Overview

• Study for HW#1 (Due next Tuesday in-class on 2/11)

• Last lecture
 – Proof templates for sets
 – Set operations: Union, Intersection, Difference, Sym-Diff
 – Cartesian Product

• Today’s lecture: Complete Lectures on Sets
 – More Proof Templates
 • Proof by cases,
 • Proof by using existing rules
 • Set identities: All *true* rules for sets that you can use for making your proof!
 – Basic counting theorem
 – Principle of inclusion and exclusion

Chapter 1.1 : Set Theory

Cond.
More proof templates (will show example later):

- **Proof by cases**: List all possible cases/situations. For each case, prove the conclusion separately.
- **Proof by using existing rules**: derive the desired conclusion from the assumption only by using the set identities.
- **Disproof by counterexample**: Find an x that can be proved to demonstrate that the conclusion is false. (See example $A \neq B$)

Example: Prove $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ by cases

One simple way: Use a membership table

1 means "x is an element of this set"
0 means "x is not an element of this set"

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>$B \cap C$</th>
<th>$A \cup (B \cap C)$</th>
<th>$A \cup B$</th>
<th>$A \cup C$</th>
<th>$(A \cup B) \cap (A \cup C)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The membership values of LHS and RHS are same. Therefore, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
Proof by using existing rules

- **Deductive Proof**: Use the set identities (valid steps).
- Starting from a statement that you know is true.
- Revise the statement by using the identity rules successively, until you derive the form of statement that you want to prove.
- Each step provides a true statement if you only use proper identities! (One mistake makes the entire proof wrong!)
- HINT: think backward...

Set Identities (properties)

1. **Identity laws**
 \[A \cup \emptyset = A, \ A \cap U = A \]

2. **Domination laws**
 \[A \cup U = U, \ A \cap \emptyset = \emptyset \]

3. **Idempotent laws**
 \[A \cup A = A, \ A \cap A = A \]

4. **Complementation law**
 \[(A)' = A \]

5. **Commutative laws**
 \[A \cup B = B \cup A, \ A \cap B = B \cap A \]

6. **Associative laws**
 \[A \cup (B \cup C) = (A \cup B) \cup C, \ A \cap (B \cap C) = (A \cap B) \cap C \]

7. **More properties**
 \[A \subseteq A \cup B, \ B \subseteq A \cup B, \ A \cap B \subseteq A, \ A \cap B \subseteq B \]
 \[A \Rightarrow A \subseteq A \cup B, \ A \cap B \Rightarrow A \cap B \subseteq A \cup A \cap B \subseteq B \]
8. Distributive laws

\[A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \]
\[A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \]

9. De Morgan’s laws

\[(A \cup B)^c = A^c \cap B^c \]
\[(A \cap B)^c = A^c \cup B^c \]

Note: \(A^c = A' \)

10. Absorption laws

\[A \cup (A \cap B) = A \]
\[A \cap (A \cup B) = A \]

11. Complement laws

\[A \cup A^c = U \]
\[A \cap A^c = \emptyset \]

Note: You can prove all above identities. You may use basic definitions and existing identities to prove new set relations/properties

\[A \cup \overline{A} = U \]
\[A \cap \overline{A} = \emptyset \]
Use existing properties to prove the same theorem

(i) \(A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C) \) and
(ii) \((A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C) \)

(i) Suppose \(x \in A \cup (B \cap C) \). It is necessary to show that \(x \in (A \cup B) \cap (A \cup C) \) also

Since \(x \in A \cup (B \cap C) \), \(x \in A \) or \(x \in (B \cap C) \) (by \(\cup \) definition)

Note: There are 2 cases to prove

Case I, \(x \in A \), then,
\(x \in (A \cup B) \) and \(x \in (A \cup C) \) (by Identity 7 or text theorem 1(b))
It follows \(x \in (A \cup B) \cap (A \cup C) \) (by \(\cap \) definition)

Case II, \(x \in (B \cap C) \), then \(x \in B \) and \(x \in C \) (by \(\cap \) definition)
\(x \in (A \cup B) \) and \(x \in (A \cup C) \) (by Identity 7 or text theorem 1(b))
Therefore, \(x \in (A \cup B) \cap (A \cup C) \) (by \(\cap \) definition)

(ii) Suppose \(x \in (A \cup B) \cap (A \cup C) \). It is necessary to show that \(x \in A \cup (B \cap C) \).

Since \(x \in (A \cup B) \cap (A \cup C) \), then \(x \in (A \cup B) \) and \(x \in (A \cup C) \) (by \(\cap \) definition)
This means \((x \in A \) or \(x \in B) \) and \((x \in A \) or \(x \in C) \) (by \(\cup \) definition)
Note: There are 4 possible cases

Case I : if \(x \in A \) and \(x \in A \), then \(x \in (B \cap C) \)
(look at step 2 of Case I earlier)
Case II : if \(x \in A \) and \(x \in C \), then \(x \in A \cap C \)
(by \(\cap \) definition)
It follows \(x \in A \cup (B \cap C) \) (by Identity 7 or text theorem 2(b))
Case III, if \(x \in B \) and \(x \in A \),
Analogous to Case II
Case IV, if \(x \in B \) and \(x \in C \),
then \(x \in B \cap C \)
It follows \(x \in A \cap (B \cap C) \)
(by \(\cap \) definition)
(by Identity 7 or text theorem 1(b))
Basic Counting Theorems

A-B, \(A \cap B\), B-A are mutually exclusive/disjoint sets. i.e. \(x \in A-B\), then \(x \notin B\), and therefore \(x \notin B-A\), \(x \notin A \cap B\).

U: universal set

\[
\begin{align*}
|A \cup B| &= |A - B| + |B - A| + |A \cap B| \\
|A \cup B| &= |A| + |B| - |A \cap B| \\
|A - B| &= |A| - |A \cap B| \\
|B - A| &= |B| - |A \cap B|
\end{align*}
\]

\[|A \cap B|\] can be computed in several ways depends on the information given.

Other Counting Theorems

Let A and B be subsets of a finite universal set U

(a) Let B \(\subseteq\) A, then:

\[
|B| \leq |A|, \ |A-B| = |A| - |B| \\
|B| = |A| \text{ iff } B=A
\]

(b) Let A and B be disjoint sets, then:

\[
|A \cap B| = 0 \text{ and } |A \cup B| = |A| + |B|
\]

(C) \(|A'| = |U-A| = |U| - |A|\)
e.g. In a group of 42 tourists, everyone speaks English or French; there are 35 English speakers and 18 French speakers. How many speak both English & French?

\[U = \text{group of tourists} \]
\[E: \text{English Speakers} \]
\[F: \text{French Speakers} \]

\[|E \cup F| = 42 \]
\[|E| = 35 \]
\[|F| = 18 \]

\[|E \cup F| = |E| + |F| - |E \cap F| \]
\[42 = 35 + 18 - |E \cap F| \]
\[|E \cap F| = 11 \]

Therefore, \(|E \cap F| = 11 \)

For \(|A \cup B \cup C| \):

\[|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C| \]

\[\text{L.H.S.} = |A \cup (B \cup C)| \quad \text{(association)} \]
\[= |A| + |B \cup C| - |A \cap (B \cup C)| \quad \text{(2-set cardinality)(distribution)} \]
\[= |A| + |B| + |C| - |B \cap C| - |(A \cap B) \cup (A \cap C)| \]
\[= |A| + |B| + |C| - |B \cap C| - |A \cap B| - |A \cap C| + |A \cap B \cap C| \]
\[= \text{R.H.S.} \]

(can also be seen from the picture)
Principle of Inclusion and Exclusion

Given finite sets A_1, A_2, \ldots, A_n, $n \geq 2$, then

$$|A_1 \cup A_2 \cup \ldots \cup A_n| =$$

$$+ \sum_{i=1}^{n} |A_i| - \sum_{1 \leq i < j \leq n} |A_i \cap A_j| + \sum_{1 \leq i < j < k \leq n} |A_i \cap A_j \cap A_k| - \ldots$$

$$+ (-1)^{n+1} |A_1 \cap A_2 \cap \ldots \cap A_n|$$

Example: A survey of 150 college students reveals that

- $|C| = 83$ own Cars,
- $|B| = 97$ own Bikes,
- $|M| = 28$ own Motorcycles,
- $|C \cap B| = 53$ own a car and a bike,
- $|C \cap M| = 14$ own a car and a motorcycle,
- $|B \cap M| = 7$ own a bike and a motorcycle,
- 2 own all three.

$$= |C \cap B \cap M|$$
a. How many own a bike and nothing else?

\[|B - (C \cup M)| \ (|A-B| \text{ formula}) \]
\[= |B| - |B \cap (C \cup M)| \ (\text{distribution}) \]
\[= |B| - |(B \cap C) \cup (B \cap M)| \ (|A \cup B| \text{ formula}) \]
\[= |B| - (|B \cap C| + |B \cap M| - |B \cap C \cap M|) \]
\[= 97 - (53 + 7 - 2) \]
\[= 39 \]

b. How many students do not own any of the three?

\[150 - |C \cup B \cup M| \]
\[= 150 - (83 + 97 + 28 - 53 - 14 - 7 + 2) \]
\[= 150 - 136 \]
\[= 14 \]