proof: Let \(x = 2m+1 \), \(y = 2n+1 \) for some integer \(m \), \(n \) then \(x + y = 2m + 2n + 2 = 2(m+n+1) \), where \(m+n+1 \) is an integer

\[\therefore x+y \text{ is even.} \]

Proof by Counterexample:

Proving \(P \) to be false (disproof) is much easier than proving \(P \) to be true (proof)!

PROOF: must show all cases are true

DISPROOF: showing only one case that is not true suffices!

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>A (\cap) C</th>
<th>A (\cup) (B (\cap) C)</th>
<th>A (\cup) B</th>
<th>(A (\cup) B) (\cap) (A (\cup) C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Proof by Counterexample:

Proving P to be false (disproof) is much easier than proving P to be true (proof)!

PROOF: must show all cases are true

DISPROOF: showing only one case that is not true suffices!

There are two (three) types of questions in proof

1) Prove/disprove a statement P.
2) Is a statement P true?
3) Prove/disprove a statement P by using X technique

The second question requires you to see if the statement P is true or not. So you must consider both cases of P is true and P is false.

Examples for Proof by Counterexample:

Example: Disprove that every integer less than 10 is bigger than 5.

To disprove (or prove the statement is not true), find a counterexample,

Let \(n = 4 \ < 10 \), but \(n \) is not \(> 5 \).

Example: Is the sum of any three consecutive integers even?

Proof or Disproof?

To disprove the statement,

give a counterexample: \(2+3+4=9 \)
Proof by Contraposition:

Example: Prove that: If the square of an integer is odd, then the integer must be odd.

\[P \rightarrow Q \iff Q' \rightarrow P' \]

Proof: if \(n^2 \) is odd, then \(n \) is odd (initial statement)

Proof: if \(n \) is not odd, then \(n^2 \) is not odd (contraposition)

i.e. Prove: \(n \) is even \(\rightarrow \) \(n^2 \) is even

Let \(n = 2m \) for some integer \(m \)

\[n^2 = n \times n = 2m \times 2m = 2(2m^2) \]

\[\rightarrow \text{since } 2m^2 \text{ is integer, } n^2 \text{ is even.} \]

Example: Show that \(xy \) is odd if and only if both \(x \) and \(y \) are odd.

Proof:

\[P \iff Q = Q \Rightarrow P \text{ and } P \Rightarrow Q \]

\((\iff) \) if \(x \) and \(y \) are odd, then \(xy \) is odd.

By direct proof:

Let \(x = 2m + 1, y = 2n + 1 \) for some \(m, n \in \text{integers} \)

\[xy = (2m+1)(2n+1) = 4mn + 2m + 2n + 1 = 2(2mn+m+n) + 1 \]

\[\rightarrow \text{since } 2mn + m + n \text{ is an integer, } xy \text{ is odd.} \]
(⇒) if \(xy \) is odd then \(x \) and \(y \) are odd.

By contraposition: if \(x \) is not odd or \(y \) is not odd, then \(xy \) is not odd

i.e. if \(x \) even or \(y \) even, then \(xy \) even

\textbf{case1} \(x \) even, \(y \) odd: Let \(x = 2m, y = 2n+1 \)
\[
xy = 2(2mn + m), \text{ which is even } \therefore 2mn+m \in \mathbb{Z}
\]

\textbf{case2} \(x \) odd, \(y \) even: similar to case1.

\textbf{case3} \(x \) even, \(y \) even: Let \(x = 2m, y = 2n \)
\[
xy = 2(2mn), \text{ which is even } \therefore 2mn \in \mathbb{Z}
\]

\textbf{Proof by Contradiction}

• Prove/Show \(P \rightarrow Q \) by contradiction method

• Is equivalent to show that \((P \land Q') \) deduces to a contradiction (violation of assumption)

• Logical proof of contradiction:

 – Let \(x' = (P \rightarrow Q)' = P \land Q' \), we assume \(x' \) and derive a contradiction \(y' \), i.e. \(x' \rightarrow y' \)

 – Where \(y' \) is false, i.e. \(y \) is true (or axiom)

 – By \textit{modus tollens}: \((x' \rightarrow y') \land y \) → \(x \)

 – Therefore, conclude \(x = P \rightarrow Q \) is true
Proof by Contradiction:

Example: If a number added to itself gives itself, then the number is 0, i.e. if \(x + x = x \), then \(x = 0 \)

Proof:

Assume \(x + x = x \) and \(x \neq 0 \)

\[\rightarrow 2x = x \] and \(x \neq 0 \)

\[\rightarrow 2 = 1 \], which is a contradiction

\(\therefore \) the assumption must be wrong

\(\therefore \) if \(x + x = x \), then \(x = 0 \)

Example: Prove that if \(x^2 + 2x - 3 = 0 \), then \(x \neq 2 \)

1. by contradiction: \(P \) and \(Q' \) \(\rightarrow \) Contradiction

Suppose \(x^2 + 2x - 3 = 0 \) and \(x = 2 \),

\[\rightarrow 4 + 4 - 3 = 0 \text{ or } 5 = 0 \], which is a contradiction.

2. by direct proof: \(P \implies P' \implies Q \)

if \(x^2 + 2x - 3 = 0 \implies (x + 3)(x - 1) = 0 \)

\[\rightarrow x = -3 \text{ or } x = 1 \rightarrow x \neq 2 \]

3. by contraposition: \(Q' \implies \rightarrow \rightarrow P' \)

show that if \(x = 2 \), then \(x^2 + 2x - 3 \neq 0 \)

\[\rightarrow x^2 + 2x - 3 = 5 \neq 0 \]
In class exercises

Show that if $3n+2$ is odd, then n is odd.

a) Proof by contradiction

b) Proof by contraposition

c) Direct proof