Overview

• HW#1 Due & HW2 Assignment online soon!
• HW2 is due on 1.5 week on Sep 16 Thr!
• Last lecture: Sets Completed (keep coming back...)
 – Proof by cases, Proof by using existing rules
 – Basic counting theorems
 – Principle of inclusion and exclusion
 – Counting exercises

• Today’s lecture: General Proof Techniques
 – Proof Techniques Review
 – Six General Ones
 – Direct Proof
 – Proof by Exhaustion
 – Proof by Counter Example
 – Proof by Contraposition
 – Proof by Contradiction

Chapter 1.2 : Proof Techniques
Review some set proof templates:

- \(x \in A \): show that \(x \) has all membership properties of \(A \)
- \(A \subseteq B \): show that every element of \(A \) is also in \(B \).
- \(A \subset B \): show \(A \subseteq B \) and also some element \(x \) of \(B \) is not in \(A \)
- \(A = B \): show that \(A \subseteq B \) and \(B \subseteq A \)
- \(A \neq B \): show that \(A \not\subseteq B \) or \(B \not\subseteq A \) by showing some element \(x \) of \(A \) or \(B \) is not in \(B \) or \(A \)
- \(A \rightarrow B \): suppose \(A \) is true then derive \(B \): “if \(A \), then \(B \)”
- \(A \leftrightarrow B \): show that \(A \Rightarrow B \) and \(B \Rightarrow A \)

Proof by Cases: Make Membership Tables

Proof by Using Existing Rules: Deductive Proof with Set Identities

Six general proof techniques:

1) **Exhaustive Proof**: (to prove \(P \) is true), "Proof by Case"
 Show that all possible cases for \(P \) are true, (only for finite cases)

2) **Direct Proof**: to prove \(P \rightarrow Q \) is true (if \(P \) is true, then \(Q \) is true),
 Show that, suppose \(P \) is true, then **deduce** \(Q \). "Proof by Existing Rule"
 (deductive)

3) **Contraposition**: to prove \(P \rightarrow Q \) is true
 Show \(\neg Q \rightarrow \neg P \) (\(\neg Q \) implies \(\neg P \))
 (indirect proof)

4) **Contradiction**: to prove \(P \rightarrow Q \) is true,
 Show \(P \) and \(\neg Q \) \rightarrow (contradiction):
 Assume both the hypothesis (\(P \)) and the negation of the conclusion (\(\neg Q \)) are true, then try to deduce some contradiction from this assumption.
5) **Counterexample**: to disprove something

6) **Induction**: to prove that $P(n)$ is true for all n, Use the principle of mathematical induction:

- **Base case**: $P(1)$ or $P(0)$ is true
- **For all** k, $[P(k) \text{ true} \rightarrow P(k+1) \text{ true}]$
- **Conclusion**: $P(n) \text{ true, } \forall n$

Proof by Exhaustion: "Proof by case"

Example: Show that $n! < 2^n$ for any positive integer $n \leq 3$ (U?)

Proof:

List all possible cases:

- $n=1$, $1! < 2^1 \rightarrow 1 < 2$ (true)
- $n=2$, $2! < 2^2 \rightarrow 2 < 4$ (true)
- $n=3$, $3! < 2^3 \rightarrow 6 < 8$ (true)

□ / Q.E.D.
Example: if an integer between 5 and 15 is divisible by 6, then it is also divisible by 3

Proof: \[\{5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\} \]

List all possible cases:
- \(n=6 \) is divisible by 6 and is divisible by 3
- \(n=12 \) is divisible by 6 and is divisible by 3
- All other \(n \) values are not divisible by 6

\[\square \]

Note: If the above problem is for all integers, then we cannot use exhaustive proof

\[\Rightarrow \mathbb{Z}, |\mathbb{Z}| = \infty \]

Direct Proof: (deductive)

Example: For all \(x \), if \(x \) is divisible by 6 then \(x \) is divisible by 3

Proof:

- if \(x \) is divisible by 6
 - \(x = k \times 6 \), for some integer \(k \)
 - \(x = k \times 2 \times 3 \)
 - \(x = (k \times 2) \times 3 \)
 - \(x = k' \times 3 \), where \(k' = k \times 2 \)
- since \(k' \) is integer, \(x \) is divisible by 3

\[\square \]
Show \(P \Rightarrow Q \): \(P \): \(x \) is even and \(y \) is even, \(Q \): \(xy \) is even

Example: Show that the product of two even integers is even.
Proof: Let \(x = 2m, y = 2n \) for some integer \(m, n \)
then \(xy = (2m)(2n) = 2(2mn) \), which is even
\[\therefore 2mn \text{ is integer. } \square \]

Show \(P \Rightarrow Q \): \(P \): \(x \) is odd and \(y \) is odd, \(Q \): \(x+y \) is even
Example: Show that the sum of two odd integers is even
Proof: Let \(x = 2m + 1, y = 2n + 1 \) for some integer \(m,n \)
then \(x + y = 2m + 2n + 2 = 2(m+n+1) \),
where \(m+n+1 \) is an integer
\[\therefore x+y \text{ is even. } \square \]
Proof by Counterexample:

Proving P to be false (disproof) is much easier than proving P to be true (proof)!

PROOF: must show all cases are true

DISPROOF: **showing only one case that is not true suffices**!

There are two (three) types of questions in proof
1) Prove (disprove) a statement P (Show that P is true (false)).
2) Is a statement P true? (Prove or disprove P/Determine whether P is true or not)
3) Prove (disprove) a statement P by using X technique

The second question requires you to see if the statement P is true or not. So you must consider both cases of P is true and P is false.

Examples for Proof by Counterexample:

Example: Disprove that every integer less than 10 is bigger than 5.

To disprove (or prove the statement is not true), find a counterexample,

Let $n = 4 < 10$, but n is not > 5. □

Example: Is the sum of any three consecutive integers even?

To disprove the statement, give a counterexample: $2+3+4=9$ □
Proof by Contraposition:

Example: Prove that: If the square of an integer is odd, then the integer must be odd.

Template: $P \implies Q \iff \neg Q \implies \neg P$

Prove: if n^2 is odd, then n is odd (initial statement)

Prove: if n is not odd, then n^2 is not odd (contraposition)

i.e. Prove: n is even $\implies n^2$ is even

Let $n = 2m$ for some integer m

$\implies n^2 = n \times n = 2m \times 2m = 2(2m^2)$

\implies since $2m^2$ is integer, n^2 is even. \square

Example: Show that xy is odd if and only if both x and y are odd.

Proof:

(\iff) if x and y are odd, then xy is odd.

By direct proof:

Let $x = 2m+1$, $y=2n+1$ for some m, $n \in \mathbb{Z}$

$\implies xy = (2m+1)(2n+1) = 4mn + 2m + 2n + 1$

$\implies = 2(2mn + m + n) + 1$

\implies since $2mn + m + n$ is an integer, xy is odd.
If xy is odd then x and y are odd.

By contraposition: if x is not odd or y is not odd, then xy is not odd.

i.e. if x even or y even, then xy even

Exhaustive Proof

case 1 x even, y odd: Let $x = 2m$, $y = 2n+1$

$$xy = 2(2mn + m),$$

which is even $\therefore 2mn+m \in \mathbb{Z}$

case 2 x odd, y even: similar to case 1.

case 3 x even, y even: Let $x = 2m$, $y = 2n$

$$xy = 2(2mn),$$

which is even $\therefore 2mn \in \mathbb{Z}$ □

Proof by Contradiction

- Prove/Show $P \rightarrow Q$ by contradiction method
- Is equivalent to show that $(P \land Q')$ deduces to a contradiction (violation of assumption)
- Logical proof of contradiction:
 - Let $x' = (P \rightarrow Q)' = P \land Q'$, we assume x' and derive a contradiction y', i.e. $x' \rightarrow y'$
 - Where y' is false, i.e. y is true (or axiom)
 - By *modus tollens*: $(x' \rightarrow y') \land y \rightarrow x$
 - Therefore, conclude $x = P \rightarrow Q$ is true □
Proof by Contradiction:

Example: If a number added to itself gives itself, then the number is 0, i.e. if \(x + x = x \), then \(x = 0 \)

Proof:
Assume \(x + x = x \) and \(x \neq 0 \)

\[\rightarrow 2x = x \text{ and } x \neq 0 \]

\[\rightarrow 2 = 1 \], which is a contradiction

\[\therefore \text{ the assumption must be wrong} \]

\[\therefore \text{ if } x + x = x \text{, then } x = 0 \quad \square \]

Example: Prove that if \(x^2 + 2x - 3 = 0 \), then \(x \neq 2 \)

1. by contradiction: \(P \) and \(\neg Q \rightarrow \rightarrow \text{ Contradiction} \)

Suppose \(x^2 + 2x - 3 = 0 \) and \(x = 2 \),

\[\rightarrow 4 + 4 - 3 = 0 \text{ or } 5 = 0 \], which is a contradiction. \(\square \)

2. by direct proof:

\[P \rightarrow P' \rightarrow \rightarrow Q \]

if \(x^2 + 2x - 3 = 0 \rightarrow (x + 3)(x - 1) = 0 \)

\[\rightarrow x = -3 \text{ or } x = 1 \rightarrow x \neq 2 \quad \square \]

3. by contraposition: \(Q' \rightarrow \rightarrow P' \)

show that if \(x = 2 \), then \(x^2 + 2x - 3 \neq 0 \)

\[\rightarrow x^2 + 2x - 3 = 5 \neq 0 \quad \square \]
In class exercises

Show that if $3n + 2$ is odd, then n is odd.

a) Proof by contradiction

b) Proof by contraposition

c) Direct proof